Effect of Improving Dietary Quality on Arterial Stiffness in Subjects with Type 1 and Type 2 Diabetes: A 12 Months Randomised Controlled Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Measurements
2.3. Central Blood Pressure and Augmentation Index
2.4. Pulse Wave Velocity
2.5. Anthropometric Measurements
2.6. Peripheral Blood Pressure
2.7. Biological Measurements
2.7.1. Spot Urine Sample
2.7.2. Fasting Blood Sample
2.7.3. HbA1c
2.7.4. Dietary Intake
2.8. Statistical Analysis
3. Results
3.1. Subjects
3.2. Dietary Intake and Compliance
3.3. Blood Pressure and Vascular Measurements
3.4. Weight and Biochemistry
3.5. Change in Medication
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carson, A.P.; Tanner, R.M.; Yun, H.; Glasser, S.P.; Woolley, J.M.; Thacker, E.L.; Levitan, E.B.; Farkouh, M.E.; Rosenson, R.S.; Brown, T.M.; et al. Declines in coronary heart disease incidence and mortality among middle-aged adults with and without diabetes. Ann. Epidemiol. 2014, 24, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Juutilainen, A.; Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Similarity of the impact of type 1 and type 2 diabetes on cardiovascular mortality in middle-aged subjects. Diabetes Care 2008, 31, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Shaw, J.E.; Peeters, A.; Guiver, T.; Davidson, S.; Magliano, D.J. Mortality trends among people with type 1 and type 2 diabetes in Australia: 1997–2010. Diabetes Care 2014, 37, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Anand, S.; Ounpuu, S.; Islam, S.; Zhang, X.; Rangarajan, S.; Chifamba, J.; Al-Hinai, A.; Keltai, M.; Yusuf, S.; et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: Results of the interheart study. Circulation 2008, 118, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Huffman, F.G.; Zarini, G.G.; Mcnamara, E.; Nagarajan, A. The healthy eating index and the alternate healthy eating index as predictors of 10-year chd risk in Cuban Americans with and without type 2 diabetes. Public Health Nutr. 2011, 14, 2006–2014. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Bortsov, A.; Günther, A.L.B.; Dabelea, D.; Reynolds, K.; Standiford, D.A.; Liu, L.; Williams, D.E.; Mayer-Davis, E.J.; D’Agostino, R.B.; et al. Association of dash diet with cardiovascular risk factors in youth with diabetes mellitus. Circulation 2011, 123, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Blanch, N.; Wepener, R.H.; Clifton, P.M.; Keogh, J.B. Dietary quality in people with type 1 and type 2 diabetes compared to age, sex and BMI matched controls. Diabetes Res. Clin. Pract. 2015, 107, e7–e10. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Clifton, P.M.; Blanch, N.; Keogh, J.B. Effect of improving dietary quality on carotid intima media thickness in subjects with type 1 and type 2 diabetes: A 12-mo randomized controlled trial. Am. J. Clin. Nutr. 2015, 102, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Cockcroft, J.; van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; O’Rourke, M.F.; Safar, M.E.; Baou, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. Eur. Heart J. 2010, 31, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, J.A.; Segers, P.; Gillebert, T.C.; De Buyzere, M.L.; van daele, C.M.; Khan, Z.A.; Khawar, U.; de Bacquer, D.; Rietzschel, E.R.; Asklepios Investigators. Central pulse pressure and its hemodynamic determinants in middle-aged adults with impaired fasting glucose and diabetes: The asklepios study. Diabetes Care 2013, 36, 2359–2365. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Wadwa, R.P.; Dabelea, D.; Hamman, R.F.; D’Agostino, R.; Marcovina, S.; Daniels, S.R.; Dolan, L.M.; Fino, N.F.; Urbina, E.M. Arterial stiffness in adolescents and young adults with and without type 1 diabetes: The search CVD study. Pediatr. Diabetes 2015, 16, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Keogh, J.B.; Meikle, P.J.; Garg, M.L.; Clifton, P.M. Dietary predictors of arterial stiffness in a cohort with type 1 and type 2 diabetes. Atherosclerosis 2015, 238, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Aatola, H.; Koivistoinen, T.; Hutri-Kähönen, N.; Juonala, M.; Mikkilä, V.; Lehtimäki, T.; Viikari, J.S.A.; Raitakari, O.T.; Kähönen, M. Lifetime fruit and vegetable consumption and arterial pulse wave velocity in adulthood/clinical perspective. Circulation 2010, 122, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Elias, M.F.; Dore, G.A.; Abhayaratna, W.P.; Robbins, M.A. Relations between dairy food intake and arterial stiffness. Hypertension 2012, 59, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Dallal, G.E. Randomization.com. Available online: http://www.randomization.com/ (accessed on 15 September 2012).
