Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients
Abstract
:1. Introduction
2. Celiac Disease
3. Gluten, the Dough “Treasure”
4. Formulation and Nutritional Value of Gluten-free Products
5. Recent Advances in Formulation of Cereal-Based Gluten-Free Food
6. Nutritional Quality of Wheat Flour: Advantages in Introducing a Cereal-Based Gluten-Free Food in Diet of Celiacs
6.1. Nutritional and Health Properties of Hexaploid and Tetraploid Wheat
- lignans, a group of polyphenols with phytoestrogen-like activity, present at levels up to 10 µg g−1 in wholemeal wheat and almost 20 µg g−1 in the bran [79];
- phenolic acids that in wholemeal range up to almost 1200 µg g−1 [80]. They represent, quantitatively, the major group of phytochemicals in the wheat grain and are derivatives of either hydroxibenzoic acid or hydroxycinnamic acid. Epidemiological studies indicate that phenolic acids have a number of health benefits which may relate to their antioxidant activity; furthermore, a high correlation between the total antioxidant activities of grain and their phenolic acid contents has been reported [81,82];
- folates that in wholemeal varied from 364 to 774 ng g−1 dry weight in winter wheats and from 323 to 741 ng g−1 dry weight in spring wheats, and positively correlated with the bran yield [83];
- dietary fibre derives from polymers of wheat endosperm cell wall: they are constituted mainly by arabinoxylans (approximately 70%) and (1-3) (1-4)β-D-glucans (approximately 20%). The arabinoxylans are present in both soluble and insoluble forms, being the former considered to have health benefits [84,85]. However, insoluble fibre may also favour the delivering phenolic antioxidants into the colon, with a reduction of colon-rectal cancer risk [86]. Gebruers et al. showed wide variation in the contents of total and water-extractable arabinoxylans in both white flour and bran fractions [87]. Similarly Ordaz-Ortiz et al. showed variation from 0.26% to 0.75% dry weight in the content of water-extractable arabinoxylan in 20 French wheat cultivars and from 1.66% to 2.87% dry weight in total arabinoxylans [88].
6.2. Ancient Wheats
6.3. Detoxification of Wheat Gluten
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Shuppan, D.; Tennis, M.D.; Kelly, C.P. Celiac disease: Epidemiology, pathogenesis, diagnosis, and nutritional management. Nutr. Clin. Care 2005, 8, 54–69. [Google Scholar]
- Hill, I.; Fasano, A.; Schwartz, R.; Counts, D.; Glock, M.; Horvath, K. Prevalence of celiac disease in at risk groups of children in United States. Pediatr. Res. 2000, 136, 86–90. [Google Scholar]
- Barada, K.; Abu Daya, H.; Rostami, K.; Catassi, C. Celiac disease in the developing world. Gastrointest. Endosc. Clin. N. Am. 2012, 22, 773–796. [Google Scholar] [CrossRef]
- Paparo, F.; Petrone, E.; Tosco, A.; Maglio, M.; Borrelli, M.; Salvati, V.M.; Miele, E.; Greco, L.; Auricchio, S.; Troncone, R. Clinical, HLA, and small bowel immunohistochemical features of children with positive serum antiendomysium antibodies and architecturally normal small intestinal mucosa. Am. J. Gastroenterol. 2005, 100, 2294–2298. [Google Scholar] [CrossRef]
- Biagi, F.; Trotta, L.; Alfano, C.; Balduzzi, D.; Staffieri, V.; Bianchi, P.I.; Marchese, A.; Vattiato, C.; Zilli, A.; Luinetti, O.; et al. Prevalence and natural history of potential celiac disease in adult patients. Scand. J. Gastroenterol. 2013, 48, 537–542. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Corazza, G.R. Coeliac disease. Lancet 2009, 373, 1480–1493. [Google Scholar] [CrossRef]
- White, L.E.; Merrick, V.M.; Bannerman, E.; Russell, R.K.; Basude, D.; Henderson, P.; Wilson, D.C.; Gillett, P.M. The rising incidence of celiac disease in scotland. Pediatrics 2013, 132, 924–931. [Google Scholar] [CrossRef]
