The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach
Abstract
:1. Introduction
2. Methods—Literature Search Strategy
3. Results
3.1. Hyperglycemia and Glycemic Control in Stress Conditions
3.2. The Acute Phase: Metabolic Steps and Nutritional Implications
3.3. Stable and Recovery Phases
3.4. Nutrition: Method of Administration and Immunity-Enhancers Nutrients
3.5. Energy Expenditure Assessment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chwals, W.J. Hyperglycemia management strategy in the pediatric intensive care setting. Pediatr. Crit. Care Med. 2008, 9, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Joosten, K.F.; Kerklaan, D.; Verbruggen, S.C. Nutritional support and the role of the stress response in critically ill children. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Beisel, W.R. Metabolic effects of infection. Prog. Food Nutr. Sci. 1984, 8, 43–75. [Google Scholar] [PubMed]
- Wilson, B.; Typpo, K. Nutrition: A Primary Therapy in Pediatric Acute Respiratory Distress Syndrome. Front. Pediatr. 2016, 4, 108. [Google Scholar] [CrossRef] [PubMed]
- Powanda, M.C.; Beisel, W.R. Metabolic effects of infection on protein and energy status. J. Nutr. 2003, 133, 322S–327S. [Google Scholar] [PubMed]
- Mehta, N.M.; Compher, C.; A.S.P.E.N. Board of Directors. ASPEN Clinical Guidelines: Nutrition support of the critically ill child. JPEN J. Parenter. Enter. Nutr. 2009, 33, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.L.; Adise, S. Variation in the Ability to Taste Bitter Thiourea Compounds: Implications for Food Acceptance, Dietary Intake, and Obesity Risk in Children. Annu. Rev. Nutr. 2016, 36, 157–182. [Google Scholar] [CrossRef] [PubMed]
- Preiser, J.C.; Ichai, C.; Orban, J.C.; Groeneveld, A.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef] [PubMed]
- De Cosmi, V.; Mehta, N.M.; Boccazzi, A.; Milani, G.P.; Esposito, S.; Bedogni, G.; Agostoni, C. Nutritional status, metabolic state and nutrient intake in children with bronchiolitis. Int. J. Food Sci. Nutr. 2017, 68, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Tavladaki, T.; Spanaki, A.M.; Dimitriou, H.; Briassoulis, G. Alterations in metabolic patterns in critically ill patients-is there need of action? Eur. J. Clin. Nutr. 2017, 71, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Bechard, L.J.; Dolan, M.; Ariagno, K.; Jiang, H.; Duggan, C. Energy imbalance and the risk of overfeeding in critically ill children. Pediatr. Crit. Care Med. 2011, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Bouillon, R. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 2001, 345, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Vlasselaers, D.; Milants, I.; Desmet, L.; Wouters, P.J.; Vanhorebeek, I.; van den Heuvel, I.; Mesotten, D.; Casaer, M.P.; Meyfroidt, G.; Ingels, C.; et al. Intensive insulin therapy for patients in pediatric intensive care: A prospective, randomised controlled study. Lancet 2009, 373, 547–556. [Google Scholar] [CrossRef]
- Mesotten, D.; Gielen, M.; Sterken, C.; Claessens, K.; Hermans, G.; Vlasselaers, D.; Lemiere, J.; Lagae, L.; Gewillig, M.; Eyskens, B.; et al. Neurocognitive development of children 4 years after critical illness and treatment with tight glucose control: A randomized controlled trial. JAMA 2012, 308, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Day, K.M.; Haub, N.; Betts, H.; Inwald, D.P. Hyperglycemia is associated with morbidity in critically ill children with meningococcal sepsis. Pediatr. Crit. Care Med. 2008, 9, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Kulp, G.A.; Kraft, R.; Finnerty, C.C.; Mlcak, R.; Lee, J.O.; Herndon, D.N. Intensive insulin therapy in severely burned pediatric patients: A prospective randomized trial. Am. J. Respir. Crit. Care Med. 2010, 182, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Macrae, D.; Grieve, R.; Allen, E.; Sadique, Z.; Morris, K.; Pappachan, J.; Parslow, R.; Tasker, R.C.; Elbourne, D.A. Randomized