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Hodge, A.; Patterson, A.J.; Brown, W.J.; Ireland, P.; Giles, G. The anti cancer council of victoria ffq: Relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust. N. Z. J. Public Health 2000, 24, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.; Mann, N.; Maclean, E.; Shaw, J. The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 months randomised controlled trial. Diabetologia 2011, 54, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.-M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Khera, R.; Corrales-Medina, V.F.; Townsend, R.R.; Chirinos, J.A. Inflammation and arterial stiffness in humans. Atherosclerosis 2014, 237, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.T.; Leite, N.C.; Cardoso, C.R.; Salles, G.F. Correlates of aortic stiffness progression in patients with type 2 diabetes: Importance of glycemic control the rio de janeiro type 2 diabetes cohort study. Diabetes Care 2015, 38, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Llauradó, G.; Ceperuelo-Mallafré, V.; Vilardell, C.; Simó, R.; Gil, P.; Cano, A.; Vendrell, J.; González-Clemente, J.-M. Advanced glycation end products are associated with arterial stiffness in type 1 diabetes. J. Endocrinol. 2014, 221, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Macready, A.L.; George, T.W.; Chong, M.F.; Alimbetov, D.S.; Jin, Y.; Vidal, A.; Spencer, J.P.; Kennedy, O.B.; Tuohy, K.M.; Minihane, A.; et al. Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease—Flavurs: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Joris, P.J.; Plat, J.; Bakker, S.J.; Mensink, R.P. Long-term magnesium supplementation improves arterial stiffness in overweight and obese adults: Results of a randomized, double-blind, placebo-controlled intervention trial. Am. J. Clin. Nutr. 2016, 103, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Intervention Group (n = 55) | Control Group (n = 54) | p Value 1 |
---|---|---|---|
Age (years) | 57 ± 12 | 58 ± 12 | 0.64 |
Weight (kg) | 101 ± 19 | 99 ± 24 | 0.61 |
Height (m) | 1.7 ± 0.1 | 1.7 ± 0.1 | 0.79 |
BMI (kg/m2) | 34.5 ± 6.7 | 33.4 ± 7.1 | 0.41 |
Sex n (%) | 0.91 | ||
Male | 32 (58) | 32 (59) | |
Female | 23 (42) | 22 (41) | |
Diabetes type n (%) | 0.75 | ||
