Lifestyle and Dietary Determinants of Serum Apolipoprotein A1 and Apolipoprotein B Concentrations: Cross-Sectional Analyses within a Swedish Cohort of 24,984 Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Dietary Variables
2.3. Other Variables
2.4. Statistical Analyses
3. Results
3.1. Lifestyle Determinants of Apo Concentrations
3.2. Macronutrient Determinants of Apo Concentrations
3.3. Food Group Determinants of Apo Concentrations
4. Discussion
4.1. Main Findings of the Study
4.2. Comparisons with Other Studies
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Berliner, J.A.; Navab, M.; Fogelman, A.M.; Frank, J.S.; Demer, L.L.; Edwards, P.A.; Watson, A.D.; Lusis, A.J. Atherosclerosis: Basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995, 91, 2488–2496. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Bolanos-Garcia, V.M.; Miguel, R.N. On the structure and function of apolipoproteins: More than a family of lipid-binding proteins. Prog. Biophys. Mol. Biol. 2003, 83, 47–68. [Google Scholar] [CrossRef]
- Irshad, M.; Dubey, R. Apolipoproteins and their role in different clinical conditions: An overview. Indian J. Biochem. Biophys. 2005, 42, 73–80. [Google Scholar] [PubMed]
- Talmud, P.J.; Hawe, E.; Miller, G.J.; Humphries, S.E. Nonfasting apolipoprotein b and triglyceride levels as a useful predictor of coronary heart disease risk in middle-aged uk men. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1918–1923. [Google Scholar] [CrossRef] [PubMed]
- Walldius, G.; Jungner, I.; Aastveit, A.H.; Holme, I.; Furberg, C.D.; Sniderman, A.D. The Apob/Apoa-i ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin. Chem. Lab. Med. 2004, 42, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Walldius, G.; Jungner, I. The Apob/Apoa-i ratio: A strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy–A review of the evidence. J. Intern. Med. 2006, 259, 493–519. [Google Scholar] [CrossRef] [PubMed]
- Sniderman, A.D.; Jungner, I.; Holme, I.; Aastveit, A.; Walldius, G. Errors that result from using the tc/hdl c ratio rather than the Apob/Apoa-i ratio to identify the lipoprotein-related risk of vascular disease. J. Intern. Med. 2006, 259, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Estruch, R.; Ros, E. New insights into the role of nutrition in cvd prevention. Curr. Cardiol. Rep. 2015, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Tognon, G.; Berg, C.; Mehlig, K.; Thelle, D.; Strandhagen, E.; Gustavsson, J.; Rosengren, A.; Lissner, L. Comparison of apolipoprotein (Apob/Apoa-i) and lipoprotein (total cholesterol/hdl) ratio determinants. Focus on obesity, diet and alcohol intake. PLoS ONE 2012, 7, e40878. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Wang, Z.; Zhang, L.; Chen, Z.; Wang, X.; Guo, M.; Tian, Y.; Shao, L.; Zhu, M. Relationship between alcohol consumption and serum lipid profiles among middle-aged population in china: A multiple-center cardiovascular epidemiological study. Angiology 2015, 66, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Burt, A.A.; Ranchalis, J.E.; Jarvik, L.E.; Eintracht, J.F.; Furlong, C.E.; Jarvik, G.P. Effects of dietary components on high-density lipoprotein measures