Factors Affecting 25-Hydroxyvitamin D Concentration in Response to Vitamin D Supplementation
Abstract
:1. Introduction
2. Vitamin D: Metabolism, Biomarkers and Roles in the Body
3. Factors Affecting Circulating 25(OH)D Concentration in Response to Vitamin D Supplementation
3.1. Biological and Demographic Characteristics Determinants
3.1.1. Basal 25(OH)D Concentration
Study | Population Characteristics | Study Design/Duration/Groups | Relationship with | Description | |||||
---|---|---|---|---|---|---|---|---|---|
Basal 25(OH)D | Age | BMI/weight | Body Fat % | Ethnicity | Calcium Intake | ||||
Aloia et al. (2008) [10] | Healthy men and women (n = 138) | Randomised double blind placebo control trial/6 months//Dosing at baseline started with daily 2000 IU D3 and daily 4000 IU D3 for those with >50 and ≤50 nmol/L, respectively. Then, the intake was modified. | Y | N | N | N | N* | Inverse relationship with basal 25(OH)D. * No significant racial differences in response to supplementation. But, African Americans needed higher doses than white Americans to achieve 25(OH)D concentrations of 75 nmol/L or more by 18 weeks (+50%). | |
Bacon et al. (2009) [43] | Elderly men and women (n = 63) | Randomised double blind trial/8 months/Single dose of 500,000 IU (loading dose), loading dose + monthly 50,000 IU or monthly 50,000 IU | Y | At one month, larger increase in 25(OH)D concentrations was seen in deficient subjects compared to non-deficient subject | |||||
Barger-Lux et al. (1998) [40] | Healthy men (n = 116) | Open labelled trial/8 weeks/daily 1000, 10,000, or 50,000 IU D3 or other vitamin D metabolites | Y | Y | Baseline and BMI were significant predictors of 25(OH)D concentrations and were inversely associated with response. | ||||
Bell, Shaw and Turner (1987) [51] | Healthy adults (n = 8) | Intervention trial/daily 100,000 IU D3 for 4 days and then daily 100,000 IU D3 + daily 2000 mg calcium for 4 days. | Y | Vitamin D alone increased 25(OH)D concentrations by 133% but vitamin D + calcium resulted in an increment of 63% (p < 0.02). | |||||
Blum et al. (2008) [49] | Healthy ambulatory men and women (n = 257) | Randomised placebo control trial/12 months/daily placebo or daily 700 IU D3+ daily 500 mg calcium | Y | Y | Inverse relationship with basal 25(OH)D. Mean adjusted 25(OH)D were 57.0 ± 14.0 and 40.8 ± 5.3 nmol/L in those with BMI < 25 and ≥ 30 kg/m², respectively. The adjusted change was 20% less in ≥30 compared to 25 kg/m² group. | ||||
Canto-Costa et al. (2006) [37] | Homebound elderly men and women (n = 42) | Prospective control intervention trial/12 weeks/weekly 7000 IU D3 | Y | N | Those with serum levels <50 nmol/L had a mean increase of 25.4 nmol/L vs. 13.0 nmol/L in those with serum levels >50 nmol/L | ||||
DeLappe et al. (2006) [48] | Women (n = 114) | Prospective cohort intervention trail/3 months/daily 800 IU D3 + daily 1000 mg calcium | Y | The mean 25(OH)D concentration increased from 28.9 ± 11.9 and 73.9 ± 25.2 nmol/L to 52.5 ± 26.4 and 76.1 ± 22.5 nmol/L at the follow up in insufficient and sufficient subjects, respectively. | |||||
Fu et al. (2009) [52] | Healthy adults (n = 98) | Open label un-blinded intervention trial/12 months/daily 600 or 4000 IU D3 | N | N | |||||
Gallagher et al. (2012) [11] | Healthy postmenopausal women with vitamin D insufficiency (n = 163) | Randomised placebo control trial/12 months/daily placebo or daily 400, 800, 1600, 2400, 3200, 4000 or 4800 IU D3 + daily 1200–1400 mg calcium | Y | At 12 months, 25(OH)D concentration was higher in normal weight than overweight (a difference of 12.2 nmol/L) and obese subjects (a difference of 17.7 nmol/L). | |||||
Gallagher et al. (2013) [53] | Healthy postmenopausal women with vitamin D insufficiency (n = 110) | Randomised double blind placebo control trial/12 months/daily placebo or daily 800, 1600, 2400 and 4800 IU D3 + daily 1200–1400 mg calcium | Y | N | Y | 1000 IU increase in the dose resulted in 13.0 and 10.3 nmol/L increase in 25(OH)D concentration in those with BMI < 30 and BMI ≥ 30 kg/m², respectively. The slope of dose-response was 2.9 nmol/L higher in BMI < 30 than BMI ≥ 30 kg/m². 1000 mg increase in calcium intake was associated with 9.5 nmol/L increase in 25(OH)D concentration. | |||
Giusti et al. (2010) [54] | Community-dwelling elderly women with secondary hyperparathyroidism and vitamin D deficiency (n = 59) | Randomised control trial/6 months/300,000 IU D3 every 3 months or daily 1000 IU D3 + daily 1500 mg calcium in all groups | N | Y | BMI explained 10% of variation in 25(OH)D response to supplementation | ||||
Goussous et al. (2005) [42] | Healthy ambulatory men and postmenopausal women (n = 52) | Randomised placebo trail/3 month/daily 800 IU D3 (all subjects) + daily 2 × 500 mg calcium or placebo | Y | N | Inverse relationship with basal 25(OH)D (p < 0.001). No significant difference in 25(OH)D change between calcium and control group (calcium intake had no effect on response) | ||||
Harris et al. (2002) [39] | Healthy young and old men (n = 50) | Randomised control trail/8 weeks/daily 800 IU D3 | Y | N | Inverse relationship with basal 25(OH)D. | ||||
Mazahery, Stonehouse and von Hurst (2015) [15] | Healthy premenopausal women (n = 61) | Randomised double blind placebo control trial/6 months/monthly placebo or monthly 50,000 or 100,000 IU | Y | Y | For each decrease of one unit in basal 25(OH)D and body fat percentage, the change in 25(OH)D is expected to increase by 0.6 and 0.7 nmol/L, respectively. | ||||
Nelson et al. (2009) [41] | Healthy pre-menopausal women (n = 112) | Randomised double blind placebo trial/21 weeks/daily placebo or daily 800 IU D3 | Y | Y | Achieving optimal 25(OH)D concentrations in the winter was seen in those with higher baseline serum levels (67.4 ± 22.8 vs. 40.9 ± 16.4 nmol/L) and lower percent body fat (29.9% ± 7.1% vs. 35.4% ± 7.4%). | ||||
Ng et al. (2014) [47] | Healthy adults (n = 292) | Randomised double blind placebo control trial/3 months/daily placebo or daily 1000, 2000 or 4000 IU D3 | Y | Y* | Y* | Many subgroups with a greater response had lower basal 25(OH)D. * Age and BMI were significant predictors of 25(OH)D at 3 months; the predictors of the change were not reported. | |||
Nimitphong et al. (2013) [55] | Healthy adults (n = 39) | Un-blinded randomised control trial/3 months/daily 400 IU D2 or daily 400 IU D3 plus daily 675 mg calcium in both groups | N | ||||||
Putman et al. (2013) [56] | Healthy adolescents with vitamin D sufficiency (n = 53) | Double-blind, randomised trial/11 weeks/daily 200 or 1000 IU D3 | N | N | Basal 25(OH)D concentrations, age, prior treatment with vitamin D and compliance were significant predictors of the change in 25(OH)D concentrations over time, but when those with prior treatment were excluded no difference was detected. | ||||
Saadi et al. (2007) [38] | Healthy nulliparous and lactating women (n = 178) | Open-labelled, randomised, parallel group trial/3 months/daily 2000 IU D2 or monthly 60,000 IU D2 | Y | Y | Response to supplement was inversely associated with weight and baseline 25(OH)D levels. | ||||
Talwar et al. (2007) [14] | Healthy postmenopausal women (n = 208) | Randomised placebo control trial/36 months/daily placebo or daily 800 IU D3 for the first 2 years and then daily 2000 IU for the third year in the vitamin D group + daily 1200–1500 mg calcium in both groups | Y | N | N | N | Response to supplement was inversely associated with baseline 25(OH)D levels | ||
Thomas, Need and Nordin (2010) [57] | Healthy postmenopausal women (n = 22) | Intra- and inter-subject comparison/8 weeks/daily 1000 mg calcium for one week followed by daily 1000 IU D3 + daily 1000 mg calcium for 7 weeks or daily 1000 IU D3 for 7 weeks followed by daily 1000 IU D3 + daily 1000 mg calcium for one week. | Y | Supplementation with 1000 mg calcium for one week with additional 1000 IU vitamin D daily for 7 weeks raised the mean 25(OH)D concentration more effectively than vitamin D or calcium (p < 0.001). | |||||
Trang et al. (1998) [44] | Healthy men and women (n = 72) | Randomised double blind trial/14 days/daily 4000 IU D2 or daily 4000 IU D3 | Y | The largest increase was seen in subjects in the first tertile of 25(OH)D levels (10–34 nmol/L). Subjects in the third tertile (50–86 nmol/L) had lower increase in 25(OH)D concentrations compared to those in the first and second tertiles (35–49 nmol/L). | |||||
Veith et al. (2001) [58] | Healthy men and women (n = 61) | Randomised intervention trial/2–5 months/daily 1000 or 4000 IU D3 | N | N | Response to supplement was inversely associated with weight. | ||||
Waterhouse et al. (2014) [46] | Healthy older adults (n = 385) | Randomised double blind placebo control trial/one year/monthly placebo or monthly 30,000 or 60,000 IU D3 | Y | N | Y | Response to supplementation was inversely associated with basal 25(OH)D and BMI. Supplement dose and basal 25(OH)D explained 24% of variability in response to vitamin D supplementation. | |||
Zhao et al. (2012) [50] | Postmenopausal women (n = 1063) | Randomised double blind placebo control trial/One year/daily placebo, daily 1100 IU D + daily 1400 mg calcium or daily 1400 mg calcium only | Y | N* | * Inconsistent results; significant inverse relationship was found when all participants were included. However, when only supplemented participants were included, BMI was not a significant predictor. | ||||
Zwart et al. (2011) [45] | Healthy men and women (n = 41) | Un-masked controlled intervention trial/6 months/daily 2000 IU or weekly 10,000 IU D (type of vitamin D was not specified) | Y | Y | Participants with lower basal 25(OH)D had a better response. Those with BMI >28 kg/m² responded poorly to treatment compared to those with BMI |
3.1.2. BMI or Body Fat Percentage
3.1.3. Aging
3.1.4. Ethnicity
3.1.5. Dietary Calcium Intake
3.1.6. Genetic Background
3.1.7. Oestrogen Use
3.1.8. Dietary Fat Content and Fat Composition
3.1.9. Diseases and Medications
3.2. Treatment Strategy and Environmental Determinants
3.2.1. Type of Vitamin D; D3 vs. D2
3.2.2. Dosing Regimen
Dose
Study | Population Characteristics | Study Design/Duration/Groups | Relationship with | Description | ||