Type 1 | 5 (9) | 4 (7) | |
Type 2 | 50 (91) | 50 (93) | |
Diagnosed with diabetes (years) | 9 ± 8 | 10 ± 9 | 0.59 |
Type 1 | 21 ± 8 | 30 ± 10 | |
Type 2 | 8 ± 7 | 8 ± 7 | |
Smoking status n (%) | 0.34 | ||
Never smoked | 22 (40) | 29 (54) | |
Past smoker | 30 (55) | 3 (5) | |
Current smoker | 3 (5) | 22 (41) | |
Smoking pack years (years) 2 | 10 ± 15 | 10 ± 16 | 0.96 |
Prescribed anti-hypertensive medication n (%) | 35 (64) | 34 (63) | 0.94 |
Prescribed lipid lowering medication n (%) | 31 (56) | 33 (61) | 0.62 |
Diabetes treatment n (%) | 0.57 | ||
None | 13 (24) | 9 (17) | |
OHA | 28 (51) | 27 (50) | |
Insulin | 6 (11) | 5 (9) | |
OHA + Insulin | 8 (14) | 13 (24) | |
Presence of microalbuminuria 3 n (%) | 11 (20) | 6 (11) | 0.22 |
Peripheral systolic blood pressure (mmHg) | 128 ± 13 | 130 ± 15 | 0.54 |
Peripheral diastolic blood pressure (mmHg) | 74 ± 11 | 71 ± 9 | 0.12 |
Total cholesterol (mmol/L) | 4.1 ± 1.2 | 3.7 ± 1.1 | 0.16 |
HDL cholesterol (mmol/L) | 1.2 ± 0.4 | 1.3 ± 0.3 | 0.46 |
LDL cholesterol (mmol/L) | 2.3 ± 1.1 | 2.0 ± 0.8 | 0.08 |
Triglycerides (mmol/L) | 1.3 ± 0.8 | 1.2 ± 1.2 | 0.70 |
Glucose (mmol/L) | 8.0 ± 3.3 | 7.7 ± 2.9 | 0.60 |
hsCRP (mg/L) | 2.7 ± 2.5 | 3.1 ± 2.8 | 0.50 |
HbA1c | |||
(%) | 7.3 ± 1.4 | 7.4 ± 1.6 | 0.68 |
(mmol/mol) | 56 ± 16 | 57 ± 17 | 0.68 |
Intervention (n = 45) | Control (n = 47) | p Value | p Value after Adjustment for Baseline Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 3 Months | 6 Months | 9 Months | 12 Months | Baseline | 3 Months | 6 Months | 9 Months | 12 Months | Time Effect 1 | Time × Treatment Effect 1 | Time Effect 1 | Time × Treatment Effect 1 | |
Peripheral systolic blood pressure (mmHg) | 127 ± 12 | 125 ± 14 | 126 ± 13 | 124 ± 11 | 127 ± 13 | 130 ± 15 | 131 ± 14 | 128 ± 14 | 126 ± 14 | 130 ± 15 | 0.053 | 0.56 | 0.72 | 0.46 |
Peripheral diastolic blood pressure (mmHg) | 73 ± 11 | 71 ± 10 | 71 ± 10 | 72 ± 11 | 70 ± 10 | 72 ± 9 | 72 ± 11 | 71 ± 8 | 70 ± 10 | 73 ± 12 | 0.027 | 0.053 | 0.37 | 0.018 |
Peripheral pulse pressure (mmHg) | 53 ± 12 | 53 ± 12 | 55 ± 14 | 52 ± 14 | 56 ± 15 | 58 ± 15 | 59 ± 14 | 57 ± 14 | 55 ± 13 | 57 ± 14 | 0.04 | 0.19 | 0.70 | 0.13 |
