Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Recruitment and Eligibility
2.3. Measures
2.3.1. Anthropometric, Demographic, and Blood Donation Characteristics
2.3.2. Dietary Intake
2.3.3. Supplement Intake
2.3.4. Assessing Adequacy of Dietary Intakes
2.3.5. Biochemistry
Classification | Biomarker | |||
---|---|---|---|---|
Serum Ferritin | Hemoglobin | CRP | Serum Zinc | |
Depleted iron stores a | <15 μg/L | ≥120 g/L | <5 mg/L | - |
Iron overload b | >150 μg/L | - | <5 mg/L | - |
Anemia a | - | <120 g/L | - | - |
Iron-deficiency anemia a | <15 μg/L | <120 g/L | <5 mg/L | - |
Non-iron deficiency anemia | ≥15 μg/L | <120 g/L | <5 mg/L | |
Low serum zinc c | - | - | - | AM fasting: < 10.7 μmol/L |
AM nonfasting: < 10.1 μmol/L | ||||
Inflammation/ infection d | - | - | ≥5 mg/L | - |
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Participants
N = 382 | |
---|---|
Demographics | |
Age, years a | 28.7 (7.3) |
Tertiary education, n (%) | 307 (81%) |
Current smoker, n (%) | 27 (7%) |
Donated blood in previous 12 months, n (%) | 162 (43%) |
Oral contraceptive use, n (%) | 146 (38%) |
On ‘special’ diet, n (%) | 87 (23%) |
Vegetarian, n (%) | 16 (4.2%) |
Mostly vegetarian but eat some meats, n (%) | 33 (9%) |
Other diets, n (%) b | 38 (10%) |
Anthropometrics | |
Weight, kg a | 66.1 (11.7) |
Height, m a | 1.66 (0.06) |
Body mass index, kg/m2 a | 23.9 (3.9) |
3.2. Intakes of Iron and Zinc
Mean (SD) or n (%) | Median (IQR) | Geometric Mean (95% CI) | |
---|---|---|---|
Dietary iron intake, mg/day | 10.5 (3.5) | ||
At risk of inadequate dietary iron intake, n (%) a | 117 (31%) | ||
Iron-specific supplements, n (%) | 32 (8%) | ||
Elemental iron, mg/day b | 13.3 (5 to 30) | 12.1 (6.9 to 21.2) | |
Vitamin/mineral supplements with iron, n (%) | 44 (12%) | ||
Elemental iron, mg/day c | 5 (4.9 to 5) | 4.6 (3.4 to 6.2) | |
Dietary zinc intake, mg/day | 9.3 (3.8) | ||
At risk of inadequate dietary zinc intake, n (%) d | 72 (19%) | ||
Zinc-specific supplements, n (%) e | 8 (2%) | ||
Vitamin/mineral supplements with zinc, n (%) | 45 (12%) | ||
Elemental zinc (mg/day) f | 6.3 (4 to 10) | 5.4 (4.1 to 7.2) |
Associations between Usual Dietary Iron and Zinc Intakes
Model | β (95% CI) b | p-Value |
---|---|---|
Unadjusted model Adj. R2 = 0.648, p < 0.001 | 0.739 (0.684 to 0.794) | <0.001 |
Adjusted model c Adj. R2 = 0.730, p < 0.001 | 0.433 (0.359 to 0.507) | <0.001 |
3.3. Biochemical Iron and Zinc status
n (%) | Median (IQR) or Mean (SD) | Geometric Mean (95% CI) | |
---|---|---|---|
Serum ferritin, μg/L a | 21 (11 to 38) | 19.0 (17.2 to 21.1) | |
CRP, mg/L | 0.63 (0.17 to 2.11) | 0.65 (0.55 to 0.77) | |
Hemoglobin, g/L (n = 143) | 132 (10) | ||
Depleted iron stores, n (%) a,b | 97 (30%) | ||
Iron-deficiency anemia, n (%) a,c | 22 (7%) | ||
Non-iron deficiency anemia, n (%) d | 7 (2%) | ||
Iron overload, n (%) e | 2 (0.6%) | ||
Elevated CRP, n (%) f | 32 (10%) | ||
Fasting serum zinc, μmol/L (n = 143) g | 12.6 (1.7) | ||
Low fasting serum zinc, n (%)h | 17 (12%) | ||
Nonfasting serum zinc, μmol/L (n = 183) g | 11.8 (2.0) | ||
Low nonfasting serum zinc, n (%)h | 40 (22%) |
Associations between Iron and Zinc Status
Logarithmic Scale β (95% CI) b | Antilogarithm of β (95% CI) | p-Value | |
---|---|---|---|