trial of hyperglycemic control in pediatric intensive care. N. Engl. J. Med. 2014, 370, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Agus, M.S.; Wypij, D.; Hirshberg, E.L.; Srinivasan, V.; Faustino, E.V.; Luckett, P.M.; Nadkarni, V.M. Tight Glycemic Control in Critically Ill Children. N. Engl. J. Med. 2017, 376, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Agus, M.S.; Steil, G.M.; Wypij, D.; Costello, J.M.; Laussen, P.C.; Langer, M.; Ohye, R.G. Tight glycemic control versus standard care after pediatric cardiac surgery. N. Engl. J. Med. 2012, 367, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Rossano, J.W.; Taylor, M.D.; Smith, E.B.; Fraser, C.D.; McKenzie, E.D.; Price, J.F.; Mott, A.R. Glycemic profile in infants who have undergone the arterial switch operation: Hyperglycemia is not associated with adverse events. J. Thorac. Cardiovasc. Surg. 2008, 135, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Sadhwani, A.; Asaro, L.A.; Goldberg, C.; Ware, J.; Butcher, J.; Gaies, M.; Smith, C.; Alexander, J.L.; Wypij, D.; Agus, M.S. Impact of Tight Glycemic Control on Neurodevelopmental Outcomes at 1 Year of Age for Children with Congenital Heart Disease: A Randomized Controlled Trial. J. Pediatr. 2016, 174, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Vanhorebeek, I.; Gielen, M.; Boussemaere, M.; Wouters, P.J.; Grandas, F.G.; Mesotten, D.; Van den Berghe, G. Glucose dysregulation and neurological injury biomarkers in critically ill children. J. Clin. Endocrinol. Metab. 2010, 95, 4669–4679. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G. Are Early Parenteral Nutrition and Intensive Insulin Therapy What Critically Ill Children Need? Pediatr. Crit. Care Med. 2014, 15, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Şimşek, T.; Şimşek, H.U.; Cantürk, N.Z. Response to trauma and metabolic changes: Posttraumatic metabolism. Ulus. Cerrahi Derg. 2014, 30, 153–159. [Google Scholar] [PubMed]
- Felts, P.W. Ketoacidosis. Med. Clin. N. Am. 1983, 67, 831–843. [Google Scholar] [CrossRef]
- Lang, T.F.; Hussain, K. Pediatric hypoglycemia. Adv. Clin. Chem. 2014, 63, 211–245. [Google Scholar] [PubMed]
- Dennhardt, N.; Beck, C.; Huber, D.; Nickel, K.; Sander, B.; Witt, L.H.; Boethig, D.; Sümpelmann, R. Impact of preoperative fasting times on blood glucose concentration, ketone bodies and acid-base balance in children younger than 36 months: A prospective observational study. J. Anaesthesiol. 2015, 32, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Van Veen, M.R.; van Hasselt, P.M.; de Sain-van der Velden, M.G.; Verhoeven, N.; Hofstede, F.C.; de Koning, T.J.; Visser, G. Metabolic profiles in children during fasting. Pediatrics 2011, 127, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Martindale, R.G.; Warren, M.; Diamond, S.; Kiraly, L. Nutritional Therapy for Critically Ill Patients. Nestle Nutr. Inst. Workshop Ser. 2015, 82, 103–116. [Google Scholar] [PubMed]
- Dornelles, C.T.; Piva, J.P.; Marostica, P.J. Nutritional status, breastfeeding, and evolution of Infants with acute viral bronchiolitis. J. Health Popul. Nutr. 2007, 25, 336–343. [Google Scholar] [PubMed]
- Hulst, J.; Joosten, K.; Zimmermann, L.; Hop, W.; van Buuren, S.; Büller, H.; van Goudoever, J. Malnutrition in critically ill children: From admission to 6 months after discharge. Clin. Nutr. 2004, 23, 223–232. [Google Scholar] [CrossRef]
- Levine, B.; Mizushima, N.; Virgin, H.W. Autophagy in immunity and inflammation. Nature 2011, 469, 323. [Google Scholar] [CrossRef] [PubMed]