---|---|---|---|---|---|---|
Type of Vitamin D | Dosing Regimen | Season | ||||
Armas et al. (2004) [86] | Healthy men (n = 20) | Randomised control trial/28 days/Single oral dose of 50,000 IU D₂ or D₃ | Y | The AUC to day 28 for D₃ and D₂ was 204.7 and 150.5 nmol/L, respectively. | ||
Bacon et al. (2009) [43] | Elderly men and women (n = 63) | Randomised double blind trial/8 months/Single dose of 500,000 IU (loading dose), loading dose + monthly 50,000 IU or monthly 50,000 IU | N | The plateau was reached at one and 3–5 months in those receiving loading dose and monthly dose, respectively. | ||
Barger-Lux et al. (1998) [40] | Healthy men (n = 116) | Open labelled trial/8 weeks/daily 1000, 10,000, or 50,000 IU D₃ or other vitamin D metabolites | Y | Stepwise increase in 25(OH)D concentrations (+29, +146, +643 nmol.L, respectively). | ||
Biancuzzo et al. (2013) [92] | Healthy men and women (n = 34) | Randomised double blind placebo control trial/11 weeks/daily placebo or daily 1000 IU D₂ or daily 1000 IU D₃ | Y* | Y | Greater increase was observed with vitamin D supplemented groups than placebo... * D3 group had a greater increase in 25(OH)D than D2 (p < 0.07). | |
Binkley et al. (2011) [87] | Healthy community-dwelling men and women (n = 64) | Randomised double blind placebo control trial/One year/daily 1600 IU D₂ or D₃ or monthly 50,000 IU D₂ or D₃ and matching placebos | Y | Y | The average increase per 100 IU D₂ and D₃ were 0.95 and 1.45 nmol/L, respectively | |
Blum et al. (2008) [49] | Healthy ambulatory men and women (n = 257) | Randomised placebo control trial/12 months/daily placebo or daily 700 IU D₃+ daily 500 mg calcium | Y | Y | Higher increase in 25(OH)D concentration in those receiving vitamin D supplement than placebo. Season was significantly associated with change in 25(OH)D levels (p < 0.01), but the direction was not reported. | |
Fu et al. (2009) [52] | Healthy adults (n = 98) | Open label un-blinded intervention trial/12 months/daily 600 or 4000 IU D₃ | Y | Higher increase in 25(OH)D concentration in those receiving larger dose. Contribution of dose to overall variance was 22%. | ||
Gallagher et al. (2012) [11] | Healthy postmenopausal women with vitamin D insufficiency (n = 163) | Randomised placebo control trial/12 months/daily placebo or daily 400, 800, 1600, 2400, 3200, 4000 or 4800 IU D₃+ daily 1200–1400 mg calcium | Y | A curvilinear dose-response relationship. Significant decrease in PTH levels with an increase in the dose of vitamin D₃. | ||
Giusti et al. (2010) [54] | Healthy community-dwelling elderly women with secondary hyperparathyroidism and vitamin D deficiency (n = 59) | Randomised control trial/6 months/300,000 IU D₃/every 3 months or daily 1000 IU D₃ + daily 1500 mg calcium | Y | Mean increase was significantly lower in daily group compared to intermittent group (+34.3 ± 16.8 vs. +56.8 ± 29.5 nmol/L). Larger proportion of both treatment groups reached concentrations >75 nmol/L at 6 months compared to 3 months. | ||
Harris et al. (2002) [39] | Healthy young and old men (n = 50) | Randomised control trail/8 weeks/daily 800 IU D₃ | Y | Higher increase in 25(OH)D concentration in vitamin D supplemented groups than control group. | ||
Hashemipour et al. (2010) [101] | Healthy men and women (n = 33) | Randomised double blind placebo control trial/4 months/Single dose of 0, 300,000 or 600,000 IU vitamin D₃ administered IM | Y | Circulating 25(OH)D increased significantly after 2 and 4 months but not after 2 weeks. Mean increase in 25(OH)D in 600,000 group was 2 times greater than in 300,000 group. | ||
Heaney et al. (2003) [13] | Healthy men (n = 67) | Randomised placebo control trial/5 months//0, 1000, 5000, and 10,000 IU vitamin D₃/day | Y | Significant dose-dependent increase in 25(OH)D concentrations | ||
Holick et al. (2008) [91] | Healthy multi-ethnic men and women (n = 68) | Randomised double blind trial/11 weeks/daily placebo or daily 1000 IU D2 or D3 or 500 IU D2 + 500 IU D3 | N | Higher increase in 25(OH)D concentration in vitamin D groups than placebo group. D2 was potent as D3. Identical increase in 25(OH)D in all vitamin D groups. | ||
Hollis and Wagner (2004) [102] | Healthy women (n = 18) | Randomised controlled trial/4 months/daily 1600 or 3400 IU D₂ + daily 400 IU D₃ | Y | Higher increase in larger dose group. | ||
Lehmann et al. (2013) [89] | Healthy adults (n = 107) | Randomised double blind placebo control trial/8 weeks/daily placebo or daily 2000 IU D2 or D3/ | Y | Total 25(OH)D concentration was significantly different across groups (p < 0.001). Circulating 25(OH)D3 decreased in the placebo and vitamin D2 group (p < 0.001), but increased in the vitamin D3 group (p < 0.001). | ||
Logan et al. (2013) [88] | Healthy men and women (n = 61) | Randomised double blind placebo control trial/25 weeks/0, 1000 IU/day D2 or 1000/day D₃ | Y | Y | Total 25(OH)D concentration was significantly higher in vitamin D supplemented groups than placebo and in D3 group than D2. | |
Mazahery, Stonehouse, von Hurst (2015) [15] | Healthy premenopausal women (n = 61) | Randomised double blind placebo control trial/6 months/monthly placebo or monthly 50,000 or 100,000 IU D3 | Y | Circulating 25(OH)D reached the plateau at 3 months. Larger proportion of women receiving 100,000 IU/month reached 25(OH)D concentrations >75 nmol/L at 6 months than those receiving 50,000 IU/months. | ||
Nelson et al. (2009) [41] | Healthy premenopausal women (n = 112) | Randomised double blind placebo trial/21 weeks/daily placebo or daily 800 IU D3 | Y | Y | Higher increase in vitamin D supplemented group than placebo. Starting the trial in winter was associated with a greater response. The magnitude of summer increase in 25(OH)D concentration was a significant predictor of the change. | |
Ng et al. (2014) [47] | Healthy adults (n = 292) | Randomised double blind placebo control trial/3 months/daily placebo or daily 1000, 2000 or 4000 IU D₃ | Y | Larger proportion of subjects achieved 25(OH)D concentrations of 75 nmol/L or more; 3.7%, 37.0%, 63.8% and 90.4% in the placebo, 1000, 2000 and 4000 IU groups, respectively. | ||
Nimitphong et al. (2013) [55] | Healthy adults (n = 39) | Un-blinded randomised control trial/3 months/daily 400 IU D2 or D3 + daily 675 mg calcium in al grups | Y | D3 tended to increase 25(OH)D concentration more than D2 (p = 0.08). | ||
Putman et al. (2013) [56] | Healthy adolescents with vitamin D sufficiency (n = 53) | Double-blind, randomised clinical trial/11 weeks/daily 200 or 1000 IU D3 | N | Y | Season of enrolment was a significant predictor. | |
Romagnoli et al. (2008) [85] | Women residence of nursing homes with vitamin D deficiency (n = 32) | Prospective randomised intervention/60 days/Single dose of 300,000 IU D2 or D3 administered orally or intramuscularly | Y | Y | Rapid and consistent increase with oral D3, but slow and gradual increase with both vitamins given intramuscularly. Based on the AUC, D3 was twice as potent as D₂. | |
Saadi et al. (2007) [38] | Healthy nulliparous and lactating women (n = 178) | Open-labelled, randomised, parallel group trial/3 months/daily 2000 IU D2 or monthly 60,000 IU D₂ | Y | All women together, daily regimen was more effective than monthly regimen. | ||
Talwar et al. (2007) [14] | Healthy postmenopausal women (n = 208) | Randomised placebo control trial/36 months /daily placebo or daily 800 IU D3 for the first 2 years and then daily 2000 IU D3 for the third year in the vitamin D group + daily 1200–1500 mg calcium in both groups | Y | Y | The slope was inversely associated with the dose used. Significant increase in 25(OH)D at 3 months and 27 months (+22%) in vitamin D group. The pre- and post-summer 25(OH)D concentrations were lower than the summer levels. | |
Trang et al. (1998) [44] | Healthy men and women (n = 72) | Randomised double blind trial/14 days/daily 4000 IU D2 or 4000 IU D3 | Y | D2 and D3 increased mean 25(OH)D concentrations by 13.7 and 23.3 nmol/L, respectively. | ||
Veith et al. (2001) [58] | Healthy men and women (n = 61) | Randomised intervention trial/2–5 months/daily 1000 or 4000 IU D3 | Y | 35% and 88% of participants in 1000 and 4000 groups achieved serum levels ≥75 nmol/L, respectively. | ||
Waterhouse et al. (2014) [46] | Healthy older adults (n = 385) | Randomised double blind placebo control trial/one year/monthly placebo or monthly 30,000 or 60,000 IU D3 | Y | Mean 25(OH)D increased to 78 ± 20 and 64 ± 17 nmol/L in the 60,000 and 30,000 IU groups, and the incremental change was 1.8 and 2.2 nmol/L per 100 IU vitamin D input, accordingly. | ||
Zabihiyeganeh et al. (2013) [104] | Adults with 25(OH)D < 75 nmol/L (n = 79) | Open labelled randomised clinical trial/6 months/Single intramuscular 300,000 IU D3 or 6 divided oral doses (weekly 50,000 IU D3 for 4 weeks then monthly 50,000 IU). | Y | Change in 25(OH)D concentration was +90.0 ± 11.2 in the oral group and 58.8 ± 8.9 nmol/L in the intramuscular group at 3 months. | ||
Zhao et al. (2012) [50] | Healthy postmenopausal women (n = 1063) | Randomised double blind placebo control trial/12 months/Placebo, 1100 IU/day vitamin D + 1400 mg/day calcium or 1400 mg calcium/day only. | Y | Y | Higher increase in 25(OH)D concentration in those receiving vitamin D than placebo. Starting the trial in winter was associated with a greater response |
Frequency
Route
Duration
3.2.3. Season
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Van Schoor, N.M.; Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Looker, A.C.; Johnson, C.L.; Lacher, D.A.; Pfeiffer, C.M.; Schleicher, R.L.; Sempos, C.T. Vitamin D status: United states, 2001–2006. NCHS Data Brief 2011, 59, 1–8. [Google Scholar] [PubMed]
- Ministry of Health. Vitamin D Status of New Zealand Adults: Findings from the 2008/09 New Zealand adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2012.
- Norman, A.W.; Bouillon, R. Vitamin D nutritional policy needs a vision for the future. Exp. Biol. Med. 2010, 235, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Cancer Society of New Zealand. Consensus Statement on Vitamin D and Sun Exposure in New Zealand; Health, M.O., Ed.; Ministry of Health: Wellington, New Zealand, 2012.
