Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Approval
2.3. Dietary, Anthropometric and Physical Activity Assessments
2.4. Biochemical Measurements
2.5. Statistical Analysis
3. Results
3.1. Nutrient Patterns
3.2. Descriptive Characteristics of the Study Population
3.3. Nutrient Patterns Associations with Fasting and Glycated Haemoglobin Levels
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Collaboration, N.C.D.R.F. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Peer, N.; Steyn, K.; Lombard, C.; Lambert, E.V.; Vythilingum, B.; Levitt, N.S. Rising diabetes prevalence among urban-dwelling black South Africans. PLoS ONE 2012, 7, e43336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartorius, B.; Veerman, L.J.; Manyema, M.; Chola, L.; Hofman, K. Determinants of obesity and associated population attributability, South Africa: Empirical evidence from a national panel survey, 2008–2012. PLoS ONE 2015, 10, e0130218. [Google Scholar] [CrossRef] [PubMed]
- Vorster, H.H.; Kruger, A.; Margetts, B.M. The nutrition transition in Africa: Can it be steered into a more positive direction? Nutrients 2011, 3, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorster, H.H.; Kruger, A.; Wentzel-Viljoen, E.; Kruger, H.S.; Margetts, B.M. Added sugar intake in South Africa: Findings from the adult prospective urban and rural epidemiology cohort study. Am. J. Clin. Nutr. 2014, 99, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Vorster, H.H.; Margetts, B.M.; Venter, C.S.; Wissing, M.P. Integrated nutrition science: From theory to practice in South Africa. Public Health Nutr. 2005, 8, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Hattingh, Z.; Walsh, C.M.; Bester, C.J.; Oguntibeju, O.O. Evaluation of energy and macronutrient intake of black women in Bloemfontein: A cross-sectional study. Afr. J. Biotechnol. 2008, 7, 4019–4024. [Google Scholar]
- McEvoy, C.T.; Cardwell, C.R.; Woodside, J.V.; Young, I.S.; Hunter, S.J.; McKinley, M.C. A posteriori dietary patterns are related to risk of type 2 diabetes: Findings from a systematic review and meta-analysis. J. Acad. Nutr. Diet. 2014, 114, 1759–1775. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Salehi-Abargouei, A.; Esmaillzadeh, A.; Azadbakht, L.; Keshteli, A.H.; Feizi, A.; Feinle-Bisset, C.; Adibi, P. Nutrient patterns and their relation to general and abdominal obesity in Iranian adults: Findings from the Sepahan study. Eur. J. Nutr. 2016, 55, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Dekker, L.H.; van Dam, R.M.; Snijder, M.B.; Peters, R.J.; Dekker, J.M.; de Vries, J.H.; de Boer, E.J.; Schulze, M.B.; Stronks, K.; Nicolaou, M. Comparable dietary patterns describe dietary behavior across ethnic groups in The Netherlands, but different elements in the diet are associated with glycated hemoglobin and fasting glucose concentrations. J. Nutr. 2015, 145, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Freisling, H.; Fahey, M.T.; Moskal, A.; Ocke, M.C.; Ferrari, P.; Jenab, M.; Norat, T.; Naska, A.; Welch, A.A.; Navarro, C.; et al. Region-specific nutrient intake patterns exhibit a geographical gradient within and between European countries. J. Nutr. 2010, 140, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Koenig, R.J.; Peterson, C.M.; Jones, R.L.; Saudek, C.; Lehrman, M.; Cerami, A. