Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods
Abstract
:1. Introduction
2. Protein Classifications and Quality Scores Are of Limited Use for Optimizing Protein Intake for Blood Glucose Regulation
3. Different Effects of Plant-Based and Animal-Based Protein Sources on Glucoregulatory Markers and Type 2 Diabetes Risk
4. Different Effects of Milk, Meat, Fish, and Egg on Glucoregulatory Markers and Type 2 Diabetes Risk
5. Dairy Foods and Dairy Protein Supplements Are Associated with Improvements in Glucoregulatory Markers
6. Gaps in Existing Knowledge and Future Research Directions
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
T2DM | Type 2 Diabetes Mellitus |
BCAA | Branched-Chain Amino Acid |
EAA | Essential Amino Acid |
AMDR | Acceptable Macronutrient Distribution Ranges |
RCT | Randomized Controlled Trial |
DGAC | Dietary Guidelines Advisory Committee |
DIAAS | Digestible Indispensable Amino Acid Score |
PDCAAS | Protein Digestibility-Corrected Amino Acid Scores |
PER | Protein Efficiency Ratio |
BV | Biological Value |
FII | Food Insulin Index |
GIP | Glucose-Dependent Insulinotropic Peptide |
GLP-1 | Glucagon-Like Peptide-1 |
Dipeptidyl Peptidase 4 | DPP-4 |
References
- Saeed, A.; Jones, S.A.; Nuttall, F.Q.; Gannon, M.C. A Fasting-Induced Decrease in Plasma Glucose Concentration Does Not Affect the Insulin Response to Ingested Protein in People with Type 2 Diabetes. Metabolism 2002, 51, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.J.; Kruijshoop, M.; Menheere, P.P.; Wagenmakers, A.J.; Saris, W.H.; Keizer, H.A. Amino Acid Ingestion Strongly Enhances Insulin Secretion in Patients with Long-Term Type 2 Diabetes. Diabetes Care 2003, 26, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Mooradian, A.D.; Gannon, M.C.; Billington, C.; Krezowski, P. Effect of Protein Ingestion on the Glucose and Insulin Response to a Standardized Oral Glucose Load. Diabetes Care 1984, 7, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Krezowski, P.A.; Nuttall, F.Q.; Gannon, M.C.; Bartosh, N.H. The Effect of Protein Ingestion on the Metabolic Response to Oral Glucose in Normal Individuals. Am. J. Clin. Nutr. 1986, 44, 847–856. [Google Scholar] [PubMed]
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Role of Dietary Proteins and Amino Acids in the Pathogenesis of Insulin Resistance. Annu. Rev. Nutr. 2007, 27, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.E.; Drucker, D.J. Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metab. 2013, 17, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Marathe, C.S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. Relationships between Gastric Emptying, Postprandial Glycemia, and Incretin Hormones. Diabetes Care 2013, 36, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.Y.; Gong, Y.; Liang, J. Metabolic Signaling of Insulin Secretion by Pancreatic Beta-Cell and Its Derangement in Type 2 Diabetes. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2215–2227. [Google Scholar] [PubMed]
- Gannon, M.C.; Nuttall, J.A.; Damberg, G.; Gupta, V.; Nuttall, F.Q. Effect of Protein Ingestion on the Glucose Appearance Rate in People with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2001, 86, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones after a Carbohydrate Meal in Diet-Controlled Type 2 Diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q.; Neil, B.J.; Westphal, S.A. The Insulin and Glucose Responses to Meals of Glucose Plus Various Proteins in Type-II Diabetic Subjects. Metab. Clin. Exp. 1988, 37, 1081–1088. [Google Scholar] [CrossRef]
- Gannon, M.C.; Nuttall, F.Q.; Lane, J.T.; Burmeister, L.A. Metabolic Response to Cottage Cheese or Egg White Protein, with or without Glucose, in Type II Diabetic Subjects. Metabolism 1992, 41, 1137–1145. [Google Scholar] [CrossRef]
- Frid, A.H.; Nilsson, M.; Holst, J.J.; Bjorck, I.M. Effect of Whey on Blood Glucose and Insulin Responses to Composite Breakfast and Lunch Meals in Type 2 Diabetic Subjects. Am. J. Clin. Nutr. 2005, 82, 69–75. [Google Scholar] [PubMed]