in a cohort of 1566 participants. Nutr. Metab. (Lond.) 2014, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Manjer, J.; Carlsson, S.; Elmstahl, S.; Gullberg, B.; Janzon, L.; Lindstrom, M.; Mattisson, I.; Berglund, G. The malmo diet and cancer study: Representativity, cancer incidence and mortality in participants and non-participants. Eur. J. Cancer Prev. 2001, 10, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Manjer, J.; Elmstahl, S.; Janzon, L.; Berglund, G. Invitation to a population-based cohort study: Differences between subjects recruited using various strategies. Scand. J. Public Health 2002, 30, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Berglund, G.; Elmstahl, S.; Janzon, L.; Larsson, S.A. The malmo diet and cancer study. Design and feasibility. J. Intern. Med. 1993, 233, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Hedblad, B.; Nilsson, P.; Engstrom, G.; Berglund, G.; Janzon, L. Insulin resistance in non-diabetic subjects is associated with increased incidence of myocardial infarction and death. Diabet. Med. 2002, 19, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Pero, R.W.; Olsson, A.; Bryngelsson, C.; Carlsson, S.; Janzon, L.; Berglund, G.; Elmstahl, S. Quality control program for storage of biologically banked blood specimens in the malmo diet and cancer study. Cancer Epidemiol. Biomark. Prev. 1998, 7, 803–808. [Google Scholar]
- Callmer, E.; Riboli, E.; Saracci, R.; Akesson, B.; Lindgarde, F. Dietary assessment methods evaluated in the malmo food study. J. Intern. Med. 1993, 233, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Elmstahl, S.; Gullberg, B.; Riboli, E.; Saracci, R.; Lindgarde, F. The malmo food study: The reproducibility of a novel diet history method and an extensive food frequency questionnaire. Eur. J. Clin. Nutr. 1996, 50, 134–142. [Google Scholar] [PubMed]
- Elmstahl, S.; Riboli, E.; Lindgarde, F.; Gullberg, B.; Saracci, R. The malmo food study: The relative validity of a modified diet history method and an extensive food frequency questionnaire for measuring food intake. Eur. J. Clin. Nutr. 1996, 50, 143–151. [Google Scholar] [PubMed]
- Riboli, E.; Elmstahl, S.; Saracci, R.; Gullberg, B.; Lindgarde, F. The malmo food study: Validity of two dietary assessment methods for measuring nutrient intake. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S161–S173. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Gullberg, B.; Wirfalt, E. Both food habit change in the past and obesity status may influence the association between dietary factors and postmenopausal breast cancer. Public Health Nutr. 2007, 10, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Wirfalt, E.; Gullberg, B.; Berglund, G. Past food habit change is related to obesity, lifestyle and socio-economic factors in the malmo diet and cancer cohort. Public Health Nutr. 2005, 8, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Mattisson, I.; Wirfalt, E.; Aronsson, C.A.; Wallstrom, P.; Sonestedt, E.; Gullberg, B.; Berglund, G. Misreporting of energy: Prevalence, characteristics of misreporters and influence on observed risk estimates in the malmo diet and cancer cohort. Br. J. Nutr. 2005, 94, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J. 2012, 33, 1635–1701. [Google Scholar] [PubMed]
- Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose-response meta-analysis. Br. J. Cancer 2015, 112, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Bautista, L.; Franzosi, M.G.; Commerford, P.; Lang, C.C.; Rumboldt, Z.; Onen, C.L.; Lisheng, L.; et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet 2005, 366, 1640–1649. [Google Scholar] [CrossRef]
- Kilander, L.; Berglund, L.; Boberg, M.; Vessby, B.; Lithell, H. Education, lifestyle factors and mortality from cardiovascular disease and cancer. A 25-year follow-up of Swedish 50-year-old men. Int. J. Epidemiol. 2001, 30, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- de Koning, L.; Malik, V.S.; Kellogg, M.D.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 2012, 125, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among us adults. JAMA Int. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Hellstrand, S.; Schulz, C.A.; Wallstrom, P.; Drake, I.; Ericson, U.; Gullberg, B.; Hedblad, B.; Orho-Melander, M. The association between carbohydrate-rich foods and risk of cardiovascular disease is not modified by genetic susceptibility to dyslipidemia as determined by 80 validated variants. PLoS ONE 2015, 10, e0126104. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Schwarz, J.M.; Havel, P.J. Adverse metabolic effects of dietary fructose: Results from the recent epidemiological, clinical, and mechanistic studies. Curr. Opin. Lipidol. 2013, 24, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Hellstrand, S.; Drake, I.; Schulz, C.A.; Ericson, U.; Hlebowicz, J.; Persson, M.M.; Gullberg, B.; Hedblad, B.; Engström, G.; et al. Diet quality and change in blood lipids during 16 years of follow-up and their interaction with genetic risk for dyslipidemia. Nutrients 2016, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Wirfalt, E.; Wallstrom, P.; Gullberg, B.; Drake, I.; Hlebowicz, J.; Nordin Fredrikson, G.; Hedblad, B.; Nilsson, J.; Krauss, R.M.; et al. High disaccharide intake associates with atherogenic lipoprotein profile. Br. J. Nutr. 2012, 107, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Farnworth, E.R.; Jones, P.J. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am. J. Clin. Nutr. 2000, 71, 674–681. [Google Scholar] [PubMed]
- Bansal, S.; Buring, J.E.; Rifai, N.; Mora, S.; Sacks, F.M.; Ridker, P.M. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007, 298, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Benn, M.; Schnohr, P.; Tybjaerg-Hansen, A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007, 298, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, J.J.; Tybjaerg-Hansen, A.; Jensen, J.S.; Nordestgaard, B.G. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA 2008, 300, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Rifai, N.; Buring, J.E.; Ridker, P.M. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation 2008, 118, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Langsted, A.; Mora, S.; Kolovou, G.; Baum, H.; Bruckert, E.; Watts, G.F.; Sypniewska, G.; Wiklund, O.; Boren, J.; et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications including flagging at desirable concentration cutpoints-a joint consensus statement from the european atherosclerosis society and european federation of clinical chemistry and laboratory medicine. Clin. Chem. 2016, 62, 930–946. [Google Scholar] [PubMed]
- Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.; et al. Esc/eas guidelines for the management of dyslipidaemias: The task force for the management of dyslipidaemias of the european society of cardiology (esc) and the european atherosclerosis society (eas). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar] [CrossRef] [PubMed]
Variables | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
N | ApoA1 | ApoB | ApoB/A1 | N | ApoA1 | ApoB | ApoB/A1 | |
All | 9363 | 1.45 (0.003) | 1.10 (0.003) | 0.78 (0.002) | 15,621 | 1.66 (0.002) | 1.06 (0.002) | 0.66 (0.002) |
Age groups | p = 3 × 10−4 | p = 0.02 | p = 0.08 | p = 1 × 10−23 | p < 10−150 | p = 6 × 10−146 | ||
45–50 years | 1027 | 1.45 (0.008) | 1.08 (0.008) | 0.77 (0.007) | 4035 | 1.62 (0.004) | 0.94 (0.004) | 0.60 (0.003) |
50–55 years | 2280 | 1.44 (0.005) | 1.10 (0.005) | 0.78 (0.005) | 3091 | 1.64 (0.005) | 1.00 (0.004) | 0.63 (0.004) |
55–60 years | 1933 | 1.45 (0.006) | 1.11 (0.006) | 0.79 (0.005) | 2608 | 1.66 (0.005) | 1.06 (0.005) | 0.66 (0.004) |
60–65 years | 2053 | 1.47 (0.005) | 1.11 (0.006) | 0.78 (0.005) | 2823 | 1.66 (0.005) | 1.11 (0.005) | 0.69 (0.004) |
65–70 years | 1229 | 1.46 (0.007) | 1.11 (0.007) | 0.78 (0.006) | 1662 | 1.65 (0.007) | 1.14 (0.006) | 0.71 (0.005) |
70–75 years | 841 | 1.48 (0.009) | 1.11 (0.010) | 0.77 (0.008) | 1402 | 1.70 (0.008) | 1.16 (0.007) | 0.70 (0.006) |
Education level | p = 1 × 10−4 | 3 × 10−4 | p = 4 × 10−9 | p = 3 × 10−24 | 6 × 10−39 | 6 × 10−55 | ||
Elementary | 4188 | 1.45 (0.004) | 1.12 (0.004) | 0.79 (0.004) | 5982 | 1.63 (0.004) | 1.10 (0.003) | 0.69 (0.003) |
Primary and secondary | 1852 | 1.47 (0.006) | 1.10 (0.006) | 0.77 (0.005) | 4780 | 1.67 (0.004) | 1.06 (0.004) | 0.66 (0.003) |
Upper secondary | 1133 | 1.46 (0.007) | 1.09 (0.008) | 0.77 (0.007) | 1110 | 1.67 (0.008) | 1.05 (0.007) | 0.65 (0.006) |
Further education without a degree | 897 | 1.48 (0.008) | 1.09 (0.008) | 0.76 (0.007) | 1354 | 1.68 (0.007) | 1.04 (0.007) | 0.64 (0.005) |
University degree | 1293 | 1.47 (0.007) | 1.09 (0.007) | 0.76 (0.006) | 2395 | 1.69 (0.006) | 1.02 (0.005) | 0.62 (0.004) |
Physical activity | 9 × 10−10 | p = 2 × 10−4 | p = 2 × 10−11 | 2 × 10−22 | p = 2 × 10−4 | 5 × 10−17 | ||
Quintile 1 | 1858 | 1.43 (0.006) | 1.13 (0.006) | 0.81 (0.005) | 3073 | 1.62 (0.005) | 1.08 (0.004) | 0.69 (0.004) |
Quintile 2 | 1878 | 1.45 (0.006) | 1.10 (0.006) | 0.78 (0.005) | 3142 | 1.65 (0.005) | 1.08 (0.004) | 0.67 (0.004) |
Quintile 3 | 1877 | 1.46 (0.006) | 1.11 (0.006) | 0.78 (0.005) | 3144 | 1.66 (0.005) | 1.06 (0.004) | 0.66 (0.004) |
Quintile 4 | 1890 | 1.47 (0.006) | 1.10 (0.006) | 0.77 (0.005) | 3130 | 1.67 (0.005) | 1.06 (0.004) | 0.65 (0.004) |
Quintile 5 | 1860 | 1.48 (0.006) | 1.09 (0.006) | 0.75 (0.005) | 3132 | 1.68 (0.005) | 1.06 (0.004) | 0.65 (0.004) |
BMI groups | p = 4 × 10−56 | p = 8 × 10−52 | p = 1 × 10−96 | p = 6 × 10−120 | p = 3 × 10-112 | p = 1 × 10−201 | ||