Unadjusted model Adj. R2 = 0.035, p < 0.001 | 0.096 (0.043 to 0.148) | 1.100 (1.043 to 1.160) | <0.001 |
Adjusted model c Adj. R2 = 0.181, p < 0.001 | 0.061 (0.010 to 0.112) | 1.063 (1.010 to 1.118) | 0.019 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Serum Ferritin Concentrations of the Assessment of Iron Status and Iron Deficiency in Populations. 2011. Available online: http://www.who.int/vmnis/indicators/ferritin/en/ (accessed on 22 September 2014).
- Australian Bureau of Statistics. Nutrient biomarkers by ranges/Nutrient biomarkers for women aged 16–44 years by ranges. 2013. Available online: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/4364.0.55.0062011-12?OpenDocument (accessed on 6 February 2015). [Google Scholar]
- Pasricha, S.R.; Low, M.; Thompson, J.; Farrell, A.; de-Regil, L.M. Iron supplementation benefits physical performance in women of reproductive age: A systematic review and meta-analysis. J. Nutr. 2014, 144, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Murray-Kolb, L.E.; Beard, J.L. Iron treatment normalizes cognitive functioning in young women. Am. J. Clin. Nutr. 2007, 85, 778–787. [Google Scholar] [PubMed]
- Leonard, A.J.; Chalmers, K.A.; Collins, C.E.; Patterson, A.J. A study of the effects of latent iron deficiency on measures of cognition: A pilot randomised controlled trial of iron supplementation in young women. Nutrients 2014, 6, 2419–2435. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.R.; Grant, F.K.; Swaby-Ellis, E.D.; Smith, J.L.; Jacques, A.; Northrop-Clewes, C.A.; Caldwell, K.L.; Pfeiffer, C.M.; Ziegler, T.R. Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. Am. J. Clin. Nutr. 2010, 91, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Folsom, A.R.; Jacobs, D.R., Jr. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: The Iowa Women’s Health Study. Am. J. Clin. Nutr. 2005, 81, 787–791. [Google Scholar] [PubMed]
- Gibson, R.S.; Heath, A.L.; Ferguson, E.L. Risk of suboptimal iron and zinc nutriture among adolescent girls in Australia and New Zealand: Causes, consequences, and solutions. Asia Pacific J. Clin. Nutr. 2002, 11 (Suppl. 3), S543–S552. [Google Scholar] [CrossRef]
- Hunt, J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003, 78, 633s–639s. [Google Scholar] [PubMed]
- Lim, K.H.; Riddell, L.J.; Nowson, C.A.; Booth, A.O.; Szymlek-Gay, E.A. Iron and zinc nutrition in the economically-developed world: A review. Nutrients 2013, 5, 3184–3211. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L. Bioavailability of dietary iron in man. Annu. Rev. Nutr. 1981, 1, 123–147. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S. The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr. Bull. 2007, 28, S77–S100. [Google Scholar] [PubMed]
- Solomons, N.W.; Jacob, R.A.; Pineda, O.; Viteri, F. Studies on the bioavailability of zinc in man. II. Absorption of zinc from organic and inorganic sources. J. Lab. Clin. Med. 1979, 94, 335–343. [Google Scholar] [PubMed]
- Gibson, R.S.; Heath, A.L.; Prosser, N.; Parnell, W.; Donovan, U.; Green, T.; McLaughlin, K.E.; O’Connor, D.; Bettger, W.; Skeaff, C.M. Are young women with low iron stores at risk of zinc as well as iron deficiency? In Trace Elements in Man and Animals 10; Roussel, A.M., Favier, A.E., Anderson, R.A., Eds.; Kluwer Academic Publishers: New York, NY, US, 1999; pp. 323–328. [Google Scholar]