- Manders, R.J.; Hansen, D.; Zorenc, A.H.; Dendale, P.; Kloek, J.; Saris, W.H.; van Loon, L.J. Protein Co-Ingestion Strongly Increases Postprandial Insulin Secretion in Type 2 Diabetes Patients. J. Med. Food. 2014, 17, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Routh, V.H.; Hao, L.; Santiago, A.M.; Sheng, Z.; Zhou, C. Hypothalamic Glucose Sensing: Making Ends Meet. Front. Syst. Neurosci. 2014, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J. Central Leucine Sensing in the Control of Energy Homeostasis. Endocrinol. Metab. Clin. N. Am. 2013, 42, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Michelfelder, A.J. Soy: A Complete Source of Protein. Am. Fam. Phys. 2009, 79, 43–47. [Google Scholar]
- Young, V.R.; Pellett, P.L. Plant Proteins in Relation to Human Protein and Amino Acid Nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S. [Google Scholar] [PubMed]
- Warriss, P.D. Meat Science: An Introductory Text, 2nd ed.; CABI: Wallingford, UK; Cambridge, MA, USA, 2010. [Google Scholar]
- Abeyrathne, E.D.; Lee, H.Y.; Ahn, D.U. Egg White Proteins and Their Potential Use in Food Processing or as Nutraceutical and Pharmaceutical Agents—A Review. Poult Sci. 2013, 92, 3292–3299. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K. Marine Proteins and Peptides: Biological Activities and Applications; John Wiley & Sons Inc.: Chichester, UK, 2013. [Google Scholar]
- Cross, H.R.; Overby, A.J. Meat Science, Milk Science, and Technology; Elsevier Science Publishers: Amsterdam, The Netherlands; New York, NY, USA, 1988. [Google Scholar]
- U.S. Department of Agriculture, A.R.S. Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28, 2015. Available online: http://www.ars.usda.gov/nea/bhnrc/ndl (accessed on 23 May 2016).
- U.S. Whey and Lactose Products; U.S. Dairy Export Council: Arlington, VA, USA, 2004.
- Wolfe, R.R. Update on Protein Intake: Importance of Milk Proteins for Health Status of the Elderly. Nutr. Rev. 2015, 73 (Suppl. 1), 41–47. [Google Scholar] [CrossRef] [PubMed]
- Eggum, B. Comments on Report of a Joint Fao/Who Expert Consultation on Protein Quality Evaluation, Rome 1990. Z. Ernahrungswiss 1991, 30, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Falvo, M.J. Protein—Which Is Best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar] [PubMed]
- Food and Agriculture Organization of the United Nations. Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation, 2013. Available online: http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdfndl (accessed on 20 November 2015).
- Bell, K. Dissertation. Appendix: Clinical Applications of the Food Insulin Index to Diabetes Mellitus, 2014. Available online: https://ses.library.usyd.edu.au//bitstream/2123/11945/2/Bell_KJ_thesis_2.pdf (accessed on 12 December 2015).
- Richter, C.K.; Skulas-Ray, A.C.; Champagne, C.M.; Kris-Etherton, P.M. Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk? Adv. Nutr. 2015, 6, 712–728. [Google Scholar] [CrossRef] [PubMed]
- Manders, R.J.; Little, J.P.; Forbes, S.C.; Candow, D.G. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia. Nutrients 2012, 4, 1664–1678. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.J.; Layman, D.K.; Tome, D.; Schaafsma, G. Protein Quality Assessment: Impact of Expanding Understanding of Protein and Amino Acid Needs for Optimal Health. Am. J. Clin. Nutr. 2008, 87, 1576S–1581S. [Google Scholar] [PubMed]
- Jacobs, D.R.; Tapsell, L.C. Food Synergy: The Key to a Healthy Diet. Proc. Nutr. Soc. 2013, 72, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Matoulek, M.; Malinska, H.; Oliyarnik, O.; Kazdova, L.; Neskudla, T.; Skoch, A.; Hajek, M.; Hill, M.; Kahle, M.; et al. Vegetarian Diet Improves Insulin Resistance and Oxidative Stress Markers More Than Conventional Diet in Subjects with Type 2 Diabetes. Diabet. Med. 2011, 28, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Butler, T.; Yan, R.; Fraser, G.E. Type of Vegetarian Diet, Body Weight, and Prevalence of Type 2 Diabetes. Diabetes Care 2009, 32, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Jenkins, A.L.; Augustin, L.S.; Ludwig, D.S.; Barnard, N.D.; Anderson, J.W. Type 2 Diabetes and the Vegetarian Diet. Am. J. Clin. Nutr. 2003, 78, 610S–616S. [Google Scholar] [PubMed]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010. Available online: http://www.cnpp.usda.gov/sites/default/files/dietary_guidelines_for_americans/2010DGACReport-camera-ready-Jan11-11.pdf (accessed on 17 January 2016).
