Next Article in Journal
Contribution of Food Groups to Energy and Nutrient Intakes in Five Developed Countries
Next Article in Special Issue
Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes
Previous Article in Journal
Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis
Open AccessArticle

Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells

Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
Author to whom correspondence should be addressed.
Nutrients 2015, 7(6), 4578-4592;
Received: 14 April 2015 / Revised: 26 May 2015 / Accepted: 1 June 2015 / Published: 8 June 2015
(This article belongs to the Special Issue Flavonoids, Inflammation and Immune System)
Claudin-2 is highly expressed in human lung adenocarcinoma tissues and cells. Knockdown of claudin-2 decreases cell proliferation and migration. Claudin-2 may be a novel target for lung adenocarcinoma. However, there are no physiologically active substances of foods which decrease claudin-2 expression. We here found that quercetin, a flavonoid present in fruits and vegetables, time- and concentration-dependently decreases claudin-2 expression in lung adenocarcinoma A549 cells. In the present study, we examined what regulatory mechanism is involved in the decrease in claudin-2 expression by quercetin. Claudin-2 expression was decreased by LY-294002, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, and U0126, a MEK inhibitor. These drugs inhibited the phosphorylation of Akt and ERK1/2, which are downstream targets of PI3-K and MEK, respectively. In contrast, quercetin did not inhibit the phosphorylation. Both LY-294002 and U0126 inhibited promoter activity of claudin-2, but quercetin did not. The stability of claudin-2 mRNA was decreased by quercetin. Quercetin increased the expression of microRNA miR-16. An inhibitor of miR-16 rescued quercetin-induced decrease in the claudin-2 expression. These results suggest that quercetin decreases claudin-2 expression mediated by up-regulation of miR-16 expression and instability of claudin-2 mRNA in lung adenocarcinoma cells. View Full-Text
Keywords: lung adenocarcinoma; claudin-2; miR-16; quercetin lung adenocarcinoma; claudin-2; miR-16; quercetin
Show Figures

Figure 1

MDPI and ACS Style

Sonoki, H.; Sato, T.; Endo, S.; Matsunaga, T.; Yamaguchi, M.; Yamazaki, Y.; Sugatani, J.; Ikari, A. Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients 2015, 7, 4578-4592.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop