Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants and Data Collection
2.2. Demographics and Clinical Outcomes
2.3. Growth and Nutrition
2.4. Comparison and Use of Human Milk Fortifiers
2.5. Laboratory Measurements
2.6. Data Analysis
3. Results
3.1. Clinical Outcomes
3.2. Enteral Growth and Nutrition
4. Discussion
4.1. Growth and Enteral Nutrition
4.2. NEC
4.3. Acidosis
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Groh-Wargo, S.; Thompson, M.; Hovasi Cox, J.H. Nutritional Care for High.-Risk Newborns, 3rd ed.; Hartline, J.V., Ed.; Precept Press, Inc.: Chicago, IL, USA, 2000. [Google Scholar]
- American Academy of Pediatrics. Pediatric Nutrition Handbook, 6th ed.; American Academy of Pediatrics: Washington, DC, USA, 2009; pp. 79–81. [Google Scholar]
- Wagner, J.; Hanson, C.; Anderson-Berry, A. Considerations in meeting protein needs of the human milk-fed preterm infant. Adv. Neonatal Care 2014, 14, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Premji, S.S.; Al-Wassia, H.; Sauve, R.S. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst. Rev. 2014, 4, CD003959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramel, S.E.; Gray, H.L.; Christiansen, E.; Boys, C.; Georgieff, M.K.; Demerath, E.W. Greater early gains in fat-free mass, but not fat mass, are associated with improved neurodevelopment at 1 year corrected age for prematurity in very low birth weight preterm infants. J. Pediatr. 2016, 173, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chang, S.S.; Poon, W.B. Relationship between amino acid and energy intake and long-term growth and neurodevelopmental outcomes in very low-birth-weight infants. JPEN J. Parenter. Enter. Nutr. 2016, 40, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.J. Health Professionals Letter on Enterobacter sakazakii Infections Associated With Use of Powdered (Dry) Infant Formulas in Neonatal Intensive Care Units. US Department of Health and Human Services, 2002. Available online: http://www.fda.gov/Food/RecallsOutbreaksEmergencies/SafetyAlerts Advisories/ ucm111299.htm (accessed on 24 May 2016).
- Thoene, M.; Hanson, C.; Lyden, E.; Dugick, L.; Ruybal, L.; Anderson-Berry, A. Comparison of the effect of two human milk fortifiers on clinical outcomes in premature infants. J. Nutr. 2014, 6, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Abbott Nutrition Similac Human Milk Fortifier. Available online: http://abbottnutrition.com/brands/products/similac-human-milk-fortifier (accessed on 29 January 2015).
- Enfamil Human Milk Fortifier Acidified Liquid. Available online: http://www.enfamil.com/products/enfamil-human-milk-fortifier-acidified-liquid (accessed on 29 January 2015).
- Abbott Nutrition Similac Human Milk Fortifier Concentrated Liquid. Available online: http://abbottnutrition.com/brands/products/similac-human-milk-fortifier-concentrated-liquid (accessed on 29 January 2015).
- Patel, A.L.; Engstrom, J.L.; Meier, P.P.; Kimura, R.E. Accuracy of methods for calculating postnatal growth velocity for extremely low birth weight infants. Pediatrics 2005, 116, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Hanson, C.; Sundermeier, J.; Dugick, L.; Lyden, E.; Anderson-Berry, A.L. Implementation, process, and outcomes of nutrition best practices for infants <1500 g. Nutr. Clin. Pract. 2001, 26, 614–624. [Google Scholar]
- Erickson, T.; Gill, G.; Chan, G.M. The effects of acidification on human milk’s cellular and nutritional content. J. Perinatol. 2013, 3, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Cibulskis, C.C.; Armbrecht, E. Association of metabolic acidosis with bovine milk-based human milk fortifiers. J. Perinatol. 2015, 35, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Moya, F.; Sisk, P.M.; Walsh, K.R.; Berseth, C.L. A new liquid human milk fortifier and linear growth in preterm infants. J. Pediatr. 2012, 130, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.M. Effects of powdered human milk fortifiers on the antibacterial actions of human milk. J. Perinatol. 2003, 23, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Rochow, N.; Jochum, F.; Redlich, A.; Korinekova, Z.; Linnemann, K.; Weitmann, K.; Boehm, G.; Müller, H.; Kalhoff, H.; Topp, H.; et al. Fortification of breast milk in VLBW infants: Metabolic acidosis is linked to the composition of fortifiers and alters weight gain and bone mineralization. J. Clin. Nutr. 2011, 30, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Kalhoff, H.; Diekmann, L.; Rudloff, S.; Manz, F. Renal excretion of calcium and phosphorus in premature infants with incipient late metabolic acidosis. J. Pediatr. Gastroenterol. Nutr. 2001, 33, 565–569. [Google Scholar] [CrossRef] [PubMed]