- Casaer, M.P.; Wilmer, A.; Hermans, G.; Wouters, P.J.; Mesotten, D.; Van den Berghe, G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: A post hoc analysis. Am. J. Respir. Crit. Care Med. 2013, 187, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Hermans, G.; Casaer, M.P.; Clerckx, B.; Güiza, F.; Vanhullebusch, T.; Derde, S.; Meersseman, P.; Derese, I.; Mesotten, D.; Wouters, P.J.; et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: A subanalysis of the EPaNIC trial. Lancet Respir. Med. 2013, 1, 621–629. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Kerklaan, D.; Hulst, J.M.; Verhoeven, J.J.; Verbruggen, S.C.; Joosten, K.F. Use of Indirect Calorimetry to Detect Overfeeding in Critically Ill Children: Finding the Appropriate Definition. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Edefonti, A.; Calderini, E.; Fossali, E.; Colombo, C.; Battezzati, A.; Bertoli, S.; Milani, G.; Bisogno, A.; Perrone, M.; et al. Accuracy of Prediction Formula for the Assessment of Resting Energy Expenditure in Hospitalized Children. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Briassouli, E.; Tavladaki, T.; Ilia, S.; Fitrolaki, D.M.; Spanaki, A.M. Unpredictable combination of metabolic and feeding patterns in malnourished critically ill children: The malnutrition–energy assessment question. Intensive Care Med. 2014, 40, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Boonen, E.; Van den Berghe, G. Endocrine responses to critical illness: Novel insights and therapeutic implications. J. Clin. Endocrinol. Metab. 2014, 99, 1569–1582. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Venkataraman, S.; Thompson, A.E. Energy expenditure in critically ill children. Crit. Care. Med. 2000, 28, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Jotterand Chaparro, C.; Laure Depeyre, J.; Longchamp, D.; Perez, H.M.; Taffé, P.; Cotting, J. How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clin. Nutr. 2015, 35, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Bechard, L.J.; Zurakowski, D.; Duggan, C.P.; Heyland, D.K. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: A multicenter, prospective, cohort study. Am. J. Clin. Nutr. 2015, 102, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Fivez, T.; Kerklaan, D.; Verbruggen, S.; Vanhorebeek, I.; Verstraete, S.; Tibboel, D.; Guerra, G.G.; Wouters, P.J.; Joffe, A.; Joosten, K.; et al. Impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients (PEPaNIC trial): Study protocol for a randomized controlled trial. Trials 2015, 16, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhorebeek, I.; Verbruggen, S.; Casaer, M.P.; Gunst, J.; Wouters, P.J.; Hanot, J.; Guerra, G.G.; Vlasselaers, D.; Joosten, K.; Van den Berghe, G. Effect of early supplemental parenteral nutrition in the paediatric ICU: A preplanned observational study of post-randomisation treatments in the PEPaNIC trial. Lancet Respir. Med. 2017, 5, 475–483. [Google Scholar] [CrossRef]
- Mikhailov, T.A.; Kuhn, E.M.; Manzi, J.; Christensen, M.; Collins, M.; Brown, A.M.; Dechert, R.; Scanlon, M.C.; Wakeham, M.K.; Goday, P.S. Early enteral nutrition is associated with lower mortality in critically ill children. JPEN J. Parenter. Enteral Nutr. 2014, 38, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Van Waardenburg, D.A.; de Betue, C.T.; Luiking, Y.C.; Engel, M.; Deutz, N.E. Plasma arginine and citrulline concentrations in critically ill children: Strong relation with inflammation. Am. J. Clin. Nutr. 2007, 86, 1438–1444. [Google Scholar] [PubMed]
- Pérez de la Cruz, A.J.; Abilés, J.; Pérez Abud, R. Perspectives in the design and development of new products for enteral nutrition. Nutr. Hosp. 2006, 21, 98–108. [Google Scholar] [PubMed]
- Briassouli, E.; Briassoulis, G. Glutamine randomized studies in early life: The unsolved riddle of experimental and clinical studies. Clin. Dev. Immunol. 2012, 2012, 749189. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Filippou, O.; Hatzi, E.; Papassotiriou, I.; Hatzis, T. Early enteral administration of immunonutrition in critically ill children: Results of a blinded randomized controlled clinical trial. Nutrition 2005, 21, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Filippou, O.; Kanariou, M.; Hatzis, T. Comparative effects of early randomized immune or non-immune-enhancing enteral nutrition on cytokine production in children with septic shock. Intensive Care Med. 2005, 31, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Filippou, O.; Kanariou, M.; Papassotiriou, I.; Hatzis, T. Temporal nutritional and inflammatory changes in children with severe head injury fed a regular or an immune-enhancing diet: A randomized, controlled trial. Pediatr. Crit. Care Med. 2006, 7, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Ilia, S.; Meyer, R. Enteral Nutrition in PICUs: Mission Not Impossible! Pediatr. Crit. Care Med. 2016, 17, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Smallwood, C.D.; Joosten, K.F.; Hulst, J.M.; Tasker, R.C.; Duggan, C.P. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement-a two-center study. Clin. Nutr. 2015, 34, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Rousing, M.L.; Hahn-Pedersen, M.H.; Andreassen, S.; Pielmeier, U.; Preiser, J.C. Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann. Intensive Care 2016, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Venkataraman, S.; Thompson, A. Cytokines and metabolic patterns in pediatric patients with critical illness. Clin. Dev. Immunol. 2010, 2010, 354047. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Arriaza, A.; Esposito, M.; Coss-Bu, J.A. Is indirect calorimetry a necessity or a luxury in the pediatric intensive care unit? JPEN J. Parenter. Enter. Nutr. 2012, 36, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Graf, S.; Heidegger, C.P.; Genton, L.; Pugin, J.; Pichard, C. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry? Crit. Care Med. 2017, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, G.; Briassoulis, P.; Michaeloudi, E.; Fitrolaki, D.M.; Spanaki, A.M.; Briassouli, E. The effects of endotracheal suctioning on the accuracy of oxygen consumption and carbon dioxide production measurements and pulmonary mechanics calculated by a compact metabolic monitor. Anesth. Analg. 2009, 109, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; Kulinskaya, E.; Briassoulis, G.; Taylor, R.M.; Cooper, M.; Pathan, N.; Habibi, P. The challenge of developing a new predictive formula to estimate energy requirements in ventilated critically ill children. Nutr. Clin. Pract. 2012, 27, 669–676. [Google Scholar] [CrossRef] [PubMed]
Authors, years | Country | Groups | Primary Outcomes | Results |
---|---|---|---|---|
Vlasselaers et al. [13] | Belgium | Tight glycemic control (interventional group) n = 700, conventional glycemic control (control group) n = 351, age = 0–16 years. Statistical power = 80% | Effect of tight glycemic control on duration of PICU stay and inflammation | PICU stay was shorter (5.5 vs. 6.2 days, p = 0.017) and C-reactive protein change after 5 days lower (–9.8 mg/L vs. 9.0 mg/L, p = 0.007) in interventional vs. control group |
Mesotten et al. [14] | Belgium | Tight glycemic control (interventional group) n = 222, conventional glycemic control (control group) n = 234, age ≤ 16 years. Statistical power = 80% | Effect of tight glycemic control on long-term follow-up of neuro-cognitive-outcomes | No significant difference between the two groups was observed |
Jeschke et al. [16] | USA | Tight glycemic control (interventional group) n = 60, conventional glycemic control (control group) n = 159, age = 0–16 years. The study was underpowered | Effect of tight glycemic control on infectious events | Sepsis was less frequent (p < 0.05) in interventional than in control group (8.2% and 22.6% of patients, respectively) |
Macrae et al. [17] | England | Tight glycemic control (interventional group) n = 694, conventional glycemic control (control group) n = 675, age = 0–16 years. Statistical power = 80% | Effect of tight glycemic control on days alive and free from and free from mechanical ventilation at 30 days after enrollment | No significant difference between the two groups was observed |