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Scientific Report of the 2015 Dietary Guidelines Advisory Committee—Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture, 2015. Available online: https://health.gov/dietaryguidelines/2015-scientific-report/pdfs/scientific-report-of-the-2015-dietary-guidelines-advisory-committee.pdf (accessed on 17 January 2016).
- Ninan, G.; Joseph, J.; Abubacker, Z. Physical, Mechanical, and Barrier Properties of Carp and Mammalian Skin Gelatin Films. J. Food Sci. 2010, 75, E620–E626. [Google Scholar] [CrossRef] [PubMed]
- Storcksdieck, S.; Bonsmann, G.; Hurrell, R.F. Iron-Binding Properties, Amino Acid Composition, and Structure of Muscle Tissue Peptides from in vitro Digestion of Different Meat Sources. J. Food Sci. 2007, 72, S019–S029. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Li, B. Amino Acid Composition and Antioxidant Activities of Hydrolysates and Peptide Fractions from Porcine Collagen. Food Sci. Technol. Int. 2012, 18, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.; Beauclercq, S.; Harichaux, G.; Labas, V.; Guyot, N.; Gautron, J.; Nys, Y.; Rehault-Godbert, S. The Family Secrets of Avian Egg-Specific Ovalbumin and Its Related Proteins Y and X. Biol. Reprod. 2015, 93, 71. [Google Scholar] [CrossRef] [PubMed]
- Raikos, V.; Dassios, T. Health-Promoting Properties of Bioactive Peptides Derived from Milk Proteins in Infant Food: A Review. Dairy Sci. Technol. 2014, 94, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaucheron, F. The Minerals of Milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Van Nielen, M.; Feskens, E.J.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.; Boeing, H.; et al. Dietary Protein Intake and Incidence of Type 2 Diabetes in Europe: The Epic-Interact Case-Cohort Study. Diabetes Care 2014, 37, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium; Bendinelli, B.; Palli, D.; Masala, G.; Sharp, S.J.; Schulze, M.B.; Guevara, M.; van der, A.D.; Sera, F.; Amiano, P.; et al. Association between Dietary Meat Consumption and Incident Type 2 Diabetes: The Epic-Interact Study. Diabetologia 2013, 56, 47–59. [Google Scholar]
- Sluijs, I.; Forouhi, N.G.; Beulens, J.W.; van der Schouw, Y.T.; Agnoli, C.; Arriola, L.; Balkau, B.; Barricarte, A.; Boeing, H.; Bueno-de-Mesquita, H.B.; et al. The Amount and Type of Dairy Product Intake and Incident Type 2 Diabetes: Results from the Epic-Interact Study. Am. J. Clin. Nutr. 2012, 96, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.S.; Forouhi, N.G.; Kuijsten, A.; Schulze, M.B.; van Woudenbergh, G.J.; Ardanaz, E.; Amiano, P.; Arriola, L.; Balkau, B.; Barricarte, A.; et al. The Prospective Association between Total and Type of Fish Intake and Type 2 Diabetes in 8 European Countries: Epic-Interact Study. Am. J. Clin. Nutr. 2012, 95, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Viguiliouk, E.; Stewart, S.E.; Jayalath, V.H.; Ng, A.P.; Mirrahimi, A.; de Souza, R.J.; Hanley, A.J.; Bazinet, R.P.; Blanco Mejia, S.; Leiter, L.A.; et al. Effect of Replacing Animal Protein with Plant Protein on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2015, 7, 9804–9824. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Srichaikul, K.; Wong, J.M.; Kendall, C.W.; Bashyam, B.; Vidgen, E.; Lamarche, B.; Rao, A.V.; Jones, P.J.; Josse, R.G.; et al. Supplemental Barley Protein and Casein Similarly Affect Serum Lipids in Hypercholesterolemic Women and Men. J. Nutr. 2010, 140, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Von Post-Skagegard, M.; Vessby, B.; Karlstrom, B. Glucose and Insulin Responses in Healthy Women after Intake of Composite Meals Containing Cod-, Milk-, and Soy Protein. Eur. J. Clin. Nutr. 2006, 60, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, V.; Marois, J.; Weisnagel, S.J.; Jacques, H. Dietary Cod Protein Improves Insulin Sensitivity in Insulin-Resistant Men and Women: A Randomized Controlled Trial. Diabetes Care 2007, 30, 2816–2821. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, V.; Weisnagel, S.J.; Marois, J.; Bergeron, J.; Julien, P.; Gougeon, R.; Tchernof, A.; Holub, B.J.; Jacques, H. Dietary Cod Protein Reduces Plasma C-Reactive Protein in Insulin-Resistant Men and Women. J. Nutr. 2008, 138, 2386–2391. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus: A Systematic Review and Meta-Analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Schulze, M.; Manson, J.E.; Willett, W.C.; Hu, F.B. Dietary Patterns, Meat Intake, and the Risk of Type 2 Diabetes in Women. Arch. Intern. Med. 2004, 164, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, R.M.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J.; Hu, F.B. Dietary Fat and Meat Intake in Relation to Risk of Type 2 Diabetes in Men. Diabetes Care 2002, 25, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Vang, A.; Singh, P.N.; Lee, J.W.; Haddad, E.H.; Brinegar, C.H. Meats, Processed Meats, Obesity, Weight Gain and Occurrence of Diabetes among Adults: Findings from Adventist Health Studies. Ann. Nutr. Metab. 2008, 52, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Sluijs, I.; Beulens, J.W.; van der A, D.L.; Spijkerman, A.M.; Grobbee, D.E.; van der Schouw, Y.T. Dietary Intake of Total, Animal, and Vegetable Protein and Risk of Type 2 Diabetes in the European Prospective Investigation into Cancer and Nutrition (Epic)-Nl Study. Diabetes Care 2010, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Khawaja, O.A.; Gaziano, J.M. Egg Consumption and Risk of Type 2 Diabetes: A Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2016, 103, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Lajous, M.; Bijon, A.; Fagherazzi, G.; Balkau, B.; Boutron-Ruault, M.C.; Clavel-Chapelon, F. Egg and Cholesterol Intake and Incident Type 2 Diabetes among French Women. Br. J. Nutr. 2015, 114, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Zazpe, I.; Beunza, J.J.; Bes-Rastrollo, M.; Basterra-Gortari, F.J.; Mari-Sanchis, A.; Martinez-Gonzalez, M.A.; Investigators, S.U.N.P. Egg Consumption and Risk of Type 2 Diabetes in a Mediterranean Cohort; the Sun Project. Nutr. Hosp. 2013, 28, 105–111. [Google Scholar] [PubMed]
- Wallin, A.; Forouhi, N.G.; Wolk, A.; Larsson, S.C. Egg Consumption and Risk of Type 2 Diabetes: A Prospective Study and Dose-Response Meta-Analysis. Diabetologia 2016, 59, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Picard-Deland, E.; Marette, A. Fish and Marine Omega-3 Polyunsatured Fatty Acid Consumption and Incidence of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2013, 2013, 501015. [Google Scholar] [CrossRef] [PubMed]