- Kang, J.Y.; Kang, A.H.; Green, A.; Gwee, K.A.; Ho, K.Y. Systematic review: Worldwide variation in the frequency of coeliac disease and changes over time. Aliment. Pharmacol. Ther. 2013, 38, 226–459. [Google Scholar] [CrossRef]
- Lohi, S.; Mustalahti, K.; Kaukinen, K.; Laurila, K.; Collin, P.; Rissanen, H.; Lohi, O.; Bravi, E.; Gasparin, M.; Reunanen, A.; et al. Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther. 2007, 26, 1217–1225. [Google Scholar] [CrossRef]
- Meresse, B.; Malamut, G.; Cerf-Bensussan, N. Celiac disease: An immunological jigsaw. Immunity 2012, 36, 907–919. [Google Scholar] [CrossRef]
- Mazzarella, G.; Stefanile, R.; Camarca, A.; Giliberti, P.; Casentini, E.; Marano, C.; Iaquinto, G.; Giardullo, N.; Auricchio, S.; Sette, A.; et al. Gliadin activates HLA Class-I restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology 2008, 134, 1017–1027. [Google Scholar] [CrossRef]
- Biagi, F.; Bianchi, P.I.; Marchese, A.; Trotta, L.; Vattiato, C.; Balduzzi, D.; Brusco, G.; Andrealli, A.; Cisarò, F.; Astegiano, M.; et al. A score that verifies adherence to a gluten-free diet: A cross-sectional, multicentre validation in real clinical life. Br. J. Nutr. 2012, 108, 1884–1888. [Google Scholar] [CrossRef]
- Mazzeo, T.; Brambillasca, F.; Pellegrini, N.; Valmarana, R.; Corti, F.; Colombo, C.; Agostoni, C. Evaluation of visual and taste preferences of some gluten-free commercial products in a group of celiac children. Int. J. Food Sci. Nutr. 2014, 65, 112–116. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Wieser, H. Chemistry of gluten proteins. Food Microb. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Shewry, P.R. The synthesis, processing, and deposition of gluten proteins in developing grain. Cereal Food World 1999, 44, 587–589. [Google Scholar]
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef]
- Shewry, P.R.; Tatham, A.S. The prolamin storage proteins of cereal seeds: Structure and evolution. Biochem. J. 1990, 267, 1–12. [Google Scholar]
- Osborne, T.B. The vegetable proteins. J. Soc. Chem. Ind. 1924, 43, 440. [Google Scholar]
- Bietz, J.A.; Wall, J.S. Isolation and characterization of gliadin-like subunits from glutenin. Cereal Chem. 1973, 50, 537–547. [Google Scholar]
- Bietz, J.A.; Wall, J.S. Identity of high molecula weight gliadin and ethanol-soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem. 1980, 57, 415–421. [Google Scholar]
- Kanazawa, H.; Yonezawa, D. Studies on polypeptide composition of low molecular weight glutenin. J. Agr. Chem. Soc. Jpn. 1973, 47, 17–22. [Google Scholar]
- Lamacchia, C.; La Gatta, B.; Schiavulli, A.; Pati, S.; Petrella, G.; di Luccia, A. Triticum monococcum species, a chance for pasta business. Prof. Pasta 2013, April-June, 12–27. [Google Scholar]
- Field, J.M; Shewry, P.R.; Miflin, B.J. Solubilization and characterization of wheat gluten proteins; correlations between the amount of aggregated proteins and baking quality. J. Sci. Food Agric. 1983, 34, 370–377. [Google Scholar] [CrossRef]
- Payne, P.I. Genetics of wheat storage and the effect of allelic variation on breadmaking quality. Annu. Rev. Plant Phys. 1987, 38, 141–153. [Google Scholar] [CrossRef]
- Shewry, P.R.; Popineau, Y.; Lafiandra, D.; Belton, P. Wheat glutenin subunits and dough elasticity: Findings of the EUROWHEAT project. Trends Food Sci. Technol. 2001, 11, 433–441. [Google Scholar]
- Lindsay, M.P.; Skerritt, J.H. The glutenin macropolymer of wheat flour doughs: Structure-function perspective. Trends Food Sci. Tech. 1999, 10, 247–253. [Google Scholar] [CrossRef]