Agus et al. [18] | USA | Tight glycemic control (interventional group) n = 349, conventional glycemic control (control group) n = 360, age = 2 weeks–17 years. Statistical power = 80% | Effect of tight glycemic control on length of PICU stay | No significant difference between the two groups was observed |
Agus et al. [19] | USA | Tight glycemic control (interventional group) n = 490, conventional glycemic control (control group) n = 490, age = 0–36 months. Statistical power = 80% | Effect of tight glycemic control on mortality, length of PICU stay, and infectious events | No significant difference between the two groups was observed |
Sadhwani et al. [21] | USA | Tight glycemic control (interventional group) n = 121, conventional glycemic control (control group) n = 116, age = 0–36 months. Statistical power not reported | Effect of tight glycemic control on neurodevelopment follow-up | No significant difference between the two groups was observed |
Vanhorebee et al. [22] | Belgium | Tight glycemic control (interventional group) n = 349, conventional glycemic control (control group) n = 351, age = 0–16 years. Statistical power = 80% | Effect of tight glycemic control on neurological injury biomarkers | No significant difference between the two groups was observed |
Vanhorebee et al. [44] | Belgium, Netherlands, Canada | Early parenteral nutrition (interventional group) n = 723, late parenteral nutrition (control group) n = 717, age = 0–17 years. Statistical power = 70% | Effect of macronutrients supplementation timing on infections, need of mechanical ventilation, and length of PICU stay | The early provision of amino-acids, and not glucose or lipids, was associated with worse outcomes |
Briassoulis et al. [49] | Greece | Immunonutrition (interventional group), n = 25. Conventional enteral nutrition (control group) n = 25, age = 8–9.2 years. Statistical power not reported | Effect of immunonutrition on biochemical nutritional markers and hard outcomes (mortality, length of PICU stay, and need of mechanical ventilation) | Immunonutrition had a favorable effect on few nutritional biochemical markers, but not on hard outcomes |
Briassoulis et al. [50] | Greece | Immunonutrition (interventional group), n = 15, conventional enteral nutrition (control group) n = 15, age = 6.5–7.9 years. Statistical power not reported | Effect of immunonutrition on interleukins in septic children | IL-6 levels were lower (11.8 vs. 38.3 pg/mL, p < 0.001) and IL-8 higher (65.4 vs. 21 pg/mL, p < 0.03) in interventional group compared with control group |
Briassoulis et al. [51] | Greece | Immunonutrition (interventional group), n = 20, conventional enteral nutrition (control group) n = 20, age = 6–10.5 years. Statistical power not reported | Effect of immunonutrition on biochemical nutritional markers and hard outcomes (mortality, length of PICU stay, and need of mechanical ventilation) in severe head injury patients | Except for IL-8 levels and nitrogen balance, no difference was observed between the two groups |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Cosmi, V.; Milani, G.P.; Mazzocchi, A.; D’Oria, V.; Silano, M.; Calderini, E.; Agostoni, C. The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach. Nutrients 2017, 9, 1032. https://doi.org/10.3390/nu9091032
De Cosmi V, Milani GP, Mazzocchi A, D’Oria V, Silano M, Calderini E, Agostoni C. The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach. Nutrients. 2017; 9(9):1032. https://doi.org/10.3390/nu9091032
Chicago/Turabian StyleDe Cosmi, Valentina, Gregorio Paolo Milani, Alessandra Mazzocchi, Veronica D’Oria, Marco Silano, Edoardo Calderini, and Carlo Agostoni. 2017. "The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach" Nutrients 9, no. 9: 1032. https://doi.org/10.3390/nu9091032
APA StyleDe Cosmi, V., Milani, G. P., Mazzocchi, A., D’Oria, V., Silano, M., Calderini, E., & Agostoni, C. (2017). The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach. Nutrients, 9(9), 1032. https://doi.org/10.3390/nu9091032