- Wallin, A.; di Giuseppe, D.; Orsini, N.; Patel, P.S.; Forouhi, N.G.; Wolk, A. Fish Consumption, Dietary Long-Chain N-3 Fatty Acids, and Risk of Type 2 Diabetes: Systematic Review and Meta-Analysis of Prospective Studies. Diabetes Care 2012, 35, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Xun, P.; He, K. Fish Consumption and Incidence of Diabetes: Meta-Analysis of Data from 438,000 Individuals in 12 Independent Prospective Cohorts with an Average 11-Year Follow-Up. Diabetes Care 2012, 35, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Van Woudenbergh, G.J.; van Ballegooijen, A.J.; Kuijsten, A.; Sijbrands, E.J.; van Rooij, F.J.; Geleijnse, J.M.; Hofman, A.; Witteman, J.C.; Feskens, E.J. Eating Fish and Risk of Type 2 Diabetes: A Population-Based, Prospective Follow-up Study. Diabetes Care 2009, 32, 2021–2026. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.S.; Sharp, S.J.; Luben, R.N.; Khaw, K.T.; Bingham, S.A.; Wareham, N.J.; Forouhi, N.G. Association between Type of Dietary Fish and Seafood Intake and the Risk of Incident Type 2 Diabetes: The European Prospective Investigation of Cancer (Epic)-Norfolk Cohort Study. Diabetes Care 2009, 32, 1857–1863. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, M.; Mozaffarian, D.; Spiegelman, D.; Manson, J.E.; Willett, W.C.; Hu, F.B. Long-Chain Omega-3 Fatty Acids, Fish Intake, and the Risk of Type 2 Diabetes Mellitus. Am. J. Clin. Nutr. 2009, 90, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of Dairy Foods and Diabetes Incidence: A Dose-Response Meta-Analysis of Observational Studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Ning, N.; Wang, C.; Wang, Y.; Li, Q.; Meng, Z.; Liu, Y.; Li, Q. Dairy Products Consumption and Risk of Type 2 Diabetes: Systematic Review and Dose-Response Meta-Analysis. PLoS ONE 2013, 8, e73965. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Dairy Products and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis of Cohort Studies. Am. J. Clin. Nutr. 2013, 98, 1066–1083. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Dong, J.Y.; Wu, Z.W.; Li, W.; Qin, L.Q. Dairy Consumption and Risk of Type 2 Diabetes Mellitus: A Meta-Analysis of Cohort Studies. Eur. J. Clin. Nutr. 2011, 65, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tian, C.; Jia, C. Association of Fish and N-3 Fatty Acid Intake with the Risk of Type 2 Diabetes: A Meta-Analysis of Prospective Studies. Br. J. Nutr. 2012, 108, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.H.; Miller, J.C.; Petocz, P. An Insulin Index of Foods: The Insulin Demand Generated by 1000-Kj Portions of Common Foods. Am. J. Clin. Nutr. 1997, 66, 1264–1276. [Google Scholar] [PubMed]
- Bell, K.J.; Bao, J.; Petocz, P.; Colagiuri, S.; Brand-Miller, J.C. Validation of the Food Insulin Index in Lean, Young, Healthy Individuals, and Type 2 Diabetes in the Context of Mixed Meals: An Acute Randomized Crossover Trial. Am. J. Clin. Nutr. 2015, 102, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Gannon, M.C. Metabolic Response to Egg White and Cottage Cheese Protein in Normal Subjects. Metabolism 1990, 39, 749–755. [Google Scholar] [CrossRef]
- Ahmed, M.; Nuttall, F.Q.; Gannon, M.C.; Lamusga, R.F. Plasma Glucagon and Alpha-Amino Acid Nitrogen Response to Various Diets in Normal Humans. Am. J. Clin. Nutr. 1980, 33, 1917–1924. [Google Scholar] [PubMed]
- Young, A. Inhibition of Glucagon Secretion. Adv. Pharmacol. 2005, 52, 151–171. [Google Scholar] [PubMed]
- Gannon, M.C.; Nuttall, F.Q.; Saeed, A.; Jordan, K.; Hoover, H. An Increase in Dietary Protein Improves the Blood Glucose Response in Persons with Type 2 Diabetes. Am. J. Clin. Nutr. 2003, 78, 734–741. [Google Scholar] [PubMed]
- Calbet, J.A.; MacLean, D.A. Plasma Glucagon and Insulin Responses Depend on the Rate of Appearance of Amino Acids after Ingestion of Different Protein Solutions in Humans. J. Nutr. 2002, 132, 2174–2182. [Google Scholar] [PubMed]