- Shewry, P.R.; Tatham, A.S. Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 1997, 25, 207–227. [Google Scholar] [CrossRef]
- Wieser, H. The Use of Redox Agents. In Bread Making-Improving Quality; Cauvain, S.P., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2003; pp. 424–446. [Google Scholar]
- Tilley, K.A.; Benjamin, R.E.; Bagorogoza, K.E.; Okot-Kotber, B.M.; Prakash, O.; Kwen, H. Tyrosine cross-links: Molecular basis of gluten structure and function. J. Agric. Food Chem. 2001, 49, 2627–2632. [Google Scholar] [CrossRef]
- Lamacchia, C.; di Luccia, A.; Baiano, A.; Gambacorta, G.; La Gatta, B.; Pati, S.; La Notte, E. Changes in pasta proteins induced by drying cycles and their relationship to coking behavior. J. Cereal Sci. 2007, 46, 58–63. [Google Scholar] [CrossRef]
- Lamacchia, C.; Baiano, A.; Lamparelli, S.; Terracone, C.; Trani, A.; Di Luccia, A. Formation of polymeri proteins during pasta-making in barley and semolina mixture and predictions of its effects on cooking behavior and acceptability. Food Chem. 2011, 129, 319–328. [Google Scholar] [CrossRef]
- Wieser, H.; Bushuk, W.; Mac Ritchie, F. The Polymeric Glutenins. In Gliadin and Glutenin: The Unique Balance of Wheat Quality. St. Paul American Association of Cereal Chemistry; Wrigley, C., Bekes, F., Bushuk, W., Eds.; American. Association of Cereal Chemists: St. Paul MN, USA, 2006; pp. 213–240. [Google Scholar]
- Shepherd, S.J.; Gibson, P.R. Nutritional inadequacies of the gluten-free diet in both recently-diagnosed and long-term patients with celiac disease. J. Hum. Nutr. Diet. 2013, 26, 349–358. [Google Scholar] [CrossRef]
- Hallert, C.; Grant, C.; Grehn, S.; Grännö, C.; Hultén, S.; Midhagen, G.; Ström, M.; Svensson, H.; Valdimarsson, T. Evidence of poor vitamin status in coeliac patients on a gluten-free diet for 10 years. Aliment. Pharmacol. Ther. 2002, 16, 1333–1339. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; van Bokhorst-de van der Schueren, M.A.; Berkenpas, M.; Mulder, C.J.; van Bodegraven, A.A. Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. Nutrients 2013, 5, 3975–3992. [Google Scholar] [CrossRef]
- Kabbani, T.A.; Gldberg, A.; Kelly, C.P.; Pallav, K.; Tariq, S.; Peer, A.; Hansen, J.; Dennis, M.; Leffler, D.A. Body mass index and risk of obesity in celiac disease treated with the gluten-free diet. Aliment. Pharmacol. Ther. 2012, 35, 723–729. [Google Scholar] [CrossRef]
- Zannini, E.; Jones, J.M.; Renzetti, S.; Arendt, E.K. Functional replacements for gluten. Annu. Rev. Food Sci. Technol. 2012, 3, 227–245. [Google Scholar] [CrossRef]
- Arendt, E.K.; O’Brien, C.M.; Schober, T.; Gormley, T.R.; Gallagher, E. Development of gluten-free cereal products. Farm Food 2002, 12, 21–27. [Google Scholar]
- Rotsch, A. Chemische und technische Untersuchungen an künstlichen Teigen. Brot. Gebaeck. 1954, 8, 129. [Google Scholar]
- Anon. Hydrocolloids improve shelf-life and moisture retention of shelf-stable bagels. Food Technol. 2002, 56, 50. [Google Scholar]
- Laureys, C. A natural choice for texture: Rice derivatives. Food Technol. Eur. 1996, 3, 68–71. [Google Scholar]
- Ward, F.M.; Andon, S.A. Hydrocolloids as film formers, adhesives and gelling agents for bakery and cereal products. Cereal Food World. 2002, 47, 52–55. [Google Scholar]
- Chillo, S.; Suriano, N.; Lamacchia, C.; Del Nobile, M.A. Effects of additives on the rheological and mechanical properties of non-conventional fresh handmade tagliatelle. J. Cereal Sci. 2009, 49, 163–170. [Google Scholar] [CrossRef]
- Gan, J.; Rafael, L.G.B.; Cato, L.; Small, D.M. Evaluation of the Potential of Different Rice Flours in Bakery Formulations. In Proceedings of the 51st Australian Cereal Chemistry Conference, Cooge, New South Wales, 9-13 September 2001; pp. 309–312.