Central systolic blood pressure (mmHg) | 126 ± 15 | 120 ± 14 | 119 ± 14 | 117 ± 10 | 119 ± 14 | 127 ± 16 | 124 ± 15 | 120 ± 11 | 120 ± 14 | 123 ± 13 | 0.001 | 0.74 | 0.62 | 0.19 |
Central diastolic blood pressure (mmHg) | 83 ± 10 | 78 ± 10 | 79 ± 10 | 79 ± 10 | 79 ± 10 | 83 ± 10 | 81 ± 10 | 80 ± 9 | 79 ± 10 | 82 ± 11 | 0.001 | 0.63 | 0.98 | 0.51 |
Central mean arterial pressure (mmHg) | 100 ± 11 | 94 ± 11 | 94 ± 11 | 94 ± 9 | 95 ± 10 | 101 ± 12 | 97 ± 10 | 96 ± 9 | 95 ± 11 | 98 ± 11 | 0.001 | 0.80 | 0.91 | 0.60 |
Central pulse pressure (mmHg) | 42 ± 12 | 41 ± 11 | 40 ± 11 | 38 ± 10 | 40 ± 11 | 44 ± 14 | 43 ± 15 | 41 ± 10 | 41 ± 11 | 42 ± 11 | 0.003 | 0.71 | 0.23 | 0.03 |
Heart rate (bpm) | 70 ± 11 | 68 ± 10 | 70 ± 11 | 72 ± 11 | 69 ± 11 | 71 ± 13 | 70 ± 12 | 70 ± 12 | 71 ± 13 | 70 ± 12 | 0.23 | 0.71 | 0.20 | 0.30 |
Central augmented pressure (mmHg) | 9 ± 5 | 10 ± 7 | 11 ± 10 | 9 ± 7 | 10 ± 8 | 9 ± 4 | 9 ± 6 | 10 ± 6 | 10 ± 5 | 10 ± 6 | 0.02 | 0.19 | 0.007 | 0.17 |
Augmentation index (%) | 20 ± 8 | 24 ± 15 | 25 ± 20 | 21 ± 15 | 22 ± 15 | 20 ± 7 | 20 ± 8 | 24 ± 12 | 23 ± 10 | 23 ± 11 | 0.002 | 0.23 | 0.02 | 0.55 |
Augmentation index at HR 75 (%) | 18 ± 7 | 22 ± 14 | 23 ± 19 | 20 ± 14 | 20 ± 14 | 18 ± 7 | 19 ± 8 | 22 ± 11 | 22 ± 10 | 21 ± 11 | 0.007 | 0.36 | 0.03 | 0.67 |
cfPWV (m/s) 2 | 9.3 ± 1.9 | 9.2 ± 1.9 | 9.6 ± 2.0 | 9.5 ± 2.0 | 9.6 ± 2.1 | 9.7 ± 1.8 | 9.7 ± 1.8 | 9.7 ± 1.7 | 10.0 ± 1.9 | 9.9 ± 1.9 | 0.048 | 0.66 | 0.94 | 0.59 |
Pulse transit time (m/s) | 61 ± 10 | 62 ± 8 | 61 ± 10 | 61 ± 9 | 60 ± 9 | 59 ± 10 | 58 ± 9 | 59 ± 9 | 57 ± 9 | 57 ± 9 | 0.045 | 0.86 | 0.74 | 0.29 |
Intervention Group (n = 45) | Control Group (n = 47) | p Value | p Value after Adjustment for Baseline Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 3 Months | 6 Months | 9 Months | 12 Months | Baseline | 3 Months | 6 Months | 9 Months | 12 Months | Time Effect 1 | Time × Treatment Effect 1 | Time Effect 1 | Time × Treatment Effect 1 | |
Weight (kg) | 98.6 ± 17.9 | 97.9 ± 18.6 | 97.8 ± 16.9 | 98.4 ± 16.8 | 98.8 ± 17.7 | 97.2 ± 24.4 | 97.6 ± 24.5 | 96.5 ± 24.3 | 96.5 ± 24.7 | 96.9 ± 24.4 | 0.80 | 0.92 | 0.86 | 0.41 |
Total cholesterol (mmol/L) | 4.0 ± 1.2 | 3.9 ± 1.0 | 4.0 ± 1.0 | 4.1 ± 0.9 | 4.0 ± 1.0 | 3.6 ± 1.0 | 3.7 ± 0.9 | 3.9 ± 1.1 | 3.8 ± 1.0 | 3.7 ± 0.9 | 0.42 | 0.60 | 0.32 | 0.65 |
