Next Article in Journal
Broad and Inconsistent Muscle Food Classification Is Problematic for Dietary Guidance in the U.S.
Previous Article in Journal
Higher Dietary Cost Is Associated with Higher Diet Quality: A Cross-Sectional Study among Selected Malaysian Adults
Open AccessReview

Insights into the Hexose Liver Metabolism—Glucose versus Fructose

Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland
Author to whom correspondence should be addressed.
Nutrients 2017, 9(9), 1026;
Received: 21 July 2017 / Revised: 9 September 2017 / Accepted: 11 September 2017 / Published: 16 September 2017
High-fructose intake in healthy men is associated with characteristics of metabolic syndrome. Extensive knowledge exists about the differences between hepatic fructose and glucose metabolism and fructose-specific mechanisms favoring the development of metabolic disturbances. Nevertheless, the causal relationship between fructose consumption and metabolic alterations is still debated. Multiple effects of fructose on hepatic metabolism are attributed to the fact that the liver represents the major sink of fructose. Fructose, as a lipogenic substrate and potent inducer of lipogenic enzyme expression, enhances fatty acid synthesis. Consequently, increased hepatic diacylglycerols (DAG) are thought to directly interfere with insulin signaling. However, independently of this effect, fructose may also counteract insulin-mediated effects on liver metabolism by a range of mechanisms. It may drive gluconeogenesis not only as a gluconeogenic substrate, but also as a potent inducer of carbohydrate responsive element binding protein (ChREBP), which induces the expression of lipogenic enzymes as well as gluconeogenic enzymes. It remains a challenge to determine the relative contributions of the impact of fructose on hepatic transcriptome, proteome and allosterome changes and consequently on the regulation of plasma glucose metabolism/homeostasis. Mathematical models exist modeling hepatic glucose metabolism. Future models should not only consider the hepatic adjustments of enzyme abundances and activities in response to changing plasma glucose and insulin/glucagon concentrations, but also to varying fructose concentrations for defining the role of fructose in the hepatic control of plasma glucose homeostasis. View Full-Text
Keywords: NAFLD; type 2 diabetes; fructose; glucose; insulin; ChREBP; SREBP1c; gluconeogenesis; de novo lipogenesis; triglyceride NAFLD; type 2 diabetes; fructose; glucose; insulin; ChREBP; SREBP1c; gluconeogenesis; de novo lipogenesis; triglyceride
Show Figures

Figure 1

MDPI and ACS Style

Geidl-Flueck, B.; Gerber, P.A. Insights into the Hexose Liver Metabolism—Glucose versus Fructose. Nutrients 2017, 9, 1026.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop