Association of Parental Overweight and Cardiometabolic Diseases and Pediatric Adiposity and Lifestyle Factors with Cardiovascular Risk Factor Clustering in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Anthropometric and Clinical Measurements
2.4. Definition of Metabolic Syndrome
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
aOR | adjusted odds ratio |
BMI | body mass index |
BP | blood pressure |
CI | confidence interval |
HDL-C | high-density lipoprotein cholesterol |
MET | metabolic equivalent task |
MetS | metabolic syndrome |
non-MetS | non-metabolic syndrome |
PA | physical activity |
pot-MetS | potential metabolic syndrome |
SI | synergism index |
SSB | sugar-sweetened beverage |
ST | screen time |
T2DM | type 2 diabetes mellitus |
References
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M.; Vollset, S.E.; Ozgoren, A.A.; Abdalla, S.; Abd-Allah, F.; et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar]
- May, A.L.; Kuklina, E.V.; Yoon, P.W. Prevalence of cardiovascular disease risk factors among US adolescents, 1999–2008. Pediatrics 2012, 129, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.T.; Huang, H.L.; Huang, M.C.; Chan, T.F.; Ciou, S.Y.; Lee, C.Y.; Chiu, Y.W.; Duh, T.H.; Lin, P.L.; Wang, T.N.; et al. Effects on uric acid, body mass index and blood pressure in adolescents of consuming beverages sweetened with high-fructose corn syrup. Int. J. Obes. 2013, 37, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.F.; Lin, W.T.; Huang, H.L.; Lee, C.Y.; Wu, P.W.; Chiu, Y.W.; Huang, C.C.; Tsai, S.; Lin, C.L.; Lee, C.H. Consumption of sugar-sweetened beverages is associated with components of the metabolic syndrome in adolescents. Nutrients 2014, 6, 2088–2103. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Srinivasan, S.R.; Valdez, R.; Greenlund, K.J.; Wattigney, W.A.; Berenson, G.S. Longitudinal changes in cardiovascular risk from childhood to young adulthood in offspring of parents with coronary artery disease: The Bogalusa heart study. JAMA 1997, 278, 1749–1754. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.G.; Koskinen, J.; Chen, W.; Thomson, R.; Schmidt, M.D.; Srinivasan, S.R.; Kivimaki, M.; Mattsson, N.; Kahonen, M.; Laitinen, T.; et al. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: The Bogalusa heart study and the cardiovascular risk in young finns study. Circulation 2010, 122, 1604–1611. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.G.; Koskinen, J.; Juonala, M.; Chen, W.; Srinivasan, S.R.; Sabin, M.A.; Thomson, R.; Schmidt, M.D.; Nguyen, Q.M.; Xu, J.H.; et al. A diagnosis of the metabolic syndrome in youth that resolves by adult life is associated with a normalization of high carotid intima-media thickness and type 2 diabetes mellitus risk: The Bogalusa heart and cardiovascular risk in young finns studies. J. Am. Coll. Cardiol. 2012, 60, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Pinto Pereira, S.M.; Power, C.; Hypponen, E. Parental obesity and risk factors for cardiovascular disease among their offspring in mid-life: Findings from the 1958 british birth cohort study. Int. J. Obes. 2013, 37, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, T.; Moran, A.; Jacobs, D.R., Jr.; Steffen, L.M.; Sinaiko, A.R.; Zhou, X.; Steinberger, J. Relation of cardiometabolic risk factors between parents and children. J. Pediatr. 2015, 167, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Vik, K.L.; Romundstad, P.; Nilsen, T.I. Tracking of cardiovascular risk factors across generations: Family linkage within the population-based hunt study, Norway. J. Epidemiol. Community Health 2013, 67, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Juonala, M.; Sabin, M.A.; Burgner, D.; Cheung, M.; Kahonen, M.; Hutri-Kahonen, N.; Lehtimaki, T.; Jokinen, E.; Koskinen, J.; Tossavainen, P.; et al. Increased body mass index in parent-child dyads predicts the offspring risk of meeting bariatric surgery criteria. J. Clin. Endocrinol. Metab. 2015, 100, 4257–4263. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Luan, J.; Sherar, L.B.; Esliger, D.W.; Griew, P.; Cooper, A.; International Children’s Accelerometry Database (ICAD) Collaborators. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 2012, 307, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Grontved, A.; Ried-Larsen, M.; Moller, N.C.; Kristensen, P.L.; Wedderkopp, N.; Froberg, K.; Hu, F.B.; Ekelund, U.; Andersen, L.B. Youth screen-time behaviour is associated with cardiovascular risk in young adulthood: The European youth heart study. Eur. J. Prev. Cardiol. 2014, 21, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Pratt, C.A. Metabolic syndrome and its association with diet and physical activity in US adolescents. J. Am. Diet. Assoc. 2008, 108, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.; Daly, R.M.; Ridgers, N.D.; Salmon, J. Screen-based behaviors of children and cardiovascular risk factors. J. Pediatr. 2015, 167, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.A.; Levy, P.T.; Sekarski, T.J.; Arbelaez, A.M.; Hildebolt, C.F.; Holland, M.R.; Singh, G.K. Markers of cardiovascular risk, insulin resistance, and ventricular dysfunction and remodeling in obese adolescents. J. Pediatr. 2015, 166, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Dziura, J.; Burgert, T.S.; Tamborlane, W.V.; Taksali, S.E.; Yeckel, C.W.; Allen, K.; Lopes, M.; Savoye, M.; Morrison, J.; et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med. 2004, 350, 2362–2374. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Vale, S.; Trost, S.G.; Rego, C.; Abreu, S.; Mota, J. Physical activity, obesity status, and blood pressure in preschool children. J. Pediatr. 2015, 167, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.H.; Huang, Y.C.; Chou, P. Prevalence and secular trends in overweight and obese taiwanese children and adolescents in 1991–2003. Ann. Hum. Biol. 2009, 36, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.F.; Lin, W.T.; Chen, Y.L.; Huang, H.L.; Yang, W.Z.; Lee, C.Y.; Chen, M.H.; Wang, T.N.; Huang, M.C.; Chiu, Y.W.; et al. Elevated serum triglyceride and retinol-binding protein 4 levels associated with fructose-sweetened beverages in adolescents. PLoS ONE 2014, 9, e82004. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.T.; Chan, T.F.; Huang, H.L.; Lee, C.Y.; Tsai, S.; Wu, P.W.; Yang, Y.C.; Wang, T.N.; Lee, C.H. Fructose-rich beverage intake and central adiposity, uric acid and pediatric insulin resistance. J. Pediatr. 2016, 171, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Chu, N.F. Prevalence of obesity in Taiwan. Obes. Rev. 2005, 6, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Ridley, K.; Ainsworth, B.E.; Olds, T.S. Development of a compendium of energy expenditures for youth. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taiwanese Food and Nutrients Databank. Available online: https://consumer.Fda.Gov.Tw/foodanalysis/ingredients.Htm (accessed on 10 October 2012). (In Chinese)
- Recommended Values for Children and Adolescent Growing Body Mass Index. Available online: http://www.Hpa.Gov.Tw/bhpnet/web/healthtopic/topicarticle.Aspx?Id=201308300012&parentid=201109290001 (accessed on 31 August 2016). (In Chinese)
- Perloff, D.; Grim, C.; Flack, J.; Frohlich, E.D.; Hill, M.; McDonald, M.; Morgenstern, B.Z. Human blood pressure determination by sphygmomanometry. Circulation 1993, 88, 2460–2470. [Google Scholar] [CrossRef] [PubMed]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Lee, C.H.; Wu, D.C.; Lee, J.M.; Wu, I.C.; Goan, Y.G.; Kao, E.L.; Huang, H.L.; Chan, T.F.; Chou, S.H.; Chou, Y.P.; et al. Anatomical subsite discrepancy in relation to the impact of the consumption of alcohol, tobacco and betel quid on esophageal cancer. Int. J. Cancer 2007, 120, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [PubMed]
- Brancati, F.L.; Kao, W.H.; Folsom, A.R.; Watson, R.L.; Szklo, M. Incident type 2 diabetes mellitus in African American and white adults: The atherosclerosis risk in communities study. JAMA 2000, 283, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.; Lemeshow, S. Confidence interval estimation of interaction. Epidemiology 1992, 3, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Lee, J.M.; Wu, D.C.; Hsu, H.K.; Kao, E.L.; Huang, H.L.; Wang, T.N.; Huang, M.C.; Wu, M.T. Independent and combined effects of alcohol intake, tobacco smoking and betel quid chewing on the risk of esophageal cancer in Taiwan. Int. J. Cancer 2005, 113, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F.; Farahani, Z.K.; Ghanbarian, A.; Sheikholeslami, F.; Mirmiran, P.; Momenan, A.A.; Asl, S.Z.; Hadaegh, F.; Eskandari, F. Familial aggregation of the metabolic syndrome: Tehran lipid and glucose study. Ann. Nutr. Metab. 2009, 54, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Anjana, R.M.; Lakshminarayanan, S.; Deepa, M.; Farooq, S.; Pradeepa, R.; Mohan, V. Parental history of type 2 diabetes mellitus, metabolic syndrome, and cardiometabolic risk factors in Asian Indian adolescents. Metabolism 2009, 58, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Gadiraju, T.V.; Patel, Y.; Gaziano, J.M.; Djousse, L. Fried food consumption and cardiovascular health: A review of current evidence. Nutrients 2015, 7, 8424–8430. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Connor Gorber, S. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, P.; Gustafsson, P.E.; Howard, B.; Wennberg, M.; Hammarstrom, A. Television viewing over the life course and the metabolic syndrome in mid-adulthood: A longitudinal population-based study. J. Epidemiol. Community Health 2014, 68, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Berentzen, N.E.; Smit, H.A.; van Rossem, L.; Gehring, U.; Kerkhof, M.; Postma, D.S.; Boshuizen, H.C.; Wijga, A.H. Screen time, adiposity and cardiometabolic markers: Mediation by physical activity, not snacking, among 11-year-old children. Int. J. Obes. 2014, 38, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C.Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 2009, 154, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Light, K.; Henderson, M.; O’Loughlin, J.; Mathieu, M.E.; Paradis, G.; Gray-Donald, K. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity. J. Nutr. 2014, 144, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A. Sugar intake, obesity, and diabetes in India. Nutrients 2014, 6, 5955–5974. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, L.; Naja, F.; Akl, C.; Chamieh, M.C.; Karam, S.; Sibai, A.M.; Hwalla, N. Dietary, lifestyle and socio-economic correlates of overweight, obesity and central adiposity in lebanese children and adolescents. Nutrients 2014, 6, 1038–1062. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Palmer, P.H.; Pang, Z.; Sun, P.; Duan, H.; Johnson, C.A. Environmental tobacco use and indicators of metabolic syndrome in Chinese adults. Nicotine Tob. Res. 2010, 12, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Noori, A.; Qorbani, M.; Rahimzadeh, S.; Djalalinia, S.; Shafiee, G.; Motlagh, M.E.; Ardalan, G.; Ansari, H.; Asayesh, H.; et al. Are active and passive smoking associated with cardiometabolic risk factors in adolescents? The CASPIAN-III Study. Paediatr. Int. Child Health 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.F.; Clark, M.L.; Bachand, A.; Reynolds, S.J.; Nelson, T.L.; Peel, J.L. Interactions between diet and exposure to secondhand smoke on metabolic syndrome among children: Nhanes 2007–2010. J. Clin. Endocrinol. Metab. 2016, 101, 52–58. [Google Scholar] [CrossRef] [PubMed]
Factors | Non-MetS | Pot-MetS | Diff.1 1 | MetS | Diff.2 1 | p Value 2 |
---|---|---|---|---|---|---|
Study number | 1565 | 1077 | 85 | |||
Design-adjusted distribution 3 | ||||||
Prevalence pattern, % | 57.4 | 39.3 | 3.3 | <0.001 | ||
Demographic and risk factor | ||||||
Age (year), mean ± SE | 13.6 ± 0.1 | 13.5 ± 0.1 | −0.1 | 13.6 ± 0.1 | −0.1 | 0.454 |
Male, % | 49.7 | 46.1 | −3.6 | 64.1 | 14.4 * | 0.027 |
Ethnicity, % | ||||||
Fukienese | 67.3 | 70.6 | 67.2 | 0.214 | ||
Hakka | 10.6 | 7.3 | 11.9 | |||
Aboriginal | 3.1 | 4.6 | 3.5 | |||
Others | 19.0 | 17.5 | 17.3 | |||
Residential area, % | ||||||
Kaohsiung | 61.4 | 52.6 | 51.3 | 0.300 | ||
Pingtung | 31.3 | 37.7 | 39.7 | |||
Taitung | 7.3 | 9.8 | 9.0 | |||
Total calorie intake (kcal/d), mean ± SE | 2092.9 ± 27.6 | 2050.5 ± 49.8 | −42.4 | 2127.3 ± 53.0 | 34.4 | 0.449 |
Physical activity (MET·min/week), mean ± SE | 2474.6 ± 99.3 | 2409.4 ± 125.1 | −65.2 | 1693.1 ± 179.8 | -781.5 * | 0.001 |
SSB intake (mL/day), mean ± SE | 446.3 ± 10.7 | 478.3 ± 12.9 | 32.0 * | 562.2 ± 22.2 | 115.9 * | <0.001 |
Alcohol drinking, % | 13.0 | 9.3 | −3.7 | 10.5 | −2.5 | 0.108 |
Cigarette smoking, % | 2.2 | 2.7 | 0.5 | 1.2 | −1.0 | 0.638 |
Central obesity, % | 0.0 | 28.3 | 28.3 * | 89.9 | 89.9* | <0.001 |
zBMI, mean ± SE 4 | −0.3 ± 0.03 | 0.3 ± 0.07 | 0.6 * | 1.9 ± 0.13 | 2.2 * | <0.001 |
MetS component, mean ± SE | ||||||
Waist circumference (cm) | 68.8 ± 0.4 | 75.5 ± 1.2 | 6.7 * | 94.7 ± 1.6 | 25.9 * | <0.001 |
Systolic blood pressure (mmHg) | 106.4 ± 0.5 | 112.7 ± 0.7 | 6.3 * | 130.6 ± 2.1 | 24.1 * | <0.001 |
Diastolic blood pressure (mmHg) | 63.4 ± 0.3 | 66.5 ± 0.5 | 3.1 * | 74.0 ± 1.7 | 10.5 * | <0.001 |
Serum triglyceride (mg/dL) | 68.5 ± 0.8 | 86.9 ± 3.2 | 18.4 * | 138.3 ± 9.0 | 69.8 * | <0.001 |
Serum high-density lipoprotein cholesterol (mg/dL) | 61.7 ± 0.6 | 51.8 ± 2.2 | −10.0 * | 45.6 ± 1.9 | −16.1 * | <0.001 |
Fasting plasma glucose (mg/dL) | 89.5 ± 0.4 | 92.8 ± 1.5 | 3.2 * | 97.9 ± 1.7 | 8.4 * | <0.001 |
Factors | Non-MetS | Pot-MetS | MetS | MetS vs. Pot-MetS | |||||
---|---|---|---|---|---|---|---|---|---|
% | % | aOR 1 | (95% CI) | % | aOR 1 | (95% CI) | aOR Ratio 1 | (95% CI) | |
Parental bodyweight | |||||||||
Father | |||||||||
NW | 45.9 | 35.6 | 1.0 | 28.5 | 1.0 | 1.0 | |||
OW + OB | 54.1 | 64.4 | 1.5 | (1.3–1.8) | 71.5 | 2.0 | (0.9–4.4) | 1.3 | (0.6–3.0) |
Mother | |||||||||
NW | 73.1 | 63.1 | 1.0 | 54.3 | 1.0 | 1.0 | |||
OW + OB | 26.9 | 36.9 | 1.5 | (1.2–1.9) | 45.7 | 2.2 | (1.2–4.1) | 1.4 | (0.8–2.5) |
Father and mother | |||||||||
Both NW | 35.2 | 25.3 | 1.0 | 20.9 | |||||
One OW + OB | 49.2 | 48.0 | 1.4 | (1.0–1.9) | 46.2 | 1.5 | (0.5–4.6) | 1.1 | (0.4–3.2) |
Both OW + OB | 15.7 | 26.6 | 2.3 | (1.6–3.3) | 32.9 | 3.2 | (1.3–8.1) | 1.4 | (0.6–3.4) |
Parental disease | |||||||||
Diabetes mellitus | |||||||||
No | 95.7 | 93.2 | 1.0 | 81.0 | 1.0 | 1.0 | |||
Yes | 4.3 | 6.8 | 1.7 | (1.1–2.7) | 19.0 | 5.1 | (2.7–9.7) | 3.0 | (1.3–6.8) |
Hypertension | |||||||||
No | 87.4 | 82.3 | 1.0 | 72.0 | 1.0 | 1.0 | |||
Yes | 12.6 | 17.7 | 1.5 | (1.1–2.0) | 28.0 | 2.7 | (1.4–5.3) | 1.8 | (1.1–3.1) |
Dyslipidemia | |||||||||
No | 86.9 | 87.6 | 1.0 | 81.1 | 1.0 | 1.0 | |||
Yes | 13.1 | 12.4 | 1.0 | (0.7–1.3) | 18.9 | 1.5 | (0.7–3.3) | 1.6 | (0.7–3.3) |
Factors | Non-MetS | Pot-MetS | MetS | MetS vs. Pot-MetS | |||||
---|---|---|---|---|---|---|---|---|---|
% | % | aOR 1 | (95% CI) | % | aOR 1 | (95% CI) | aOR Ratio 1 | (95% CI) | |
Bodyweight 3 | |||||||||
Normal | 78.2 | 50.0 | 1.0 | 0.3 | 1.0 | 1.0 | |||
Overweight + Obesity | 21.9 | 50.0 | 3.9 | (2.6–5.9) | 99.7 | 1461.2 | (198.8–10741.8) | 373.9 | (50.7–2759.0) |
Adjusted BMI mean 1 | 19.9 | 22.9 | 3.0 2,* | 30.3 | 10.4 2,* | 7.4 2,* | |||
Physical activity (MET·min/week) | |||||||||
≥2140.5 | 32.5 | 30.7 | 1.0 | 16.4 | 1.0 | 1.0 | |||
952.4–2140.4 | 43.4 | 41.8 | 1.0 | (0.7–1.3) | 45.2 | 2.5 | (1.2–5.0) | 2.5 | (1.3–5.1) |
<952.4 | 24.1 | 27.5 | 1.1 | (0.8–1.5) | 38.4 | 4.4 | (2.2–8.6) | 3.8 | (1.9–7.8) |
Adjusted mean 1 | 2454.1 | 2454.2 | 0.2 2 | 1514.1 | −940.0 2,* | −940.1 2,* | |||
Screen time (h/day) | |||||||||
<1.5 | 49.4 | 45.9 | 1.0 | 36.8 | 1.0 | 1.0 | |||
1.5–2.9 | 34.7 | 37.2 | 1.2 | (0.9–1.6) | 38.9 | 1.5 | (0.8–2.8) | 1.3 | (0.7–2.3) |
≥3 | 15.9 | 16.9 | 1.2 | (0.9–1.6) | 24.3 | 2.1 | (1.1–3.9) | 1.8 | (0.9–3.5) |
Adjusted mean 1 | 1.63 | 1.70 | 0.07 2 | 1.93 | 0.30 2,* | 0.22 2 | |||
Reading time (h/day) | |||||||||
<1.5 | 47.1 | 52.3 | 1.0 | 56.2 | 1.0 | 1.0 | |||
1.5–2.9 | 43.5 | 38.5 | 0.8 | (0.7–1.0) | 31.3 | 0.6 | (0.4–1.0) | 0.8 | (0.4–1.3) |
≥3 | 9.4 | 9.2 | 1.0 | (0.7–1.5) | 12.5 | 1.2 | (0.3–4.2) | 1.2 | (0.3–4.6) |
Adjusted mean 1 | 1.51 | 1.45 | −0.06 2 | 1.36 | −0.16 2 | −0.10 2 | |||
Sugar-sweetened beverage intake (mL/day) | |||||||||
Non-intake | 14.0 | 10.7 | 1.0 | 0.8 | 1.0 | 1.0 | |||
1–500 | 63.3 | 61.8 | 1.3 | (0.9–1.8) | 59.9 | 16.6 | (2.0–140.7) | 13.0 | (1.6–108.0) |
>500 | 22.7 | 27.5 | 1.7 | (1.1–2.6) | 39.4 | 30.2 | (3.6–250.5) | 17.7 | (2.1–152.8) |
Adjusted mean 1 | 445.2 | 481.1 | 35.9 2,* | 549.2 | 104.0 2,* | 68.1 2,* |
Factors | Base Model 1,2 | Child zBMI-Adjusted Model 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pot-MetS | MetS | MetS vs. Pot-MetS | Pot-MetS | EPRE% 4 | MetS | EPRE% 4 | MetS vs. Pot-MetS | EPRE% 4 | ||||
aOR | aOR | aOR | aOR | (95% CI) | aOR | (95% CI) | aOR | (95% CI) | ||||
Parental risk factors | ||||||||||||
Father: OW + OB vs. NW | 1.5 * | 2.0 | 1.3 | 1.1 | (0.9–1.4) | 72.9 | 1.0 | (0.4–2.4) | na | 0.9 | (0.4–2.2) | na |
Mother: OW + OB vs. NW | 1.5 * | 1.9 * | 1.3 | 1.2 | (0.9–1.4) | 66.9 | 1.0 | (0.4–2.7) | 95.6 | 0.8 | (0.3–1.7) | na |
Diabetes mellitus: Yes vs. No | 1.6 * | 4.2 * | 2.6 * | 1.4 | (0.8–2.3) | 40.1 | 2.6 * | (1.0–6.5) | 50.5 | 1.9 | (0.7–5.0) | 44.4 |
Hypertension: Yes vs. No | 1.5 * | 2.7 * | 1.8 * | 1.4 | (0.99–1.9) | 23.5 | 2.4 * | (1.2–4.6) | 18.8 | 1.7 | (0.99–3.1) | 10.2 |
Adolescent lifestyle factors | ||||||||||||
Physical activity (MET·min/week) | ||||||||||||
952.4–2140.4 vs. ≥2140.5 | 1.1 | 3.2 * | 2.9 * | 1.2 | (0.8–1.6) | na | 4.6 * | (1.5–14.5) | NA | 4.0 * | (1.2–12.8) | NA |
<952.4 vs. ≥2140.5 | 1.3 | 3.3 * | 2.6 * | 1.4 | (0.9–2.0) | na | 2.6 | (0.9–8.0) | 30.3 | 1.9 | (0.6–5.9) | 41.7 |
Screen time (h/day) | ||||||||||||
1.5–2.9 vs. <1.5 | 1.2 | 1.5 | 1.2 | 1.3 | (0.9–1.8) | na | 1.5 | (0.5–4.7) | na | 1.2 | (0.6–2.4) | na |
≥3 vs. <1.5 | 1.4 | 2.2 * | 1.5 | 1.4 | (0.9–2.2) | na | 1.5 | (0.6–3.6) | 60.3 | 1.0 | (0.6–2.9) | na |
SSB intake (mL/day) | ||||||||||||
1–500 vs. Non-intake | 1.3 | 16.1 * | 12.6 * | 1.2 | (0.9–1.8) | na | 18.9 * | (1.7–207.5) | NA | 15.2 * | (1.4–163.8) | NA |
>500 vs. Non-intake | 1.6 * | 26.9 * | 16.4 * | 1.5 | (0.9–2.2) | 23.6 | 22.5 * | (1.9–265.4) | 16.9 | 15.2 * | (1.3–183.1) | 8.3 |
Factor | Non-MetS | Pot-MetS + MetS | Additive Model | Multiplicative Model | ||||
---|---|---|---|---|---|---|---|---|
% | % | aOR 1 | (95% CI) | SI 2 | (95% CI) | EOR 2 | p-Value | |
Parental risk factors and adolescent bodyweight | ||||||||
Father BW/BW | ||||||||
NW/NW | 43.2 | 23.9 | 1.0 | |||||
NW/OW + OB | 2.7 | 11.1 | 8.1 | (4.4–14.9) | ||||
OW + OB/NW | 46.6 | 34.9 | 1.3 | (1.1–1.7) | ||||