Underweight | 52 | 1.53 (0.034) | 0.92 (0.034) | 0.61 (0.030) | 238 | 1.72 (0.017) | 0.95 (0.016) | 0.57 (0.012) |
Normal | 3575 | 1.51 (0.004) | 1.06 (0.004) | 0.72 (0.004) | 8239 | 1.70 (0.003) | 1.03 (0.003) | 0.62 (0.002) |
Overweight | 4628 | 1.44 (0.004) | 1.13 (0.004) | 0.80 (0.003) | 5156 | 1.62 (0.004) | 1.10 (0.003) | 0.70 (0.003) |
Obese | 964 | 1.39 (0.008) | 1.16 (0.008) | 0.85 (0.007) | 1573 | 1.57 (0.007) | 1.15 (0.006) | 0.75 (0.005) |
Severely obese | 145 | 1.39 (0.020) | 1.21 (0.021) | 0.89 (0.018) | 418 | 1.53 (0.013) | 1.12 (0.012) | 0.75 (0.009) |
Alcohol habits | p = 2 × 10−123 | p = 4 × 10−6 | p = 9 × 10−19 | p = 5 × 10−155 | 2 × 10−18 | p = 1 × 10−94 | ||
Non-consumers | 388 | 1.34 (0.012) | 1.10 (0.013) | 0.84 (0.011) | 1105 | 1.57 (0.008) | 1.09 (0.007) | 0.71 (0.006) |
Quintile 1 | 1750 | 1.40 (0.006) | 1.09 (0.006) | 0.80 (0.005) | 2826 | 1.60 (0.005) | 1.09 (0.005) | 0.70 (0.004) |
Quintile 2 | 1733 | 1.42 (0.006) | 1.09 (0.006) | 0.79 (0.005) | 2877 | 1.62 (0.005) | 1.08 (0.005) | 0.68 (0.004) |
Quintile 3 | 1812 | 1.46 (0.006) | 1.10 (0.006) | 0.77 (0.005) | 2924 | 1.65 (0.005) | 1.06 (0.005) | 0.66 (0.004) |
Quintile 4 | 1826 | 1.49 (0.006) | 1.11 (0.006) | 0.76 (0.005) | 2937 | 1.70 (0.005) | 1.05 (0.005) | 0.64 (0.004) |
Quintile 5 | 1854 | 1.56 (0.005) | 1.13 (0.006) | 0.75 (0.005) | 2952 | 1.75 (0.005) | 1.05 (0.005) | 0.61 (0.004) |
Smoking habits | p = 3 × 10−5 | p = 9 × 10−19 | 4 × 10−22 | p = 3 × 10−26 | 1 × 10−36 | 2 × 10−59 | ||
Never-smokers | 2729 | 1.46 (0.005) | 1.07 (0.005) | 0.75 (0.004) | 6939 | 1.66 (0.003) | 1.06 (0.003) | 0.66 (0.002) |
Ex-smokers | 3934 | 1.47 (0.004) | 1.11 (0.004) | 0.77 (0.004) | 4302 | 1.68 (0.004) | 1.04 (0.004) | 0.64 (0.003) |
Smokers | 2700 | 1.44 (0.005) | 1.13 (0.005) | 0.81 (0.004) | 4380 | 1.62 (0.004) | 1.11 (0.004) | 0.71 (0.003) |
Variables | Basic Multivariable Model 1 | Full Multivariable Model 2 | Mutually Adjusted Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
ApoA1 | ApoB | ApoB/A1 | ApoA1 | ApoB | ApoB/A1 | ApoA1 | ApoB | ApoB/A1 | |
Men | |||||||||
Alcohol habits | 0.242 ** | 0.050 ** | −0.097 ** | 0.253 ** | 0.041 ** | −0.113 ** | 0.233 ** | 0.036 ** | −0.103 ** |
BMI | −0.176 ** | 0.180 ** | 0.238 ** | −0.189 ** | 0.182 ** | 0.247 ** | −0.194 ** | 0.174 ** | 0.240 ** |
Education | 0.046 ** | −0.045 ** | −0.066 ** | −0.008 | −0.030 * | −0.023 * | N.S. | −0.032 * | −0.025 * |
Physical activity | 0.071 ** | −0.040 ** | −0.073 ** | 0.055 ** | −0.024 * | −0.051 ** | 0.063 ** | −0.017 | −0.051 ** |
Smoking habits | −0.027 * | 0.093 ** | 0.101 ** | −0.063 ** | 0.098 ** | 0.126 ** | −0.065 ** | 0.094 ** | 0.125 ** |
Carbohydrates | −0.109 ** | −0.064 ** | 0.013 | −0.087 ** | −0.033 * | 0.027 * | - | - | - |
Sucrose | −0.118 ** | −0.007 | 0.063 ** | −0.090 ** | −0.009 | 0.059 ** | −0.073 ** | 0.032 ** | 0.069 ** |
Fiber | −0.060 | −0.048 ** | −0.009 | −0.025 * | −0.013 | 0.002 | - | - | - |
Protein | 0.024 * | −0.054 ** | 0.031 * | −0.012 | 0.022 | 0.014 | N.S. | 0.038 ** | 0.039 ** |
Fat | 0.095 ** | 0.046 ** | −0.020 * | 0.075 ** | 0.027 * | −0.025 * | 0.055 ** | 0.042 ** | N.S |
SFA | 0.062 ** | −0.036 ** | −0.010 | 0.053 ** | 0.027 * | −0.013 | - | - | - |