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- American Academy of Dermatology and AAD Association. Position Statement on Vitamin D; AAD: Schaumburg, IL, USA, 2010. [Google Scholar]
- Aloia, J.F.; Patel, M.; DiMaano, R.; Li-Ng, M.; Talwar, S.A.; Mikhail, M.; Pollack, S.; Yeh, J.K. Vitamin D intake to attain a desired serum 25-hydroxyvitamin D concentration. Am. J. Clin. Nutr. 2008, 87, 1952–1958. [Google Scholar] [PubMed]
- Gallagher, J.C.; Sai, A.; Templin, T.I.; Smith, L. Dose response to vitamin D supplementation in postmenopausal women: A randomized trial. Ann. Intern. Med. 2012, 156, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Griend, J.P.V.; McQueen, R.B.; Linnebur, S.A.; Vondracek, S.F. Prescription ergocalciferol dosing for vitamin D repletion: A retrospective evaluation. Pharmacotherapy 2012, 32, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 2003, 77, 204–210. [Google Scholar] [PubMed]
- Talwar, S.A.; Aloia, J.F.; Pollack, S.; Yeh, J.K. Dose response to vitamin D supplementation among postmenopausal african american women. Am. J. Clin. Nutr. 2007, 86, 1657–1662. [Google Scholar] [PubMed]
- Mazahery, H.; Stonehouse, W.; von Hurst, P.R. The effect of monthly 50 000 IU or 100 000 IU vitamin D supplements on vitamin D status in premenopausal middle eastern women living in auckland. Eur. J. Clin. Nutr. 2015, 69, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Ernst, J.B.; Gummert, J.F.; Borgermann, J. Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: A systematic review. Eur. J. Nutr. 2014, 53, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Sunlight “D” ilemma: Risk of skin cancer or bone disease and muscle weakness. Lancet 2001, 357, 4–6. [Google Scholar] [CrossRef]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [PubMed]
- Christakos, S.; Hewison, M.; Gardner, D.G.; Wagner, C.L.; Sergeev, I.N.; Rutten, E.; Pittas, A.G.; Boland, R.; Ferrucci, L.; Bikle, D.D. Vitamin D: Beyond bone. Ann. N. Y. Acad. Sci. 2013, 1287, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Mihai, R.; Farndon, J.R. Parathyroid disease and calcium metabolism. Br. J. Anaesth. 2000, 85, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.T.; Hayes, C.E.; DeLuca, H.F. 1,25-dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc. Natl. Acad. Sci. 1996, 93, 7861–7864. [Google Scholar] [CrossRef] [PubMed]
- Skowronski, R.J.; Peehl, D.M.; Feldman, D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 1993, 132, 1952–1960. [Google Scholar] [PubMed]
- Sergeev, I.N. Vitamin D-mediated apoptosis in cancer and obesity. Horm. Mol. Biol. Clin. Investig. 2014, 20, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.T.; Humpal-Winter, J.; DeLuca, H.F. In vivo upregulation of interleukin-4 is one mechanism underlying the immunoregulatory effects of 1,25-dihydroxyvitamin D(3). Arch. Biochem. Biophys. 2000, 377, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lu, F.; Cao, K.; Xu, D.; Goltzman, D.; Miao, D. Calcium-independent and 1,25(oh)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int. 2008, 74, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Sergeev, I.N. Calcium and vitamin D in obesity. Nutr. Res. Rev. 2012, 25, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R. How to optimize vitamin D supplementation to prevent cancer, based on cellular adaptation and hydroxylase enzymology. Anticancer Res. 2009, 29, 3675–3684. [Google Scholar] [PubMed]
- Zerwekh, J.E. Blood biomarkers of vitamin D status. Am. J. Clin. Nutr. 2008, 87, 1087S–1091S. [Google Scholar] [PubMed]
- Clements, M.R.; Davies, M.; Hayes, M.E.; Hlckey, C.D.; Lumb, G.A.; Mawer, E.B.; Adams, P.H. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin. Endocrinol. (Oxf.) 1992, 37, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Staykova, T.; Horne, A.; Clearwater, J.; Ames, R.; Mason, B.; Orr-Walker, B.; Gamble, G.; Scott, M.; Reid, I. Efficacy of an oral, 10-day course of high-dose calciferol in correcting vitamin D deficiency. N. Z. Med. J. 2003, 116, U536. [Google Scholar] [PubMed]
- Need, A.G.; Nordin, B.E. Misconceptions-vitamin D insufficiency causes malabsorption of calcium. Bone 2008, 42, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Barger-Lux, M.J.; Heaney, R.P. Effects of above average summer sun exposure on serum 25-hydroxyvitamin D and calcium absorption. J. Clin. Endocrinol. Metab. 2002, 87, 4952–4956. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am. J. Clin. Nutr. 2004, 80, 1706S–1709S. [Google Scholar] [PubMed]
- Perna, L.; Schottker, B.; Holleczek, B.; Brenner, H. Serum 25-hydroxyvitamin D and incidence of fatal and nonfatal cardiovascular events: A prospective study with repeated measurements. J. Clin. Endocrinol. Metab. 2013, 98, 4908–4915. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Munger, K.L.; White, R.; Köchert, K.; Simon, K.C.; Polman, C.H.; Freedman, M.S.; Hartung, H.P.; Miller, D.H.; Montalbán, X.; et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014, 71, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Chandler, P.D.; Buring, J.E.; Manson, J.E.; Giovannucci, E.L.; Moorthy, M.V.; Zhang, S.; Lee, I.-M.; Lin, J.H. Circulating vitamin D levels and risk of colorectal cancer in women. Cancer Prev. Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Canto-Costa, M.H.; Kunii, I.; Hauache, O.M. Body fat and cholecalciferol supplementation in elderly homebound individuals. Braz. J. Med. Biol. Res. 2006, 39, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadi, H.F.; Dawodu, A.; Afandi, B.O.; Zayed, R.; Benedict, S.; Nagelkerke, N. Efficacy of daily and monthly high-dose calciferol in vitamin d–deficient nulliparous and lactating women. Am. J. Clin. Nutr. 2007, 85, 1565–1571. [Google Scholar] [PubMed]