HDL cholesterol (mmol/L) | 1.2 ± 0.3 | 1.2 ± 0.3 | 1.3 ± 0.4 | 1.3 ± 0.3 | 1.2 ± 0.4 | 1.3 ± 0.4 | 1.3 ± 0.4 | 1.3 ± 0.4 | 1.3 ± 0.4 | 1.3 ± 0.4 | 0.19 | 0.89 | 0.85 | 0.20 |
LDL cholesterol (mmol/L) | 2.2 ± 1.1 | 2.1 ± 0.9 | 2.2 ± 0.9 | 2.2 ± 0.8 | 2.2 ± 0.9 | 1.8 ± 0.7 | 1.9 ± 0.5 | 1.9 ± 0.8 | 1.8 ± 0.7 | 1.9 ± 0.8 | 0.99 | 0.57 | 0.11 | 0.41 |
Triglycerides (mmol/L) | 1.1 ± 0.6 | 1.2 ± 0.6 | 1.2 ± 0.5 | 1.3 ± 0.6 | 1.2 ± 0.6 | 1.2 ± 1.2 | 1.2 ± 1.1 | 1.4 ± 1.6 | 1.3 ± 1.2 | 1.2 ± 1.1 | 0.43 | 0.95 | 0.62 | 0.59 |
Glucose (mmol/L) | 7.6 ± 3.1 | 7.3 ± 2.8 | 7.2 ± 2.9 | 7.5 ± 3.1 | 7.4 ± 3.0 | 7.6 ± 2.9 | 7.3 ± 2.5 | 7.6 ± 3.3 | 7.2 ± 3.0 | 7.3 ± 2.2 | 0.90 | 0.71 | 0.31 | 0.07 |
hsCRP (mg/L) 2 | 1.7 ± 1.6 | 2.2 ± 2.6 | 2.0 ± 1.8 | 1.5 ± 1.1 | 1.7 ± 1.5 | 2.8 ± 2.7 | 2.6 ± 2.6 | 3.0 ± 2.9 | 2.3 ± 2.4 | 2.5 ± 2.6 | 0.016 | 0.91 | 0.83 | 0.97 |
HbA1c | ||||||||||||||
(%) | 7.0 ± 1.2 | 7.3 ± 1.3 | 7.3 ± 1.6 | 7.2 ± 1.0 | 0.44 | 0.12 | - | - | ||||||
(mmol/mol) | 53 ± 13 | 56 ± 15 | 56 ± 17 | 55 ± 11 | 0.44 | 0.12 | - | - | ||||||
MMP-7 (ng/mL) 3 | 3.3 ± 1.3 | 3.2 ± 1.2 | 3.3 ± 1.4 | 3.3 ± 1.4 | 0.92 | 0.58 | - | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petersen, K.S.; Clifton, P.M.; Lister, N.; Keogh, J.B. Effect of Improving Dietary Quality on Arterial Stiffness in Subjects with Type 1 and Type 2 Diabetes: A 12 Months Randomised Controlled Trial. Nutrients 2016, 8, 382. https://doi.org/10.3390/nu8060382
Petersen KS, Clifton PM, Lister N, Keogh JB. Effect of Improving Dietary Quality on Arterial Stiffness in Subjects with Type 1 and Type 2 Diabetes: A 12 Months Randomised Controlled Trial. Nutrients. 2016; 8(6):382. https://doi.org/10.3390/nu8060382
Chicago/Turabian StylePetersen, Kristina S., Peter M. Clifton, Natalie Lister, and Jennifer B. Keogh. 2016. "Effect of Improving Dietary Quality on Arterial Stiffness in Subjects with Type 1 and Type 2 Diabetes: A 12 Months Randomised Controlled Trial" Nutrients 8, no. 6: 382. https://doi.org/10.3390/nu8060382
APA StylePetersen, K. S., Clifton, P. M., Lister, N., & Keogh, J. B. (2016). Effect of Improving Dietary Quality on Arterial Stiffness in Subjects with Type 1 and Type 2 Diabetes: A 12 Months Randomised Controlled Trial. Nutrients, 8(6), 382. https://doi.org/10.3390/nu8060382