- Norton, I.T.; Foster, T.J. Hydrocolloids in Real Food Systems. In Gums and Stabilisers in the Food Industry II; Royal Society of Chemistry: Cambridge, UK, 2002; pp. 187–200. [Google Scholar]
- Ranhorta, G.S.; Loewe, R.J.; Puyat, L.V. Preparation and fortification of soy-fortified gluten-free bread. J. Food Sci. 1975, 40, 62–64. [Google Scholar] [CrossRef]
- Frederickson, H.; Silverio, J.; Andersson, R.; Eliasson, A.C.; Aman, P. The influence of amylose and amylopectin characteristics on gelatinisation and retrogradation properties of different starches. Carbohydr. Polym. 1998, 35, 119–134. [Google Scholar] [CrossRef]
- Sasaki, T.; Yasui, T.; Matsuki, J. Effect of amylose content on gelatinisation, retrogradation, and pasting properties from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 2000, 77, 58–63. [Google Scholar] [CrossRef]
- Holm, J.; Lundquist, I.; Bjorck, I.; Eliasson, A.C.; Asp, N.G. Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. Am. J. Clin. Nutr. 1988, 47, 1010–1016. [Google Scholar]
- Bird, A.R.; Lopez-Rubio, A.; Shrestha, A.K.; Gidley, M.J. Resistant Starch in vitro and in vivo: Factors Determining Yield, Structure and Physiological Relevance. In Modern Biopolymer Science; Academic Press, Elsevier Inc: London, UK, 2009; pp. 449–510. [Google Scholar]
- Berti, C.; Riso, P.; Monti, L.D.; Porrini, M. In vitro starch digestibility and in vivo glucose response of gluten free foods and their counterparts. Eur. J. Nutr. 2004, 43, 198–204. [Google Scholar]
- Eliasson, A.; Larsson, K. Cereals in Breadmaking; Marcel Dekker: NY, USA, 1993. [Google Scholar]
- Scaramuzza, A.E.; Mantegazza, C.; Bosetti, A.; Zuccotti, G.V. Type 1 diabetes and celiac disease: The effects of gluten free diet on metabolic control. World J. Diabetes 2013, 4, 130–134. [Google Scholar] [CrossRef]
- Norsa, L.; Shamir, R.; Zevit, N.; Verduci, E.; Hartman, C.; Ghisleni, D.; Riva, E.; Giovannini, M. Cardiovascular disease risk factor profiles in children with celiac disease on gluten free diets. World J. Gastroenterol. 2013, 19, 5658–5664. [Google Scholar]
- Livesey, G.; Taylor, R.; Livesey, H.; Liu, S. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2013, 97, 584–596. [Google Scholar] [CrossRef]
- Liu, S.; Willett, W.C.; Stampfer, M.J.; Hu, F.B.; Franz, M.; Sampson, L.; Hennekens, C.H.; Manson, J.E.A. prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am. J. Clin. Nutr. 2000, 71, 1455–1461. [Google Scholar]
- Brand-Miller, J.C.; Holt, S.H.; Pawlak, D.B.; McMillan, J. Glycemic index and obesity. Am. J. Clin. Nutr. 2013, 76, 281S–285S. [Google Scholar]
- Tosi, E.A.; Ciappini, M.C.; Masciarelli, R. Utilisation of whole amaranthus (Amaranthus cruentus) flour in the manufacture of biscuits for coeliacs. Alimentaria 1996, 34, 49–51. [Google Scholar]
- Ferrara, P.; Cicala, M.; Tiberi, E.; Spadaccio, C.; Marcella, L.; Gatto, A.; Calzolari, P.; Castellucci, G. High fat consumption in children with celiac disease. Acta Gastroenterol. Belg. 2009, 72, 296–300. [Google Scholar]