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N. Engl. J. Med. 1976, 295, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.; Chow, C.K.; Vaz, M.; Rangarajan, S.; Yusuf, S. The Prospective Urban Rural Epidemiology (PURE) study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am. Heart J. 2009, 158, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Arie, S. Revision of Helsinki declaration aims to prevent exploitation of study participants. BMJ 2013, 347, f6401. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, U.E.; Venter, C.S.; Vorster, H.H.; Steyn, H.S. A combination of statistical methods for the analysis of the relative validation data of the quantitative food frequency questionnaire used in the THUSA study. Public Health Nutr. 2001, 4, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Wolmarans, P.; Danster, N.; Dalton, A.; Rossouw, K.; Schönfeldt, H. Condensed Food Composition Tables for South Africa; Medical Research Council: Cape Town, South Africa, 2010. [Google Scholar]
- Wentzel-Viljoen, E.; Laubscher, R.; Kruger, A. Using different approaches to assess the reproducibility of a culturally sensitive quantified food frequency questionnaire. S. Afr. J. Clin. Nutr. 2011, 24, 143–148. [Google Scholar] [CrossRef]
- Wolmarans, P.; Chetty, J.; Danster-Christians, N. Food composition activities in South Africa. Food Chem. 2013, 140, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Kruger, H.; Venter, C.; Steyn, H. A standardised physical activity questionnaire for a population in transition: The THUSA study. Afr. J. Phys. Health Educ. Recreat. Dance 2000, 6, 54–64. [Google Scholar]
- Oyeyemi, A.L.; Moss, S.J.; Monyeki, M.A.; Kruger, H.S. Measurement of physical activity in urban and rural South African adults: A comparison of two self-report methods. BMC Public Health 2016, 16, 1004. [Google Scholar] [CrossRef] [PubMed]
- Pisa, P.T.; Pedro, T.M.; Kahn, K.; Tollman, S.M.; Pettifor, J.M.; Norris, S.A. Nutrient patterns and their association with socio-demographic, lifestyle factors and obesity risk in rural South African adolescents. Nutrients 2015, 7, 3464–3482. [Google Scholar] [CrossRef] [PubMed]
- Boeing, H.; Weisgerber, U.M.; Jeckel, A.; Rose, H.J.; Kroke, A. Association between glycated hemoglobin and diet and other lifestyle factors in a nondiabetic population: Cross-sectional evaluation of data from the Potsdam cohort of the European Prospective Investigation into Cancer and Nutrition Study. Am. J. Clin. Nutr. 2000, 71, 1115–1122. [Google Scholar] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a who consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, S.Y.; Grandinetti, A.; Holck, P.S.; Waslien, C. Major dietary patterns, ethnicity, and prevalence of type 2 diabetes in rural Hawaii. Nutrition 2008, 24, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Weis, K.E.; Schulz, M.; Tooze, J.A. Food intake patterns associated with incident type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes Care 2009, 32, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.A.; Khokhar, S. Changing dietary habits of ethnic groups in Europe and implications for health. Nutr. Rev. 2008, 66, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Roberts-Toler, C.; O’Neill, B.T.; Cypess, A.M. Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring) 2015, 23, 1765–1770. [Google Scholar] [CrossRef] [PubMed]