- Carr, R.D.; Larsen, M.O.; Winzell, M.S.; Jelic, K.; Lindgren, O.; Deacon, C.F.; Ahren, B. Incretin and Islet Hormonal Responses to Fat and Protein Ingestion in Healthy Men. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E779–E784. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Hostmark, A.T.; Harstad, O.M. Bovine Milk in Human Nutrition—A Review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, G.; Hickey, M.S.; Cordain, L. Dissociation of the Glycaemic and Insulinaemic Responses to Whole and Skimmed Milk. Br. J. Nutr. 2005, 93, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q.; Krezowski, P.A.; Billington, C.J.; Parker, S. The Serum Insulin and Plasma Glucose Responses to Milk and Fruit Products in Type 2 (Non-Insulin-Dependent) Diabetic Patients. Diabetologia 1986, 29, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Artym, J.; Zimecki, M. Milk-Derived Proteins and Peptides in Clinical Trials. Postepy Hig. Med. Dosw. (Online) 2013, 67, 800–816. [Google Scholar] [CrossRef] [PubMed]
- Power, O.; Hallihan, A.; Jakeman, P. Human Insulinotropic Response to Oral Ingestion of Native and Hydrolysed Whey Protein. Amino Acids 2009, 37, 333–339. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.M.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Dietary Dairy Product Intake and Incident Type 2 Diabetes: A Prospective Study Using Dietary Data from a 7-Day Food Diary. Diabetologia 2014, 57, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G. Association between Consumption of Dairy Products and Incident Type 2 Diabetes--Insights from the European Prospective Investigation into Cancer Study. Nutr. Rev. 2015, 73 (Suppl. 1), 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V. Probiotic Yogurt Improves Antioxidant Status in Type 2 Diabetic Patients. Nutrition 2012, 28, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Shab-Bidar, S.; Neyestani, T.R.; Djazayery, A.; Eshraghian, M.R.; Houshiarrad, A.; Gharavi, A.; Kalayi, A.; Shariatzadeh, N.; Zahedirad, M.; Khalaji, N.; et al. Regular Consumption of Vitamin D-Fortified Yogurt Drink (Doogh) Improved Endothelial Biomarkers in Subjects with Type 2 Diabetes: A Randomized Double-Blind Clinical Trial. BMC Med. 2011, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Nikooyeh, B.; Neyestani, T.R.; Farvid, M.; Alavi-Majd, H.; Houshiarrad, A.; Kalayi, A.; Shariatzadeh, N.; Gharavi, A.A.; Heravifard, S.; Tayebinejad, N.; et al. Daily Consumption of Vitamin D- or Vitamin D + Calcium-Fortified Yogurt Drink Improved Glycemic Control in Patients with Type 2 Diabetes: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2011, 93, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, A.C.; Fasanmade, O.A.; Odeniyi, I.A.; Iwuala, S.; Coker, H.B.; Ohwovoriole, A.E. Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Subjects in Lagos, Nigeria. Indian J. Endocrinol. Metab. 2016, 20, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.S. The Potential Protective Action of Vitamin D in Hepatic Insulin Resistance and Pancreatic Islet Dysfunction in Type 2 Diabetes Mellitus. Nutrients 2016, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Yousefi Rad, E.; Djalali, M.; Koohdani, F.; Saboor-Yaraghi, A.A.; Eshraghian, M.R.; Javanbakht, M.H.; Saboori, S.; Zarei, M.; Hosseinzadeh-Attar, M.J. The Effects of Vitamin D Supplementation on Glucose Control and Insulin Resistance in Patients with Diabetes Type 2: A Randomized Clinical Trial Study. Iran. J. Public Health 2014, 43, 1651–1656. [Google Scholar] [PubMed]
- Nilsson, M.; Holst, J.J.; Bjorck, I.M. Metabolic Effects of Amino Acid Mixtures and Whey Protein in Healthy Subjects: Studies Using Glucose-Equivalent Drinks. Am. J. Clin. Nutr. 2007, 85, 996–1004. [Google Scholar] [PubMed]