- Yokoi, K.; Alcock, N.W.; Sandstead, H.H. Iron and zinc nutriture of premenopausal women: Associations of diet with serum ferritin and plasma zinc disappearance and of serum ferritin with plasma zinc and plasma zinc disappearance. J. Lab. Clin. Med. 1994, 124, 852–861. [Google Scholar] [PubMed]
- Yokoi, K.; Sandstead, H.H.; Egger, N.G.; Alcock, N.W.; Sadagopa Ramanujam, V.M.; Dayal, H.H.; Penland, J.G. Association between zinc pool sizes and iron stores in premenopausal women without anaemia. Br. J. Nutr. 2007, 98, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Prosser, N.R.; Heath, A.L.; Williams, S.M.; Gibson, R.S. Influence of an iron intervention on the zinc status of young adult New Zealand women with mild iron deficiency. Br. J. Nutr. 2010, 104, 742–750. [Google Scholar] [CrossRef] [PubMed]
- King, J.C. Zinc: An essential but elusive nutrient. Am. J. Clin. Nutr. 2011, 94, 679s–684s. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.H.; Prasad, A.S. Zinc and immune function: The biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998, 68, 447s–463s. [Google Scholar] [PubMed]
- Lai, J.; Moxey, A.; Nowak, G.; Vashum, K.; Bailey, K.; McEvoy, M. The efficacy of zinc supplementation in depression: Systematic review of randomised controlled trials. J. Affect. Disord. 2012, 136, e31–e39. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lonnerdal, B.; Ruel, M.T.; Sandtrom, B.; Wasantwisut, E.; Hotz, C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [PubMed]
- World Health Organization. Mean Body Mass Index (BMI). 2015. Available online: http://www.who.int/gho/ncd/risk_factors/bmi_text/en/ (accessed on 6 February 2015).
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Cancer Council Victoria. Dietary Questionnaire for Epidemiological Studies version 2: User guide. 2014. Available online: http://www.cancervic.org.au/downloads/cec/FFQs/Jan_2015_Update/DQES_guide_22jan15.pdf (accessed on 13 March 2015).
- Hodge, A.; Patterson, A.J.; Brown, W.J.; Ireland, P.; Giles, G. The Anti Cancer Council of Victoria FFQ: Relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust. N. Z. J. Public Health 2000, 24, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Food Standards. NUTTAB 2010. 2014. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/nutrientables/pages/default.aspx (accessed on 6 February 2015). [Google Scholar]
- Food Standards. AUSNUT 2007. 2013. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/Pages/ausnut2007.aspx (accessed on 6 February 2015). [Google Scholar]
- Lioret, S.; McNaughton, S.A.; Spence, A.C.; Crawford, D.; Campbell, K.J. Tracking of dietary intakes in early childhood: The Melbourne InFANT Program. Eur. J. Clin. Nutr. 2013, 67, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Spence, A.C.; McNaughton, S.A.; Lioret, S.; Hesketh, K.D.; Crawford, D.A.; Campbell, K.J. A health promotion intervention can affect diet quality in early childhood. J. Nutr. 2013, 143, 1672–1678. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Adequacy: Assessment Using Food Consumption Surveys; The National Academies Press: Washington, DC, USA, 1986. [Google Scholar]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; National Health and Medical Research Council: Canberra, Australia, 2006.