- Capdor, J.; Foster, M.; Petocz, P.; Samman, S. Zinc and glycemic control: A meta-analysis of randomised placebo controlled supplementation trials in humans. J. Trace Elem. Med. Biol. 2013, 27, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Ngwa, J.S.; Renstrom, F.; Wojczynski, M.K.; Ganna, A.; Hallmans, G.; Houston, D.K.; Jacques, P.F.; Kanoni, S.; Lehtimaki, T.; et al. Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE Consortium Studies. J. Nutr. 2013, 143, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Khattab, M.; Abi-Rashed, C.; Ghattas, H.; Hlais, S.; Obeid, O. Phosphorus ingestion improves oral glucose tolerance of healthy male subjects: A crossover experiment. Nutr. J. 2015, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Alhazmi, A.; Stojanovski, E.; McEvoy, M.; Garg, M.L. The association between dietary patterns and type 2 diabetes: A systematic review and meta-analysis of cohort studies. J. Hum. Nutr. Diet. 2014, 27, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Wien, M. A perspective on vegetarian dietary patterns and risk of metabolic syndrome. Br. J. Nutr 2015, 113 (Suppl. 2), S136–143. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.W.; Petocz, P.; McMillan-Price, J.; Flood, V.M.; Prvan, T.; Mitchell, P.; Brand-Miller, J.C. Glycemic index, glycemic load, and chronic disease risk—A meta-analysis of observational studies. Am. J. Clin. Nutr. 2008, 87, 627–637. [Google Scholar] [PubMed]
- Montonen, J.; Knekt, P.; Harkanen, T.; Jarvinen, R.; Heliovaara, M.; Aromaa, A.; Reunanen, A. Dietary patterns and the incidence of type 2 diabetes. Am. J. Epidemiol. 2005, 161, 219–227. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: The epic-interact study and a meta-analysis of prospective studies. Diabetologia, 2015; 58, 1394–1408. [Google Scholar]
- Brites, C.M.; Trigo, M.J.; Carrapico, B.; Alvina, M.; Bessa, R.J. Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Nutr. Res. 2011, 31, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Gower, B.A.; Bergman, R.; Stefanovski, D.; Darnell, B.; Ovalle, F.; Fisher, G.; Sweatt, S.K.; Resuehr, H.S.; Pelkman, C. Baseline insulin sensitivity affects response to high-amylose maize resistant starch in women: A randomized, controlled trial. Nutr. Metab. (Lond.) 2016, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Bakker, S.J.; Hoogeveen, E.K.; Nijpels, G.; Kostense, P.J.; Dekker, J.M.; Gans, R.O.; Heine, R.J. The association of dietary fibres with glucose tolerance is partly explained by concomitant intake of thiamine: The hoorn study. Diabetologia 1998, 41, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Reedy, J.; Millen, A.E.; Dixon, L.B.; Newby, P.K.; Tucker, K.L.; Krebs-Smith, S.M.; Guenther, P.M. Dietary patterns: Challenges and opportunities in dietary patterns research an experimental biology workshop, April 1, 2006. J. Am. Diet. Assoc. 2007, 107, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Fewell, Z.; Davey Smith, G.; Sterne, J.A. The impact of residual and unmeasured confounding in epidemiologic studies: A simulation study. Am. J. Epidemiol. 2007, 166, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Jakes, R.W.; Day, N.E.; Luben, R.; Welch, A.; Bingham, S.; Mitchell, J.; Hennings, S.; Rennie, K.; Wareham, N.J. Adjusting for energy intake—What measure to use in nutritional epidemiological studies? Int. J. Epidemiol. 2004, 33, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
Magnesium, Phosphorus and Plant Protein Driven Nutrients | Fat and Animal Protein Driven Nutrients | Starch, Dietary Fibre and B Vitamin Driven Nutrients | |||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T3 | p | T1 | T3 | p | T1 | T3 | p | |