- Jakubowicz, D.; Froy, O.; Ahren, B.; Boaz, M.; Landau, Z.; Bar-Dayan, Y.; Ganz, T.; Barnea, M.; Wainstein, J. Incretin, Insulinotropic and Glucose-Lowering Effects of Whey Protein Pre-Load in Type 2 Diabetes: A Randomised Clinical Trial. Diabetologia 2014, 54, 1807–1811. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Froy, O. Biochemical and Metabolic Mechanisms by Which Dietary Whey Protein May Combat Obesity and Type 2 Diabetes. J. Nutr. Biochem. 2013, 24, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Horner, K.; Drummond, E.; Brennan, L. Bioavailability of Milk Protein-Derived Bioactive Peptides: A Glycaemic Management Perspective. Nutr. Res. Rev. 2016, 29, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Hoefle, A.S.; Bangert, A.M.; Stamfort, A.; Gedrich, K.; Rist, M.J.; Lee, Y.M.; Skurk, T.; Daniel, H. Metabolic Responses of Healthy or Prediabetic Adults to Bovine Whey Protein and Sodium Caseinate Do Not Differ. J. Nutr. 2015, 145, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Jonker, J.T.; Wijngaarden, M.A.; Kloek, J.; Groeneveld, Y.; Gerhardt, C.; Brand, R.; Kies, A.K.; Romijn, J.A.; Smit, J.W. Effects of Low Doses of Casein Hydrolysate on Post-Challenge Glucose and Insulin Levels. Eur. J. Intern. Med. 2011, 22, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, T.; Luhovyy, B.L.; Brown, P.H.; Cho, C.E.; Anderson, G.H. Effect of Premeal Consumption of Whey Protein and Its Hydrolysate on Food Intake and Postmeal Glycemia and Insulin Responses in Young Adults. Am. J. Clin. Nutr. 2010, 91, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.L.; Ward, L.S.; Bastian, E.D.; Jenkins, A.L.; Campbell, J.; Vuksan, V. A Whey Protein Supplement Decreases Post-Prandial Glycemia. Nutr. J. 2009, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Ahren, B. The Future of Incretin-Based Therapy: Novel Avenues—Novel Targets. Diabetes Obes. Metab. 2011, 13 (Suppl. 1), 158–166. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.L.; Millward, D.J.; Long, S.J.; Morgan, L.M. Casein and Whey Exert Different Effects on Plasma Amino Acid Profiles, Gastrointestinal Hormone Secretion and Appetite. Br. J. Nutr. 2003, 89, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Dipeptidyl Peptidase Iv Inhibitory and Antioxidative Properties of Milk Protein-Derived Dipeptides and Hydrolysates. Peptides 2013, 39, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, I.M.; Li-Chan, E.C. Inhibition of Dipeptidyl Peptidase (Dpp)-Iv and Alpha-Glucosidase Activities by Pepsin-Treated Whey Proteins. J. Agric. Food Chem. 2013, 61, 7500–7506. [Google Scholar] [CrossRef] [PubMed]
- Pasin, G.; Comerford, K.B. Dairy Foods and Dairy Proteins in the Management of Type 2 Diabetes: A Systematic Review of the Clinical Evidence. Adv. Nutr. 2015, 6, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.M.; Keogh, J.B.; Clifton, P.M. Dairy Consumption and Insulin Sensitivity: A Systematic Review of Short- and Long-Term Intervention Studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Ellis, V.; Dhaliwal, S. Effects of Whey Protein Isolate on Body Composition, Lipids, Insulin and Glucose in Overweight and Obese Individuals. Br. J. Nutr. 2010, 104, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Martini, L.A.; Catania, A.S.; Ferreira, S.R. Role of Vitamins and Minerals in Prevention and Management of Type 2 Diabetes Mellitus. Nutr. Rev. 2010, 68, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; Miller, B.F. Protein Consumption Following Aerobic Exercise Increases Whole-Body Protein Turnover in Older Adults. Appl. Physiol. Nutr. Metab. 2010, 35, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, S.L.; Rioux, L.E. Food Matrix Impact on Macronutrients Nutritional Properties. Food Hydrocoll. 2011, 25, 1915–1924. [Google Scholar] [CrossRef]