- Smith, J.C., Jr.; Butrimovitz, G.P.; Purdy, W.C. Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin. Chem. 1979, 25, 1487–1491. [Google Scholar] [PubMed]
- Arsenault, J.E.; Wuehler, S.E.; de Romana, D.L.; Penny, M.E.; Sempertegui, F.; Brown, K.H. The time of day and the interval since previous meal are associated with plasma zinc concentrations and affect estimated risk of zinc deficiency in young children in Peru and Ecuador. Eur. J. Clin. Nutr. 2011, 65, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Engle-Stone, R.; Ndjebayi, A.O.; Nankap, M.; Killilea, D.W.; Brown, K.H. Stunting prevalence, plasma zinc concentrations, and dietary zinc intakes in a nationally representative sample suggest a high risk of zinc deficiency among women and young children in Cameroon. J. Nutr. 2014, 144, 382–391. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Centers for Disease Control and Prevention. Assessing the Iron Status of Populations. 2007. Available online: http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107/en/ (accessed on 21 January 2015). [Google Scholar]
- Thurnham, D.I.; McCabe, G.P. Influence of infection and inflammation on biomarkers of nutritional status with an emphasis on vitamin A and iron. In Report: Priorities in the Assessment of Vitamin A and Iron Status in Populations, Panama City, Panama, 15–17 September 2010; World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Belsley, D.; Kuh, E.; Welsch, R. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.L.; Skeaff, C.M.; O’Brien, S.M.; Williams, S.M.; Gibson, R.S. Can dietary treatment of non-anemic iron deficiency improve iron status? J. Am. Coll. Nutr. 2001, 20, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Giles, W.H.; Mokdad, A.H.; Myers, G.L. Distribution and correlates of C-reactive protein concentrations among adult US women. Clin. Chem. 2004, 50, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Non-School Qualification at Bachelor Degree Level or above, Persons Aged 20–64 Years. 2014. Available online: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6227.0May%202014?OpenDocument (accessed on 11 February 2015). [Google Scholar]
- Australian Bureau of Statistics. Australian Health Survey: First Results, 2011–2012. 2012. Available online: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/4364.0.55.0012011-12?OpenDocument (accessed on 11 February 2015). [Google Scholar]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, US, 2013. [Google Scholar]
- Block, G.; Woods, M.; Potosky, A.; Clifford, C. Validation of a self-administered diet history questionnaire using multiple diet records. J. Clin. Epidemiol. 1990, 43, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L.; Hulthen, L.; Bengtsson, C.; Lapidus, L.; Lindstedt, G. Iron balance in menstruating women. Eur. J. Clin. Nutr. 1995, 49, 200–207. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, K.; Booth, A.; Szymlek-Gay, E.A.; Gibson, R.S.; Bailey, K.B.; Irving, D.; Nowson, C.; Riddell, L. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women. Nutrients 2015, 7, 2983-2999. https://doi.org/10.3390/nu7042983
Lim K, Booth A, Szymlek-Gay EA, Gibson RS, Bailey KB, Irving D, Nowson C, Riddell L. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women. Nutrients. 2015; 7(4):2983-2999. https://doi.org/10.3390/nu7042983
Chicago/Turabian StyleLim, Karen, Alison Booth, Ewa A. Szymlek-Gay, Rosalind S. Gibson, Karl B. Bailey, David Irving, Caryl Nowson, and Lynn Riddell. 2015. "Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women" Nutrients 7, no. 4: 2983-2999. https://doi.org/10.3390/nu7042983
APA StyleLim, K., Booth, A., Szymlek-Gay, E. A., Gibson, R. S., Bailey, K. B., Irving, D., Nowson, C., & Riddell, L. (2015). Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women. Nutrients, 7(4), 2983-2999. https://doi.org/10.3390/nu7042983