- Grehn, S.; Fridell, K.; Lilliecreutz, M.; Hallert, C. Dietary habits of Swedish adult coeliac patients treated by a gluten-free diet for 10 years. Scand. J. Food Nutr. 2001, 45, 178–182. [Google Scholar]
- Mariani, P.; Viti, M.G.; Montuori, M.; La Vecchia, A.; Cipolletta, E.; Calvani, L.; Bonamico, M. The gluten-free diet: A nutritional risk factor for adolescents with celiac disease? J. Pediatr. Gastroenterol. Nutr. 1998, 27, 519–523. [Google Scholar] [CrossRef]
- Thompson, T. Thiamin, riboflavin, and niacin contents of the gluten-free diet: Is there cause for concern? J. Am. Diet. Assoc. 1999, 99, 858–862. [Google Scholar] [CrossRef]
- Gallagher, E.; Polenghi, O.; Gormley, T.R. Novel Rice Starches in Gluten-Free Bread. In Proceedings of the International Association of Cereal Chemists Conference, Budapest, Hungary, May 26-29, 2002; pp. 24–26.
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar]
- Anon, E. Inulin: Added value. Eur. Bak. 1999, 32, 40–44. [Google Scholar]
- Gambus, H.; Gambus, F.; Sabat, R. The research on quality improvement of gluten-free bread by amaranthus flour addition. Zywnosc 2002, 9, 99–112. [Google Scholar]
- Taylor, J.R.N.; Parker, M.L. Quinoa. In Pseudocereals and Less Common Cereals, Grain Properties and Utilization Potential; Springer: Verlag, Berlin, 2002; pp. 93–122. [Google Scholar]
- Danz, R.A.; Lupton, J.R. Physiological effects of dietary amaranth (Amarantus cruentus) on rats. Cereal Food World 1992, 37, 489–494. [Google Scholar]
- Qureshi, A.A.; Lehamn, J.W.; Peterson, D.M. Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J. Nutr. 1996, 126, 1972–1978. [Google Scholar]
- Bergamo, P.; Maurano, F.; Mazzarella, G.; Iaquinto, G.; Vocca, I.; Rivelli, A.R.; de Falco, E.; Gianfrani, C.; Rossi, M. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol. Nutr. Food Res. 2011, 55, 1266–1270. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increassing use as functional glutenfree ingredients. Trends Food Sci. Tech. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Lamacchia, C.; Chillo, S.; Lamparelli, S.; Suriano, N.; Del Nobile, M.A. Amaranth, quinoa and oat doughs: Mechanical and rheological behaviour, polymeric size distribution and extractability. J. Food Eng. 2010, 96, 97–106. [Google Scholar] [CrossRef]
- Caperuto, L.; Amaya-Farfan, J.; Camargo, C. Performance of quinoa (Chenopodium quinoa Willd.) flour in the manufacture of gluten free spaghetti. J. Sci. Food Agric. 2000, 81, 95–101. [Google Scholar]
- Shewry, P.R. Seed Proteins. In Seed Technology and Its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 42–84. [Google Scholar]
- Mossè, J.; Huet, J.C. Aminoacid composition and nutritional score for ten cereals and six legumes or oilseeds: Causes and ranges of variation according to species and to seed nitrogen content. Sci. Aliment. 1990, 10, 151–173. [Google Scholar]
- Andersson, H.; Nävert, B.; Bingham, S.A.; Englyst, H.N.; Cummings, J.H. The effects of breads containing similar amounts of phytate but different amounts of wheat bran on calcium, zinc and iron balance in man. Br. J. Nutr. 1983, 50, 503–510. [Google Scholar] [CrossRef]