Age | 48.72 ± 10.23 | 47.51 ± 9.57 | 0.247 | 47.94 ± 8.89 | 47.73 ± 10.16 | 0.837 | 49.15 ± 10.40 | 46.94 ± 8.99 | 0.036 |
Body Mass Index | 25.28 ± 6.63 | 25.27 ± 6.58 | 0.988 | 25.31 ± 6.75 | 26.13 ± 6.85 | 0.262 | 25.26 ± 6.41 | 25.65 ± 7.11 | 0.605 |
Total energy | 4322.96 ± 1217.30 | 8365.01 ± 2476.92 | <0.001 | 5631.33 ± 2816.62 | 6883.88 ± 2189.38 | <0.001 | 5893.08 ± 2645.21 | 6567.51 ± 2425.60 | 0.013 |
Alcohol (%TE) | 0.76 ± 2.56 | 7.42 ± 12.56 | <0.001 | 5.54 ± 11.70 | 1.47 ± 4.40 | <0.001 | 5.36 ± 11.91 | 1.69 ± 5.01 | <0.001 |
Protein (%TE) | 11.26 ± 1.96 | 10.77 ± 1.64 | 0.008 | 10.27 ± 1.33 | 11.67 ± 1.81 | <0.001 | 11.23 ± 2.05 | 10.91 ± 1.31 | 0.092 |
Current Smokers (%) | 33.5 | 36.8 | 0.168 | 38.0 | 34.7 | 0.005 | 30.6 | 36.4 | 0.595 |
Physical Activity Index | 8.19 ± 1.42 | 8.28 ± 1.42 | 0.593 | 8.29 ± 1.29 | 8.32 ± 1.55 | 0.854 | 8.23 ± 1.37 | 8.44 ± 1.45 | 0.205 |
Tertiary education (%) | 33.7 | 24.5 | 0.058 | 26.5 | 42.9 | 0.028 | 28.6 | 38.8 | 0.854 |
Fasting glucose (mmol·L−1) | 4.73 ± 0.78 | 4.93 ± 1.47 | 0.219 | 4.91 ± 1.18 | 4.87 ± 1.02 | 0.784 | 5.12 ± 2.41 | 4.88 ± 0.83 | 0.160 |
HbA1C (%) | 5.64 ± 0.53 | 5.67 ± 0.93 | 0.785 | 5.68 ± 0.91 | 5.69 ± 0.58 | 0.843 | 5.84 ± 1.23 | 5.62 ± 0.55 | 0.027 |
Thiamine, Zinc and Plant Protein Driven Nutrients | Fat and Animal Protein Driven Nutrients | Retinol and Vitamin B12 Driven Nutrients | |||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T3 | p | T1 | T3 | p | T1 | T3 | p | |
Age | 47.95 ± 9.99 | 50.19 ± 10.69 | 0.156 | 48.43 ± 9.97 | 51.42 ± 11.45 | 0.057 | 49.66 ± 10.01 | 49.57 ± 9.95 | 0.954 |
Body Mass Index | 20.86 ± 4.15 | 20.54 ± 4.31 | 0.606 | 20.86 ± 3.99 | 20.94 ± 4.65 | 0.894 | 20.30 ± 3.57 | 20.95 ± 4.19 | 0.297 |
Total energy | 4693.60 ± 1584.26 | 10,637.00 ± 2887.76 | <0.001 | 6319.63 ± 3228.51 | 8220.85 ± 3228.51 | <0.001 | 7164.14 ± 2975.31 | 7855.83 ± 3672.65 | 0.159 |
Alcohol (%TE) | 5.98 ± 9.40 | 13.82 ± 13.70 | <0.001 | 11.19 ± 13.41 | 5.70 ± 9.16 | 0.002 | 6.65 ± 11.23 | 9.19 ± 11.79 | 0.159 |
Protein (%TE) | 11.51 ± 2.69 | 10.76 ± 1.53 | 0.014 | 10.09 ± 1.43 | 12.19 ± 2.33 | <0.001 | 10.64 ± 1.69 | 11.50 ± 2.48 | 0.005 |
Current Smokers (%) | 32.4 | 35.9 | 0.636 | 40.0 | 26.2 | 0.003 | 31.7 | 31.7 | 0.577 |
Physical Activity Index | 8.25 ± 1.64 | 8.02 ± 1.44 | 0.380 | 8.03 ± 1.65 | 7.99 ± 1.79 | 0.861 | 7.92 ± 1.61 | 7.97 ± 1.63 | 0.847 |
Tertiary education (%) | 44.2 | 20.9 | 0.141 | 23.3 | 37.2 | 0.514 | 27.9 | 37.2 | 0.451 |
Fasting glucose (mmol·L−1) | 4.90 ± 0.93 | 4.68 ± 0.90 | 0.113 | 4.75 ± 0.79 | 4.96 ± 1.24 | 0.138 | 4.94 ± 2.41 | 4.75 ± 0.78 | 0.190 |
HbA1C (%) | 5.59 ± 0.52 | 5.51 ± 0.81 | 0.386 | 5.49 ± 0.34 | 5.62 ± 0.97 | 0.169 | 5.57 ± 0.83 | 5.53 ± 0.49 | 0.678 |
Magnesium, Phosphorus and Plant Protein Driven Nutrients | Fat and Animal Protein Driven Nutrients | Starch, Dietary Fibre and B Vitamin Driven Nutrients | |||||||
---|---|---|---|---|---|---|---|---|---|
B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | |
M1 | 0.129 (−0.014; 0.271) | 0.077 | 0.007 | 0.009 (−0.141; 0.160) | 0.902 | 0.000 | −0.164 (−0.311; −0.018) | 0.027 | 0.008 |
M2 | 0.196 (−0.063; 0.455) | 0.138 | 0.007 | −0.020 (−0.183; 0.143) | 0.813 | 0.003 | −0.197 (−0.349; −0.049) | 0.011 | 0.016 |
M3 | 0.278 (−0.001; 0.280) | 0.034 | 0.045 | −0.038 (−0.198; 0.123) | 0.645 | 0.037 | −0.203 (−0.351; −0.054) | 0.008 | 0.051 |
