Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Determination of Quercetin Content
2.3. Diet Survey
Acquisition period | Food | Quercetin content |
---|---|---|
(mg 100 g−1 FW or mg (100 mL)−1 *) | ||
June–July 2013 | Red leaf lettuce (Lactuca sativa L. var. crispa) | 30.6 |
Asparagus (Asparagus officinalis L.) | 23.6 | |
Romaine lettuce (Lactuca sativa L. var. longifolia) | 12.0 | |
Onion (Allium cepa L.) | 11.0 | |
Green pepper (Capscicum annuum L.) | 9.9 | |
Asupara-na (Brassica rapa) | 4.3 | |
Cherry tomato (Solanum lycopersicum) | 3.3 | |
Podded pea (Pisum sativu L.) | 1.7 | |
Tomato (Solanum lycopersicum) | 1.6 | |
Broccoli (Brassica oleracea var. italica) | 1.6 | |
Cherry (Prunus avium L.) | 1.2 | |
Green tea infusion | 2.1* | |
Welsh onion (Allium fistulosum L.) | N.D. | |
Spinach (Spinacia oleracea L.) | N.D. | |
Potato (Solanum tuberosum L.) | N.D. | |
Red shiso1 (Perilla frutescent var. crispa) | N.D. | |
Green shiso2 (Perilla frutescent var. crispa) | N.D. | |
Eggplant (Solanum melongena L.) | N.D. | |
Cabbage (Brassica oleracea L. var. capitata) | N.D. | |
Dried buckwheat nudles (boiled) | N.D. | |
December 2013 | Onion (Allium cepa L.) | 41.9 |
Red leaf lettuce (Lactuca sativa L. var. crispa) | 10.3 | |
Apple (Fuji) (Malus domestica Borkh.) | 2.3 | |
Broccoli (Brassica oleracea var. italica) | 0.5 | |
Spinach (Spinacia oleracea L.) | N.D. | |
Garland chrysanthemum (Glebionis coronaria) | N.D. | |
Chinese cabbage (Brassica rapa var. pekinensis) | N.D. |
2.4. Statistical Analysis
3. Results
3.1. Estimated Dietary Quercetin Intakes by Female Volunteers Using Two-Day Weighted Food Record
3.2. Estimated Daily Quercetin Intakes of Residents by FFQ
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995, 33, 1061–1080. [Google Scholar] [CrossRef] [PubMed]
- Knekt, P.; Jarvinen, R.; Reunanen, A.; Maatela, J. Flavonoid intake and coronary mortality in Finland: A cohort study. BMJ 1996, 312, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317s–325s. [Google Scholar] [PubMed]
- Hollman, P.C.H.; Katan, M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 38–50. [Google Scholar] [PubMed]
- Kelly, G.S. Quercetin. Monograph. Altern. Med. Rev. 2011, 16, 172–194. [Google Scholar] [PubMed]
- Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr. Rev. 2012, 70, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Terao, J.; Kawai, Y.; Murota, K. Vegetable flavonoids and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2008, 17, 291–293. [Google Scholar] [PubMed]
- Morales, J.; Gunther, G.; Zanocco, A.L.; Lemp, E. Singlet oxygen reactions with flavonoids. A theoretical-experimental study. PLoS ONE 2012, 7, e40548. [Google Scholar] [CrossRef] [PubMed]
- Lagoa, R.; Graziani, I.; Lopez-Sanchez, C.; Garcia-Martinez, V.; Gutierrez-Merino, C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim. Biophys. Acta 2011, 1807, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, T.; Menon, V.P. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother. Res. 2004, 18, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Boesch-Saadatmandi, C.; Wagner, A.E.; Wolffram, S.; Rimbach, G. Effect of quercetin on inflammatory gene expression in mice liver in vivo—Role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacol. Res. 2012, 65, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Kobori, M.; Masumoto, S.; Akimoto, Y.; Takahashi, Y. Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol. Nutr. Food Res. 2009, 53, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Kobori, M.; Masumoto, S.; Akimoto, Y.; Oike, H. Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Mol. Nutr. Food Res. 2011, 55, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, X.; Zhang, L.; Bian, H.; Xu, N.; Bao, B.; Liu, J. Quercetin reduces obesity-associated ATM inflammation in mice: A mechanism including AMPKα1/SIRT1. J. Lipid Res. 2014, 55, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Murota, K.; Hotta, A.; Ido, H.; Kawai, Y.; Moon, J.H.; Sekido, K.; Hayashi, H.; Inakuma, T.; Terao, J. Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. J. Med. Investig. 2007, 54, 370–374. [Google Scholar] [CrossRef]
- Ishisaka, A.; Kawabata, K.; Miki, S.; Shiba, Y.; Minekawa, S.; Nishikawa, T.; Mukai, R.; Terao, J.; Kawai, Y. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PLoS ONE 2013, 8, e80843. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Slimani, N.; Romieu, I.; Fedirko, V.; de Magistris, M.S.; Ericson, U.; Amiano, P.; Trichopoulou, A.; et al. Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall cohort. Br. J. Nutr. 2011, 106, 1915–1925. [Google Scholar] [CrossRef] [PubMed]