- Combs, G.F. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef]
- Nagy-Scholz, E.; Ercsey, K. Lignan Analysis of Cereal Samples by GC/MS Method. In The HEALTHGRAIN Methods Book; Shewry, P.R., Ward, J., Eds.; St. Paul, MN USA, 2009. [Google Scholar]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Drankham, K.; Carter, J.; Madl, R.; Klopfenstein, C.; Padula, F.; Lu, Y.; Warren, T.; Schmitz, N.; Takemoto, D.J. Antitumor activity of wheats with high orthophenolic content. Nutr. Cancer 2003, 47, 188–194. [Google Scholar] [CrossRef]
- Wende, L.; Fang, S.; Shancheng, S.; Corke, H.; Beta, T. Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem. 2005, 53, 8533–8536. [Google Scholar]
- Piironen, V.; Edelmann, M.; Kariluoto, S.; Bedo, Z. Folate in wheat genotypes in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9726–9731. [Google Scholar]
- Moore, M.A.; Beom Park, C.; Tsuda, H. Soluble and insoluble fiber influences on cancer development. Crit. Rev. Oncol. Hematol. 1998, 27, 229–242. [Google Scholar] [CrossRef]
- Lewis, S.J.; Heaton, K.W. The metabolic consequences of slow colonic transit. Am. J. Gastr. 1999, 94, 2010–2016. [Google Scholar] [CrossRef]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Tech. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Gebruers, K.; Domez, E.; Boros, D.; Fras, A.; Dynkowska, W.; Bedo, Z.; Rakszegi, M.; Delcour, J.A.; Courtin, C.M. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9740–9749. [Google Scholar] [CrossRef]
- Ordaz-Ortiz, J.J.; Devaux, M.F.; Saulnier, L. Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain. J. Agric. Food Chem. 2005, 53, 8349–8356. [Google Scholar] [CrossRef]
- Gianfrani, C.; Maglio, M.; Rotondi Aufiero, V.; Camarca, A.; Vocca, I.; Iaquinto, G.; Giardullo, N.; Pogna, N.; Troncone, R.; Auricchio, S.; et al. Immunogenicity of monococcum wheat in celiac disease patients. Am. J. Clin. Nutr. 2012, 96, 1339–1345. [Google Scholar] [CrossRef]
- De Vincenzi, M.; Luchetti, R.; Giovannini, C.; Pogna, N.E.; Saponaro, C.; Galterio, G.; Gasbarrini, G. In vitro toxicity testing of alcohol-soluble proteins from diploid wheat Triticum monococcum in celiac disease. J. Biochem. Toxicol. 1996, 11, 313–318. [Google Scholar] [CrossRef]
- Lundin, K.E.; Sollid, M.N. Mapping of gluten T-cell epitopes in the bread wheat ancestors: Implication for celiac diseases. Gastroenterology 2005, 128, 393–401. [Google Scholar] [CrossRef]
- Pizzuti, D.; Buda, A.; D’Odorico, A.; D’Inca, R.; Chiarelli, S.; Curioni, A.; Martines, D. Lack of intestinal mucosal toxicity of Triticum monococcum in celiac disease patients. Scand. J. Gastroenterol. 2006, 41, 1305–1311. [Google Scholar] [CrossRef]
- Vincentini, O.; Maialetti, F.; Gazza, L.; Silano, M.; Dessì, M.; De Vincenzi, M.; Pogna, N.E. The environmental factors of celiac disease: Cytotoxicity of hulled species Triticum monococcum, Triticumturgidum ssp dicoccum and T. aestivum ssp spelta. J. Gastroenterol. Hepatol. 2007, 22, 1861–1822. [Google Scholar]