M4 | 0.147 (−0.360; 0.655) | 0.569 | 0.086 | −0.004 (−0.290; 0.281) | 0.976 | 0.086 | −0.236 (−0.458; −0.014) | 0.037 | 0.086 |
Magnesium, Phosphorus and Plant Protein Driven Nutrients | Fat and Animal Protein Driven Nutrients | Starch, Dietary Fibre and B Vitamin Driven Nutrients | |||||||
---|---|---|---|---|---|---|---|---|---|
B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | |
M1 | 0.029 (−0.055; 0.112) | 0.502 | 0.001 | 0.032 (−0.056; 0.120) | 0.477 | 0.001 | −0.138 (−0.224; −0.053) | 0.002 | 0.020 |
M2 | 0.048 (−0.104; 0.199) | 0.538 | 0.001 | 0.028 (−0.067; 0.123) | 0.563 | 0.001 | −0.145 (−0.234; −0.056) | 0.001 | 0.021 |
M3 | 0.112 (−0.036; 0.260) | 0.139 | 0.069 | 0.014 (−0.078; 0.106) | 0.766 | 0.065 | −0.151 (−0.237; −0.065) | 0.001 | 0.087 |
M4 | 0.107 (−0.188; 0.401) | 0.478 | 0.150 | −0.011 (−0.175; 0.154) | 0.478 | 0.150 | −0.175 (−0.303; −0.047) | 0.007 | 0.150 |
Thiamine, Zinc and Plant Protein Driven Nutrients | Fat and Animal Protein Driven Nutrients | Retinol and Vitamin B12 Driven Nutrients | |||||||
---|---|---|---|---|---|---|---|---|---|
B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | |
M1 | −0.057 (−0.172; 0.057) | 0.326 | 0.004 | 0.054 (−0.061; 0.169) | 0.355 | 0.003 | −0.039 (−0.156; 0.077) | 0.504 | 0.002 |
M2 | −0.237 (−0.492; 0.019) | 0.069 | 0.013 | 0.061 (−0.064; 0.186) | 0.335 | 0.004 | −0.055 (−0.173; 0.064) | 0.363 | 0.003 |
M3 | −0.255 (−0.496; 0.014) | 0.038 | 0.117 | 0.055 (−0.063; 0.172) | 0.363 | 0.115 | −0.082 (−0.194; 0.030) | 0.153 | 0.120 |
M4 | −0.382 (−0.752; −0.012) | 0.043 | 0.182 | −0.051 (−0.241; 0.139) | 0.596 | 0.182 | −0.109 (−0.229; 0.032) | 0.074 | 0.182 |
Thiamine, Zinc and Plant Protein Driven Nutrients | Fat and Animal Protein Driven Nutrients | Retinol and Vitamin B12 Driven Nutrients | |||||||
---|---|---|---|---|---|---|---|---|---|
B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | B (95% CI) | p Value | R2 | |
M1 | −0.039 (−0.117; 0.038) | 0.320 | 0.000 | 0.046 (−0.031; 0.123) | 0.241 | 0.005 | 0.012 (−0.065; 0.090) | 0.754 | 0.000 |
M2 | −0.214 (−0.384; 0.044) | 0.014 | 0.024 | 0.053 (−0.031; 0.138) | 0.213 | 0.006 | 0.015 (−0.065; 0.094) | 0.713 | 0.001 |
M3 | −0.230 (−0.392; −0.067) | 0.006 | 0.113 | 0.050 (−0.030; 0.131) | 0.219 | 0.092 | 0.001 (−0.075; 0.077) | 0.975 | 0.086 |
M4 | −0.288 (−0.543; −0.033) | 0.027 | 0.174 | −0.057 (−0.189; 0.075) | 0.396 | 0.174 | −0.018 (−0.100; 0.064) | 0.662 | 0.174 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chikowore, T.; Pisa, P.T.; Van Zyl, T.; Feskens, E.J.M.; Wentzel-Viljoen, E.; Conradie, K.R. Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population. Nutrients 2017, 9, 9. https://doi.org/10.3390/nu9010009
Chikowore T, Pisa PT, Van Zyl T, Feskens EJM, Wentzel-Viljoen E, Conradie KR. Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population. Nutrients. 2017; 9(1):9. https://doi.org/10.3390/nu9010009
Chicago/Turabian StyleChikowore, Tinashe, Pedro T. Pisa, Tertia Van Zyl, Edith J. M. Feskens, Edelweiss Wentzel-Viljoen, and Karin R. Conradie. 2017. "Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population" Nutrients 9, no. 1: 9. https://doi.org/10.3390/nu9010009
APA StyleChikowore, T., Pisa, P. T., Van Zyl, T., Feskens, E. J. M., Wentzel-Viljoen, E., & Conradie, K. R. (2017). Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population. Nutrients, 9(1), 9. https://doi.org/10.3390/nu9010009