OW + OB/OW + OB | 7.5 | 30 | 7.9 | (4.4–14.0) | 0.9 | (0.5–1.7) | 10.5 | 0.336 |
Mother BW/BW | ||||||||
NW/NW | 66.6 | 40.9 | 1.0 | |||||
NW/OW + OB | 6.6 | 21.5 | 6.4 | (3.5–11.8) | ||||
OW + OB/NW | 23.5 | 18.8 | 1.3 | (0.9–1.7) | ||||
OW + OB/OW + OB | 3.4 | 18.8 | 9.6 | (5.0–18.2) | 1.5 | (0.8–2.8) | 8.3 | 0.641 |
Diabetes/BW | ||||||||
No/NW | 85.5 | 56.1 | 1.0 | |||||
No/OW + OB | 10.2 | 36.2 | 6.2 | (3.6–10.7) | ||||
Yes/NW | 4.0 | 2.8 | 1.2 | (0.6–2.2) | ||||
Yes/OW + OB | 0.3 | 5 | 23.8 | (8.3–68.5) | 4.2 | (1.4–12.4) | 7.4 | 0.08 |
Hypertension/BW | ||||||||
No/NW | 78.2 | 49.2 | 1.0 | |||||
No/OW + OB | 9.2 | 32.4 | 6.5 | (3.8–10.8) | ||||
Yes/NW | 11.3 | 9.7 | 1.4 | (0.9–2.0) | ||||
Yes/OW + OB | 1.4 | 8.7 | 11.2 | (4.6–27.4) | 1.7 | (0.9–3.5) | 9.1 | 0.477 |
Adolescent lifestyle factor and bodyweight | ||||||||
Physical activity (MET·min/week)/BW | ||||||||
≥952.4/NW | 28.0 | 16.5 | 1.0 | |||||
≥952.4/OW + OB | 4.5 | 13.2 | 5.6 | (3.0–10.5) | ||||
<952.4/NW | 61.5 | 42.4 | 1.1 | (0.8–1.4) | ||||
<952.4/OW + OB | 6.0 | 28.0 | 8.0 | (4.6–13.9) | 1.5 | (0.8–2.7) | 6.2 | 0.298 |
Screen time (h/day)/BW | ||||||||
<1.5/NW | 44.0 | 29.1 | 1.0 | |||||
<1.5/OW + OB | 5.4 | 16.2 | 5.2 | (2.7–10.0) | ||||
≥1.5/NW | 45.5 | 29.8 | 1.0 | (0.7–1.5) | ||||
≥1.5/OW + OB | 5.1 | 25.0 | 8.8 | (4.8–16.4) | 1.8 | (1.2–2.9) | 5.2 | 0.067 |
SSB intake/BW | ||||||||
No/NW | 12.3 | 7.5 | 1.0 | |||||
No/OW + OB | 1.8 | 2.4 | 2.6 | (1.0–6.5) | ||||
Yes/NW | 77.2 | 51.4 | 1.1 | (0.8–1.7) | ||||
Yes/OW + OB | 8.8 | 38.7 | 8.6 | (4.3–17.3) | 4.4 | (1.6–12.6) | 2.9 | 0.009 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Lin, W.-T.; Tsai, S.; Hung, Y.-C.; Wu, P.-W.; Yang, Y.-C.; Chan, T.-F.; Huang, H.-L.; Weng, Y.-L.; Chiu, Y.-W.; et al. Association of Parental Overweight and Cardiometabolic Diseases and Pediatric Adiposity and Lifestyle Factors with Cardiovascular Risk Factor Clustering in Adolescents. Nutrients 2016, 8, 567. https://doi.org/10.3390/nu8090567
Lee C-Y, Lin W-T, Tsai S, Hung Y-C, Wu P-W, Yang Y-C, Chan T-F, Huang H-L, Weng Y-L, Chiu Y-W, et al. Association of Parental Overweight and Cardiometabolic Diseases and Pediatric Adiposity and Lifestyle Factors with Cardiovascular Risk Factor Clustering in Adolescents. Nutrients. 2016; 8(9):567. https://doi.org/10.3390/nu8090567
Chicago/Turabian StyleLee, Chun-Ying, Wei-Ting Lin, Sharon Tsai, Yu-Chan Hung, Pei-Wen Wu, Yu-Cheng Yang, Te-Fu Chan, Hsiao-Ling Huang, Yao-Lin Weng, Yu-Wen Chiu, and et al. 2016. "Association of Parental Overweight and Cardiometabolic Diseases and Pediatric Adiposity and Lifestyle Factors with Cardiovascular Risk Factor Clustering in Adolescents" Nutrients 8, no. 9: 567. https://doi.org/10.3390/nu8090567
APA StyleLee, C.-Y., Lin, W.-T., Tsai, S., Hung, Y.-C., Wu, P.-W., Yang, Y.-C., Chan, T.-F., Huang, H.-L., Weng, Y.-L., Chiu, Y.-W., Huang, C.-T., & Lee, C.-H. (2016). Association of Parental Overweight and Cardiometabolic Diseases and Pediatric Adiposity and Lifestyle Factors with Cardiovascular Risk Factor Clustering in Adolescents. Nutrients, 8(9), 567. https://doi.org/10.3390/nu8090567