- Harris, S.S.; Dawson-Hughes, B. Plasma vitamin D and 25OHD responses of young and old men to supplementation with vitamin D3. J. Am. Coll. Nutr. 2002, 21, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Barger-Lux, M.J.; Heaney, R.P.; Dowell, S.; Chen, T.C.; Holick, M.F. Vitamin D and its major metabolites: Serum levels after graded oral dosing in healthy men. Osteoporos. Int. 1998, 8, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.L.; Blum, J.M.; Hollis, B.W.; Rosen, C.; Sullivan, S.S. Supplements of 20 μg/d cholecalciferol optimized serum 25-hydroxyvitamin D concentrations in 80% of premenopausal women in winter. J. Nutr. 2009, 139, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Goussous, R.; Song, L.; Dallal, G.E.; Dawson-Hughes, B. Lack of effect of calcium intake on the 25-hydroxyvitamin D response to oral vitamin D3. Clin. Endocrinol. Metab. 2005, 90, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.J.; Gamble, G.D.; Horne, A.M.; Scott, M.A.; Reid, I.R. High-dose oral vitamin D3 supplementation in the elderly. Osteoporos. Int. 2009, 20, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Trang, H.M.; Cole, D.E.C.; Rubin, L.A.; Pierratos, A.; Siu, S.; Vieth, R. Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am. J. Clin. Nutr. 1998, 68, 854–858. [Google Scholar] [PubMed]
- Zwart, S.R.; Mehta, S.K.; Ploutz-Snyder, R.; Bourbeau, Y.; Locke, J.P.; Pierson, D.L.; Smith, S.M. Response to vitamin D supplementation during antarctic winter is related to bmi, and supplementation can mitigate epstein-barr virus reactivation. J. Nutr. 2011, 141, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, M.; Tran, B.; Armstrong, B.K.; Baxter, C.; Ebeling, P.R.; English, D.R.; Gebski, V.; Hill, C.; Kimlin, M.G.; Lucas, R.M.; et al. Environmental, personal, and genetic determinants of response to vitamin D supplementation in older adults. J. Clin. Endocrinol. Metab. 2014, 99, E1332–E1340. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.; Scott, J.B.; Drake, B.F.; Chan, A.T.; Hollis, B.W.; Chandler, P.D.; Bennett, G.G.; Giovannucci, E.L.; Gonzalez-Suarez, E.; Meyerhardt, J.A.; et al. Dose response to vitamin D supplementation in african americans: Results of a 4-arm, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2014, 99, 587–598. [Google Scholar] [CrossRef] [PubMed]
- DeLappe, E.; McGreevy, C.; ni Chadhain, N.; Grimes, H.; O’Brien, T.; Mulkerrin, E. Vitamin D insufficiency in older female community-dwelling acute hospital admissions and the response to supplementation. Eur. J. Clin. Nutr. 2006, 60, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Dolnikowski, G.; Syoum, E.; Harris, S.S.; Booth, S.L.; Peterson, J.; Saltzman, E.; Dawson-Hughes, B. Vitamin D3 in fat tissue. Endocrine 2008, 33, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.J.; Zhou, Y.; Bu, F.; Travers-Gustafson, D.; Ye, A.; Xu, X.; Hamm, L.; Gorsage, D.M.; Fang, X.; Deng, H.W.; et al. Factors predicting vitamin D response variation in non-Hispanic white postmenopausal women. J. Clin. Endocrinol. Metab. 2012, 97, 2699–2705. [Google Scholar] [CrossRef] [PubMed]
- Bell, N.H.; Shaw, S.; Turner, R.T. Evidence that calcium modulates circulating 25-hydroxyvitamin D in man. J. Bone Miner. Res. 1987, 2, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Yun, F.; Oczak, M.; Wong, B.Y.; Vieth, R.; Cole, D.E. Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] to vitamin D supplementation. Clin. Biochem. 2009, 42, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C.; Peacock, M.; Yalamanchili, V.; Smith, L.M. Effects of vitamin D supplementation in older african american women. J. Clin. Endocrinol. Metab. 2013, 98, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Giusti, A.; Barone, A.; Pioli, G.; Girasole, G.; Razzano, M.; Pizzonia, M.; Pedrazzoni, M.; Palummeri, E.; Bianchi, G. Heterogeneity in serum 25-hydroxy-vitamin D response to cholecalciferol in elderly women with secondary hyperparathyroidism and vitamin D deficiency. J. Am. Geriatr. Soc. 2010, 58, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Nimitphong, H.; Saetung, S.; Chanprasertyotin, S.; Chailurkit, L.O.; Ongphiphadhanakul, B. Changes in circulating 25-hydroxyvitamin D according to vitamin D binding protein genotypes after vitamin D3 or D2 supplementation. Nutr. J. 2013, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Putman, M.S.; Pitts, S.A.B.; Milliren, C.E.; Feldman, H.A.; Reinold, K.; Gordon, C.M. A randomized clinical trial of vitamin D supplementation in healthy adolescents. J. Adolesc. Health 2013, 52, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.D.; Need, A.G.; Nordin, B.E. Suppression of c-terminal telopeptide in hypovitaminosis D requires calcium as well as vitamin D. Calcif. Tissue Int. 2010, 86, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R.; Chan, P.-C.R.; MacFarlane, G.D. Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level. Am. J. Clin. Nutr. 2001, 73, 288–294. [Google Scholar] [PubMed]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [PubMed]
- Brouwer, D.A.; van Beek, J.; Ferwerda, H.; Brugman, A.M.; van der Klis, F.R.; van der Heiden, H.J.; Muskiet, F.A. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br. J. Nutr. 1998, 79, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Armstrong-Moore, D.; Liang, Z.; Sweeney, J.F.; Torres, W.E.; Ziegler, T.R.; Tangpricha, V.; Gletsu-Miller, N. Contribution of adipose tissue to plasma 25-hydroxyvitamin D concentrations during weight loss following gastric bypass surgery. Obes. (Silver Spring) 2011, 19, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Sambrook, P.N.; March, L.; Cameron, I.D.; Cumming, R.G.; Simpson, J.M.; Seibel, M.J. Hypovitaminosis D and parathyroid hormone response in the elderly: Effects on bone turnover and mortality. Clin. Endocrinol. (Oxf.) 2008, 68, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Isaia, G.; Giorgino, R.; Rini, G.B.; Bevilacqua, M.; Maugeri, D.; Adami, S. Prevalence of hypovitaminosis D in elderly women in italy: Clinical consequences and risk factors. Osteoporos. Int. 2003, 14, 577–582. [Google Scholar] [CrossRef] [PubMed]
- MacLaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 1985, 76, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- Pop, C.L.; Chang, B.; Wang, X.; Wei, S.; Shapses, S.A. Estrogen, vitamin D binding protein and 25-hydroxyvitamin D in healthy women and men. In Bone and Mineral Metabolism; Vitamin D Metabolism and Action; Endocrine Society: Washington, DC, USA, 2014; p. 31. [Google Scholar]
- Nieves, J.W.; Ralston, S.H.; Vásquez, E.; Ambrose, B.; Cosman, F.; Lindsay, R. Vitamin D receptor fok1 polymorphism influences response to vitamin D supplementation in postmenopausal african-american women. Int. Congr. Ser. 2007, 1297, 126–132. [Google Scholar] [CrossRef]
- Elnenaei, M.O.; Chandra, R.; Mangion, T.; Moniz, C. Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation. Br. J. Nutr. 2011, 105, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Nezhad, A.; Ahangari, G.; Behzadi, H.; Maghbooli, Z.; Larijani, B. Vitamin D receptor gene polymorphism may predict response to vitamin D intake and bone turnover. Daru 2009, 17, 13–19. [Google Scholar]
- Saarem, K.; Pedersen, J.I. Sex differences in the hydroxylation of cholecalciferol and of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol in rat liver. Biochem. J. 1987, 247, 73–78. [Google Scholar] [PubMed]
- Moller, U.K.; Streym, S.; Jensen, L.T.; Mosekilde, L.; Schoenmakers, I.; Nigdikar, S.; Rejnmark, L. Increased plasma concentrations of vitamin D metabolites and vitamin D binding protein in women using hormonal contraceptives: A cross-sectional study. Nutrients 2013, 5, 3470–3480. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, G.B.; Licata, A. Taking vitamin D with the largest meal improves absorption and results in higher serum levels of 25-hydroxyvitamin D. J. Bone Miner. Res. 2010, 25, 928–930. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, R.E.; Tangpricha, V. Evaluation of vehicle substances on vitamin D bioavailability: A systematic review. Mol. Nutr. Food Res. 2010, 54, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Tangpricha, V.; Koutkia, P.; Rieke, S.M.; Chen, T.C.; Perez, A.A.; Holick, M.F. Fortification of orange juice with vitamin D: A novel approach for enhancing vitamin D nutritional health. Am. J. Clin. Nutr. 2003, 77, 1478–1483. [Google Scholar] [PubMed]
- Niramitmahapanya, S.; Harris, S.S.; Dawson-Hughes, B. Type of dietary fat is associated with the 25-hydroxyvitamin D3 increment in response to vitamin D supplementation. J. Clin. Endocrinol. Metab. 2011, 96, 3170–3174. [Google Scholar] [CrossRef] [PubMed]
- Itariu, B.K.; Zeyda, M.; Leitner, L.; Marculescu, R.; Stulnig, T.M. Treatment with n-3 polyunsaturated fatty acids overcomes the inverse association of vitamin D deficiency with inflammation in severely obese patients: A randomized controlled trial. PLoS ONE 2013, 8, e54634. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.; Brotherwood, M.; Robert, R.; Atenafu, E.; Corey, M.; Tullis, E. Cholecalciferol significantly increases 25-hydroxyvitamin D concentrations in adults with cystic fibrosis. Am. J. Clin. Nutr. 2007, 85, 1307–1311. [Google Scholar] [PubMed]
- Nuti, R.; Martini, G.; Valenti, R.; Giovani, S.; Salvadori, S.; Avanzati, A. Prevalence of undiagnosed coeliac syndrome in osteoporotic women. J. Intern. Med. 2001, 250, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Gilman, J.; Shanahan, F.; Cashman, K.D. Determinants of vitamin D status in adult crohn’s disease patients, with particular emphasis on supplemental vitamin D use. Eur. J. Clin. Nutr. 2006, 60, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Weaver, V.; Smith, J.P.; Bingaman, S.; Hartman, T.J.; Cantorna, M.T. Therapeutic effect of vitamin D supplementation in a pilot study of crohn’s patients. Clin. Transl. Gastroenterol. 2013, 4, e33. [Google Scholar] [CrossRef] [PubMed]
- Robien, K.; Oppeneer, S.J.; Kelly, J.A.; Hamilton-Reeves, J.M. Drug-vitamin D interactions: A systematic review of the literature. Nutr. Clin. Pract. 2013, 28, 194–208. [Google Scholar] [CrossRef] [PubMed]
- McDuffie, J.R.; Calis, K.A.; Booth, S.L.; Uwaifo, G.I.; Yanovski, J.A. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy 2002, 22, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Knudtzon, J.; Sivertsen, M.; Refsum, H.; Ose, L. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J. Pediatr. 1996, 129, 42–49. [Google Scholar] [CrossRef]
- Gotfredsen, A.; Westergren Hendel, H.; Andersen, T. Influence of orlistat on bone turnover and body composition. Int. J. Obes. 2001, 25, 1154–1160. [Google Scholar] [CrossRef]
- Hoogwerf, B.J.; Hibbard, D.M.; Hunninghake, D.B. Effects of long-term cholestyramine administration on vitamin D and parathormone levels in middle-aged men with hypercholesterolemia. J. Lab. Clin. Med. 1992, 119, 407–411. [Google Scholar] [PubMed]