24-Calorie-Per-Ounce Fortified Human Milk [9,10,11] | |||
---|---|---|---|
Per 100 mL | P-HMF | AL-HMF | NAL-HMF |
Protein (g) | 2.35 g | 3.2 g | 2.34 g |
Iron (mg) | 0.46 mg | 1.85 mg | 0.46 |
Calcium (mg) | 138 mg | 141 mg | 138 |
Phosphorus (mg) | 78 mg | 78 mg | 77 |
Vitamin D (IU) | 119 IU | 200 IU | 118 |
pH | --- | 4.7 | --- |
Osmolality (mOsm/kg water) | 385 | 326 | 385 |
Primary Fortifier Macronutrient Ingredients | nonfat milk, whey protein concentrate, corn syrup solids, medium-chain triglycerides (MCT oil) | water, whey protein isolate hydrolysate (milk), medium chain triglycerides (MCT oil), vegetable oil (soy and high oleic sunflower oils) | water, nonfat milk, corn syrup solids, medium-chain triglycerides (MCT oil), whey protein concentrate |
Variable | P-HMF (Group 1) | AL-HMF (Group 2) | NAL-HMF (Group 3) | Overall p-Value | |||
---|---|---|---|---|---|---|---|
n | Median | n | Median | n | Median | ||
EGA at Birth | 46 | 29.15 | 22 | 31.00 | 51 | 29.60 | 0.15 |
Birth Weight (g) | 46 | 1305 | 22 | 1481 | 51 | 1340 | 0.21 |
Weight at 36 Weeks EGA (g) | 44 | 2179 | 18 | 2046 | 50 | 2404 | 0.0092 Group 2 vs. 3 p < 0.05 |
Birth Length (cm) | 46 | 39 | 22 | 41 | 51 | 39 | 0.14 |
Length at 36 Weeks EGA (cm) | 42 | 44.5 | 18 | 43.5 | 47 | 44 | 0.38 |
Birth HC (cm) | 46 | 27 | 22 | 27.75 | 51 | 27.5 | 0.53 |
HC at 36 Weeks EGA (cm) | 42 | 32.5 | 18 | 31.75 | 47 | 32.2 | 0.55 |
Variable | P-HMF (Group 1) n = 46 | AL-HMF (Group 2) n = 23 | NAL-HMF (Group 3) n = 51 | Overall p-Value |
---|---|---|---|---|
n (%) | n (%) | n (%) | ||
NEC | 0 | 3 (13%) | 0 | 0.0056 |
ROP | 16 (35%) | 3 (13%) | 4 (8%) | 0.0030 Group 1 vs. 3, p = 0.006 |
ROP Procedure | 3 (7%) | 2 (9%) | 1 (2%) | 0.24 |
IVH (Grade 3 or 4) | 3 (7%) | 1 (5%) | 4 (8%) | 1.00 |
Intraventricular Shunt | 0 | 0 | 0 | N/A |
Dexamethasone Treatment | 9 (20%) | 1 (5%) | 7 (14%) | 0.29 |
Death | 0 | 0 | 1 (2%) | 1.00 |
BPD | 10/40 (25%) | 4/18 (22%) | 16/49 (33%) | 0.65 |
Variable | P-HMF (Group 1) | AL-HMF (Group 2) | NAL-HMF (Group 3) | Overall p-Value | |||
---|---|---|---|---|---|---|---|
n | Median | n | Median | n | Median | ||
Mean Daily Calorie Provision (per kg) | 42 | 117 | 18 | 129 | 48 | 120 | 0.21 |
Mean Daily Protein Provision (g/kg) | 42 | 3.7 | 18 | 4.2 | 48 | 4.0 | 0.0001 Group 1 vs. 2 and Group 2 vs. 3, p <0.05 |
Day of Life Feedings Started | 46 | 1 | 22 | 1 | 51 | 1 | 0.0019 Group 1 vs. 3 p < 0.05 |
Day of Life Full Feedings Achieved | 46 | 12 | 22 | 10 | 51 | 9 | 0.0007 Group 1vs. 3 p < 0.05 |
Growth on HMF (g/day) | 45 | 31.27 | 21 | 23.66 | 49 | 31.74 | 0.0001 Group 1 vs. 2 and Group 2 vs. 3, p < 0.05 |
Growth on HMF (g/kg/day) | 45 | 15.37 | 21 | 10.59 | 49 | 14.03 | <0.0001 Group 1 vs. 2 and Group 2 vs. 3, p < 0.05 |
BUN Maximum on Full Feedings | 33 | 17 | 17 | 19 | 47 | 16 | 0.43 |
CO2 Minimum after DOL 14 | 33 | 23 | 17 | 19 | 32 | 27 | <0.0001 Group 1 vs. 3 and Group 2 vs. 3, 0.05 |
CO2 Minimum after DOL 30 | 23 | 25 | 9 | 20 | 18 | 25.5 | 0.0038 Group 1 vs. 2 and Group 2 vs. 3, p < 0.05 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoene, M.; Lyden, E.; Weishaar, K.; Elliott, E.; Wu, R.; White, K.; Timm, H.; Anderson-Berry, A. Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants. Nutrients 2016, 8, 451. https://doi.org/10.3390/nu8080451
Thoene M, Lyden E, Weishaar K, Elliott E, Wu R, White K, Timm H, Anderson-Berry A. Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants. Nutrients. 2016; 8(8):451. https://doi.org/10.3390/nu8080451
Chicago/Turabian StyleThoene, Melissa, Elizabeth Lyden, Kara Weishaar, Elizabeth Elliott, Ruomei Wu, Katelyn White, Hayley Timm, and Ann Anderson-Berry. 2016. "Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants" Nutrients 8, no. 8: 451. https://doi.org/10.3390/nu8080451
APA StyleThoene, M., Lyden, E., Weishaar, K., Elliott, E., Wu, R., White, K., Timm, H., & Anderson-Berry, A. (2016). Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants. Nutrients, 8(8), 451. https://doi.org/10.3390/nu8080451