MUFA | 0.097 ** | 0.054 ** | −0.015 | 0.077 ** | 0.028 * | −0.025 * | - | - | - |
PUFA | 0.053 ** | 0.010 | −0.030 * | 0.034 ** | −0.010 | −0.028 * | - | - | - |
Omega-3 PUFA | 0.082 ** | 0.039 ** | −0.014 | 0.054 ** | 0.023 * | −0.011 | - | - | - |
Omega-6 PUFA | 0.035 * | −0.013 | −0.031 * | 0.019 * | −0.020 | −0.027 * | - | - | - |
Women | |||||||||
Alcohol habits | 0.212 ** | −0.074 ** | −0.166 ** | 0.191 ** | −0.047 ** | −0.138 * | 0.176 ** | −0.038 ** | −0.124 ** |
BMI | −0.196 ** | 0.187 ** | 0.251 ** | −0.175 ** | 0.179 ** | 0.238 ** | −0.180 ** | 0.179 ** | 0.237 ** |
Education | 0.079 ** | −0.100 ** | 0.177 ** | 0.018 * | −0.064 ** | −0.059 ** | N.S. | −0.061 ** | −0.054 ** |
Physical activity | 0.080 ** | −0.034 ** | −0.069 ** | 0.051 ** | −0.008 | −0.034 ** | 0.055 ** | N.S. | −0.034 ** |
Smoking habits | −0.046 ** | 0.075 ** | 0.089 ** | −0.075 ** | 0.092 ** | 0.120 ** | −0.081 ** | 0.093 ** | 0.120 ** |
Carbohydrates | −0.097 ** | 0.008 | 0.056 ** | −0.084 ** | 0.016 * | 0.057 ** | - | - | - |
Sucrose | −0.083 ** | 0.049 ** | 0.079 ** | −0.061 ** | 0.046 ** | 0.067 ** | −0.018 * | 0.045 ** | 0.049 ** |
Fiber | 0.004 | −0.033 ** | −0.027 * | −0.009 | −0.015 * | −0.009 | 0.023 ** | - | - |
Protein | 0.042 ** | −0.006 | −0.023 * | 0.031 ** | −0.016 * | −0.026 * | 0.029 ** | N.S. | N.S. |
Fat | 0.081 ** | −0.004 | −0.046 * | 0.070 ** | −0.007 | −0.043 ** | 0.062 ** | N.S. | −0.032 ** |
SFA | 0.082 ** | −0.015 | −0.054 ** | 0.071 ** | −0.011 | −0.046 ** | - | - | - |
MUFA | 0.057 ** | 0.012 | −0.021 * | 0.051 ** | 0.003 | −0.027 * | - | - | - |
PUFA | 0.023 * | 0.007 | −0.007 | 0.018 * | −0.002 | −0.012 | - | - | - |
Omega-3 PUFA | 0.051 ** | 0.001 | −0.026 | 0.030 ** | 0.002 | −0.016 | - | - | - |
Omega-6 PUFA | 0.013 | 0.004 | −0.005 | 0.012 | −0.005 | −0.012 | - | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frondelius, K.; Borg, M.; Ericson, U.; Borné, Y.; Melander, O.; Sonestedt, E. Lifestyle and Dietary Determinants of Serum Apolipoprotein A1 and Apolipoprotein B Concentrations: Cross-Sectional Analyses within a Swedish Cohort of 24,984 Individuals. Nutrients 2017, 9, 211. https://doi.org/10.3390/nu9030211
Frondelius K, Borg M, Ericson U, Borné Y, Melander O, Sonestedt E. Lifestyle and Dietary Determinants of Serum Apolipoprotein A1 and Apolipoprotein B Concentrations: Cross-Sectional Analyses within a Swedish Cohort of 24,984 Individuals. Nutrients. 2017; 9(3):211. https://doi.org/10.3390/nu9030211
Chicago/Turabian StyleFrondelius, Kasper, Madelene Borg, Ulrika Ericson, Yan Borné, Olle Melander, and Emily Sonestedt. 2017. "Lifestyle and Dietary Determinants of Serum Apolipoprotein A1 and Apolipoprotein B Concentrations: Cross-Sectional Analyses within a Swedish Cohort of 24,984 Individuals" Nutrients 9, no. 3: 211. https://doi.org/10.3390/nu9030211
APA StyleFrondelius, K., Borg, M., Ericson, U., Borné, Y., Melander, O., & Sonestedt, E. (2017). Lifestyle and Dietary Determinants of Serum Apolipoprotein A1 and Apolipoprotein B Concentrations: Cross-Sectional Analyses within a Swedish Cohort of 24,984 Individuals. Nutrients, 9(3), 211. https://doi.org/10.3390/nu9030211