- Van Meijl, L.E.; Vrolix, R.; Mensink, R.P. Dairy Product Consumption and the Metabolic Syndrome. Nutr. Res. Rev. 2008, 21, 148–157. [Google Scholar] [CrossRef] [PubMed]
Protein Source | Cow’s Milk | Meat (Beef, Poultry, Pork) | Fish (Cod, Salmon, Trout) | Eggs (Chicken) |
---|---|---|---|---|
Major Protein Groups and Types | Caseins (80%) | Myofibrillar (55%–60%) | Myofibrillar (70%–80%) | Egg White (50%–60%) |
alpha-caseins beta-caseins kappa-caseins gamma-caseins | myosin actin titin nebulin tropomyosin troponins | myosin actin titin nebulin tropomyosin troponins | ovalbumin ovotransferrin ovomucoid ovomucin lysozyme | |
Whey Proteins (20%) | Sarcoplasmic (20%–30%) | Sarcoplasmic (25%–30%) | Egg Yolk (40%–50%) | |
beta-lactoglobulin alpha-lactalbumin serum albumin immunoglobulins lactoferrin transferrin | globins cytochromes metabolic enzymes | globins cytochromes metabolic enzymes | livetins lipovitellins lipoproteins phosvitin | |
Stromal (10%–20%) | Stromal (5%–10%) | |||
collagen elastin | collagen elastin | |||
Branched-Chain Amino Acids (BCAAs) and Other Essential Amino Acids (EAAs)—value per gram of protein | BCAAs (mg) | BCAAs (mg) | BCAAs (mg) | BCAAs (mg) |
Ile 40–57 Leu 75–107 Val 53–73 | Ile 32–55 Leu 56–93 Val 36–59 | Ile 46–53 Leu 80–94 Val 51–59 | Ile 51–56 Leu 84–91 Val 66–72 | |
Other EAAs | Other EAAs | Other EAAs | Other EAAs | |
His 25–37 Lys 65–93 Met 20–30 Phe 40–60 Thr 32–47 Trp 10–17 | His 24–42 Lys 60–108 Met 19–30 Phe 30–46 Thr 28–51 Trp 04–14 | His 28–34 Lys 91–106 Met 29–34 Phe 39–45 Thr 43–51 Trp 11–13 | His 24–26 Lys 70–76 Met 29–32 Phe 52–57 Thr 43–47 Trp 13–14 |
Protein Source | Cow’s Milk | Meat (Beef, Poultry, Pork) | Fish (Cod, Salmon, Trout) | Eggs (Chicken) |
---|---|---|---|---|
Protein Functions | Nutrient transfer from mother to offspring | Structural | Structural | Structural |
Immune and non-immune protection | Locomotion | Locomotion | Nutrient transfer from mother to offspring | |
Signaling for offspring growth and development | Muscle metabolism | Muscle metabolism | Signaling for embryonic development | |
Protein Quality Scores: | ||||
Protein Efficiency Ratio (PER) | 2.5 | 2.7–2.9 | 2.7 | 3.8 |
Biological Value (BV) | 91 | 80 | 83 | 100 |
Protein Digestibility Corrected Amino Acid Score (PDCAAS) | 1.00 | 0.92 | 0.98 | 1.00 |
Digestible Indispensable Amino Acid Score (DIASS) | 1.3 | 1.1–1.3 | None-Given | 1.3 |
Food Insulin Index—240 kcal portion (% relative to 240 kcal of glucose) | Whole Milk (24%)
Low-fat Milk (34%) Fat-Free Milk (60%) | Chicken, no skin (17%)
Chicken, w/skin (19%) Beef steak (37%) | Tuna in oil (16%)
Tuna in water (26%) White fish filet (43%) | Poached egg (23%) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comerford, K.B.; Pasin, G. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients 2016, 8, 446. https://doi.org/10.3390/nu8080446
Comerford KB, Pasin G. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients. 2016; 8(8):446. https://doi.org/10.3390/nu8080446
Chicago/Turabian StyleComerford, Kevin B., and Gonca Pasin. 2016. "Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods" Nutrients 8, no. 8: 446. https://doi.org/10.3390/nu8080446