- Vaccino, P.; Becker, H.A.; Brandolini, A.; Salamini, F.; Kilian, B. A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol. Genet. Genomics. 2009, 281, 289–300. [Google Scholar] [CrossRef]
- Suligoj, T.; Gregorini, A.; Colomba, M.; Ellis, H.J.; Ciclitira, P.J. Evaluation of the safety of ancient strains of wheat in coeliac disease reveals heterogeneous small intestinal T cell responses suggestive of coeliac toxicity. Clin. Nutr. 2013, 32, 1043–1049. [Google Scholar] [CrossRef]
- Brandolini, A.; Marturini, M.; Plizzari, L.; Hidalgo, J.C.; Pompei, C.; Hidalgo, A. Chimical and technological properties of Triticum monococcum, Triticum turgidum and Triticum aestivum. Tec. Molit. Int. 2008, 59, 85–93. [Google Scholar]
- D’Egidio, M.G.; Nardi, S.; Vallega, V. Grain, flour and dough characteristics of selected strains of diploid wheats Triticum monococcum L. Cereal Chem. 1993, 70, 298–303. [Google Scholar]
- Corbellini, M.; Empilli, S.; Vaccino, P.; Brandolini, A.; Borghi, B.; Heun, M.; Salamini, F. Einkorn characterizationfor bread and cookie production in relation to protein subunit composition. Cereal Chem. 1999, 76, 727–733. [Google Scholar] [CrossRef]
- Borghi, B.; Castagna, R.; Corbellini, M.; Heun, M.; Salamini, F. Breadmaking quality of einkorn wheat (Triticum monococcum ssp. monococcum). Cereal Chem. 1996, 73, 208–214. [Google Scholar]
- Rizzello, C.G.; de Angelis, M.; di Cagno, R.; Camarca, A.; Silano, M.; Losito, I.; de Vincenzi, D.; de Bari, M.D.; Palmisano, F.; Maurano, F.; et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: New perspectives for Celiac Disease. Appl. Environ. Microbiol. 2007, 73, 4499–4507. [Google Scholar] [CrossRef]
- Gianfrani, C.; Siciliano, R.A.; Facchiano, A.M.; Camarca, A.; Mazzeo, M.F.; Costantini, S.; Salvati, V.M.; Maurano, F.; Mazzarella, G.; Iaquinto, G.; et al. Transamidation inhibits the intestinal immune response to gliadin in vitro. Gastroenterology 2007, 133, 780–789. [Google Scholar] [CrossRef]
- Mazzarella, G.; Salvati, V.M.; Iaquinto, G.; Stefanile, R.; Capobianco, F.; Luongo, D.; Bergamo, P.; Maurano, F.; Giardullo, N.; Malamisura, B.; et al. Reintroduction of gluten following flour transdamidation in adult celiac patients: A randomized, controlled clinical study. Clin. Dev. Immunol. 2012, 2012, 329150. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lamacchia, C.; Camarca, A.; Picascia, S.; Di Luccia, A.; Gianfrani, C. Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients 2014, 6, 575-590. https://doi.org/10.3390/nu6020575
Lamacchia C, Camarca A, Picascia S, Di Luccia A, Gianfrani C. Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients. 2014; 6(2):575-590. https://doi.org/10.3390/nu6020575
Chicago/Turabian StyleLamacchia, Carmela, Alessandra Camarca, Stefania Picascia, Aldo Di Luccia, and Carmen Gianfrani. 2014. "Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients" Nutrients 6, no. 2: 575-590. https://doi.org/10.3390/nu6020575
APA StyleLamacchia, C., Camarca, A., Picascia, S., Di Luccia, A., & Gianfrani, C. (2014). Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients, 6(2), 575-590. https://doi.org/10.3390/nu6020575