- Romagnoli, E.; Mascia, M.L.; Cipriani, C.; Fassino, V.; Mazzei, F.; D’Erasmo, E.; Carnevale, V.; Scillitani, A.; Minisola, S. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J. Clin. Endocrinol. Metab. 2008, 93, 3015–3020. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.G.; Hollis, B.W.; Heaney, R.P. Vitamin D2 is much less effective than vitamin D3 in humans. J. Clin. Endocrinol. Metab. 2004, 89, 5387–5391. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Gemar, D.; Engelke, J.; Gangnon, R.; Ramamurthy, R.; Krueger, D.; Drezner, M.K. Evaluation of ergocalciferol or cholecalciferol dosing, 1600 IU daily or 50,000 IU monthly in older adults. J. Clin. Endocrinol. Metab. 2011, 96, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Logan, V.F.; Gray, A.R.; Peddie, M.C.; Harper, M.J.; Houghton, L.A. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br. J. Nutr. 2013, 109, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U.; Hirche, F.; Stangl, G.I.; Hinz, K.; Westphal, S.; Dierkes, J. Bioavailability of vitamin D(2) and D(3) in healthy volunteers, a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 2013, 98, 4339–4345. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppon̈en, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D 2 and vitamin D 3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Biancuzzo, R.M.; Chen, T.C.; Klein, E.K.; Young, A.; Bibuld, D.; Reitz, R.; Salameh, W.; Ameri, A.; Tannenbaum, A.D. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J. Clin. Endocrinol. Metab. 2008, 93, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Biancuzzo, R.M.; Clarke, N.; Reitz, R.E.; Travison, T.G.; Holick, M.F. Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation. J. Clin. Endocrinol. Metab. 2013, 98, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, I.; Berlin, T.; Ewerth, S.; Bjorkhem, I. 25-hydroxylase activity in subcellular fractions from human liver. Evidence for different rates of mitochondrial hydroxylation of vitamin D2 and D3. Scand. J. Clin. Lab. Investig. 1986, 46, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.D.; Strugnell, S.; Back, D.W.; Jones, G. Transfected human liver cytochrome p-450 hydroxylates vitamin D analogs at different side-chain positions. Proc. Natl. Acad. Sci. USA 1993, 90, 8668–8672. [Google Scholar] [CrossRef] [PubMed]
- Houghton, L.A.; Vieth, R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am. J. Clin. Nutr. 2006, 84, 694–697. [Google Scholar] [PubMed]
- Jones, K.S.; Assar, S.; Harnpanich, D.; Bouillon, R.; Lambrechts, D.; Prentice, A.; Schoenmakers, I. 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J. Clin. Endocrinol. Metab. 2014, 99, 3373–3381. [Google Scholar] [CrossRef] [PubMed]
- Lips, P. Which circulating level of 25-hydroxyvitamin D is appropriate? J. Steroid Biochem. Mol. Biol. 2004, 89–90, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Pietras, S.M.; Obayan, B.K.; Cai, M.H.; Holick, M.F. Vitamin D2 treatment for vitamin D deficiency and insufficiency for up to 6 years. Arch. Intern. Med. 2009, 169, 1806–1818. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, E.T.; Travison, T.G.; Holick, M.F. Treatment with 50,000 IU vitamin D(2) every other week and effect on serum 25-hydroxyvitamin D(2), 25-hydroxyvitamin D(3), and total 25-hydroxyvitamin D in a clinical setting. Endocr. Pract. 2012, 18, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R.; Kimball, S.; Hu, A.; Walfish, P.G. Randomized comparison of the effects of the vitamin D3 adequate intake vs. 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutr. J. 2004, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemipour, S.; Sarukhani M., R.; Asef zadeh, S.; Ghazi, A.; Mehrtash, B.; Ahmadian Yazdi, M. Effect of different doses of parenteral vitamin D3 on serum 25 (OH) D concentrations. DARU J. Pharm. Sci. 2010, 17, 26–29. [Google Scholar]
- Hollis, B.W.; Wagner, C.L. Vitamin D requirements during lactation: High-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am. J. Clin. Nutr. 2004, 80, 1752S–1758S. [Google Scholar] [PubMed]
- Heaney, R.P.; Armas, L.A.; Shary, J.R.; Bell, N.H.; Binkley, N.; Hollis, B.W. 25-hydroxylation of vitamin D3: Relation to circulating vitamin D3 under various input conditions. Am. J. Clin. Nutr. 2008, 87, 1738–1742. [Google Scholar] [PubMed]
- Zabihiyeganeh, M.; Jahed, A.; Nojomi, M. Treatment of hypovitaminosis d with pharmacologic doses of cholecalciferol, oral vs intramuscular; an open labeled rct. Clin. Endocrinol. (Oxf.) 2013, 78, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Nugent, C.; Roche, K.; Wilson, S.; Fitzgibbon, M.; Griffin, D.; Nichaidhin, N.; Mulkerrin, E. The effect of intramuscular vitamin D (cholecalciferol) on serum 25OH vitamin D levels in older female acute hospital admissions. Ir. J. Med. Sci. 2010, 179, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Kroll, M.H.; Bi, C.; Garber, C.C.; Kaufman, H.W.; Liu, D.; Caston-Balderrama, A.; Zhang, K.; Clarke, N.; Xie, M.; Reitz, R.E.; et al. Temporal relationship between vitamin D status and parathyroid hormone in the united states. PLoS ONE 2015, 10, e0118108. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.R.; Davies, M.; Fraser, D.R.; Lumb, G.A.; Mawer, E.B.; Adams, P.H. Metabolic inactivation of vitamin D is enhanced in primary hyperparathyroidism. Clin. Sci. (Lond.) 1987, 73, 659–664. [Google Scholar] [PubMed]
- Webb, A.R.; DeCosta, B.R.; Holick, M.F. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J. Clin. Endocrinol. Metab. 1989, 68, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Vitamin D in health and disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazahery, H.; Von Hurst, P.R. Factors Affecting 25-Hydroxyvitamin D Concentration in Response to Vitamin D Supplementation. Nutrients 2015, 7, 5111-5142. https://doi.org/10.3390/nu7075111
Mazahery H, Von Hurst PR. Factors Affecting 25-Hydroxyvitamin D Concentration in Response to Vitamin D Supplementation. Nutrients. 2015; 7(7):5111-5142. https://doi.org/10.3390/nu7075111
Chicago/Turabian StyleMazahery, Hajar, and Pamela R. Von Hurst. 2015. "Factors Affecting 25-Hydroxyvitamin D Concentration in Response to Vitamin D Supplementation" Nutrients 7, no. 7: 5111-5142. https://doi.org/10.3390/nu7075111