- Ioku, K.; Aoyama, Y.; Tokuno, A.; Terao, J.; Nakatani, N.; Takei, Y. Various cooking methods and the flavonoid content in onion. J. Nutr. Sci. Vitaminol. 2001, 47, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, H.; Saitohi, S.; Takagii, S.; Katohi, N.; Chibai, Y.; Akasakai, H.; Nakamura, Y.; Shimamoto, K. Incidence of type 2 diabetes in individuals with central obesity in a rural Japanese population: The Tanno and Sobetssu study. Diabetes Care 2006, 29, 1128–1129. [Google Scholar] [CrossRef] [PubMed]
- Mitsumata, K.; Saitoh, S.; Ohnishi, H.; Akasaka, H.; Miura, T. Effects of parental hypertension on longitudinal trends in blood pressure and plasma metabolic profile: Mixed-effects model analysis. Hypertension 2012, 60, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Fossen, T.; Vagen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Koroleva, O.A.; Gibson, T.; Swanston, J.; Magan, J.; Zhang, Y.; Rowland, I.R.; Wagstaff, C. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J. Agric. Food Chem. 2009, 57, 5227–52234. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Takebayashi, J.; Takano-Ishikawa, Y.; Yasui, A. Evaluation of a Method to Quantify Quercetin Aglycone in Onion (Allium cepa) by Single- and Multi-laboratory Validation Studies. Anal. Sci. 2012, 28, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, D.; Noguchi, Y.; Muro, T.; Morishita, M. Genetic variation of quercetin glucoside content in onion (Allium cepa L.). J. Jpn. Soc. Hortic. Sci. 2006, 75, 100–108. [Google Scholar] [CrossRef]
- Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 2000, 130, 2243–2250. [Google Scholar] [PubMed]
- Ioku, K.; Okuda, T.; Higuchi, H.; M., K.; Takei, Y. Investigation of the Flavonoid Intake in a Daily Meal of the Kansai in the Middle-aged women. Osaka Kyoiku Univ. Repos. II 2008, 56, 1–19. [Google Scholar]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 750–781. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Saliba, A.J.; MacDonald, J.B.; Prenzler, P.D.; Ryan, D. A cross-cultural study of wine consumers with respect to health benefits of wine. Food Qual. Prefer. 2013, 28, 531–538. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Prenzler, P.D.; Saliba, A.J.; Ryan, D. Assessment of some Australian red wines for price, phenolic content, antioxidant activity, and vintage in relation to functional food prospects. J. Food Sci. 2011, 76, C1355–C1364. [Google Scholar] [CrossRef] [PubMed]
- Otaki, N.; Kimira, M.; Katsumata, S.; Uehara, M.; Watanabe, S.; Suzuki, K. Distribution and major sources of flavonoid intakes in the middle-aged Japanese women. J. Clin. Biochem. Nutr. 2009, 44, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [PubMed]
- Egert, S.; Boesch-Saadatmandi, C.; Wolffram, S.; Rimbach, G.; Muller, M.J. Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J. Nutr. 2010, 140, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kurbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A.E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009, 102, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Murota, K.; Kumamoto, S.; Misumi, K.; Bando, N.; Ikushiro, S.; Takahashi, N.; Sekido, K.; Kato, Y.; Terao, J. Plasma metabolites of dietary flavonoids after combination meal consumption with onion and tofu in humans. Mol. Nutr. Food Res. 2014, 58, 310–307. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; Saitoh, S.; Shimamoto, K.; Kobori, M. Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan. Nutrients 2015, 7, 2345-2358. https://doi.org/10.3390/nu7042345
Nishimuro H, Ohnishi H, Sato M, Ohnishi-Kameyama M, Matsunaga I, Naito S, Ippoushi K, Oike H, Nagata T, Akasaka H, Saitoh S, Shimamoto K, Kobori M. Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan. Nutrients. 2015; 7(4):2345-2358. https://doi.org/10.3390/nu7042345
Chicago/Turabian StyleNishimuro, Haruno, Hirofumi Ohnishi, Midori Sato, Mayumi Ohnishi-Kameyama, Izumi Matsunaga, Shigehiro Naito, Katsunari Ippoushi, Hideaki Oike, Tadahiro Nagata, Hiroshi Akasaka, Shigeyuki Saitoh, Kazuaki Shimamoto, and Masuko Kobori. 2015. "Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan" Nutrients 7, no. 4: 2345-2358. https://doi.org/10.3390/nu7042345