Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health
Abstract
:1. Introduction
2. Lutein and Zeaxanthin Carotenoids
2.1. Chemistry
2.2. Dietary Sources
Food | Lutein | Zeaxanthin |
---|---|---|
Vegetables | ||
Basil a | 70.5 | in |
Parsley a | 64.0–106.5 | in |
Spinach a | 59.3–79.0 | in |
Kale a | 48.0–114.7 | - |
Leek a | 36.8 | in |
Pea a | 19.1 | in |
Lettuce a | 10.0–47.8 | - |
Green pepper a | 8.8 | - |
Broccoli a | 7.1–33.0 | in |
Carrot a | 2.5–5.1 | in |
Red pepper a | 2.5–85.1 | 5.9–13.5 |
Eggs | ||
Egg yolk a | 3.84–13.2 | - |
Nuts | ||
Pistachio a | 7.7–49.0 | - |
Baked foods | ||
High lutein bread b | 36.7 | 3.3 |
High lutein cookie b | 21.3 | 2.9 |
High lutein muffin b | 26.1 | 3.7 |
Corn tortilla c | 72.5 | 105.3 |
Corn chips c | 61.1 | 92.5 |
Grains | ||
Corn d | 21.9 | 10.3 |
Einkorn wheat d | 7.4 | 0.9 |
Khorasan wheat d | 5.5 | 0.7 |
Durum wheat d | 5.4 | 0.5 |
2.3. Bioavailability
2.4. Eye Health
3. High-Lutein Functional Foods
4. Conclusions
References
- World Health Organization. Global data on visual impairments, 2012. Available online: http://www.WHO.int/blindness/GLOBALDATAFINALforweb.pdf (accessed on 17 October 2012).
- Gottlieb, J.L. Age-related macular degeneration. JAMA 2002, 288, 2233–2236. [Google Scholar] [CrossRef]
- Mogk, L. The differences between wet and dry age-related macular degeneration, 2013. Available online: http://www.visionaware.org/section.aspx?FolderID=6&SectionID=134&DocumentID=5972 (accessed on 7 March 2013).
- Owen, C.G.; Tarrar, Z.; Wormald, R.; Cook, D.G.; Fletcher, A.E.; Rudnicka, A.R. The estimated prevalence and incidence of late stage age-related macular degradation in the UK. Br. J. Ophthalmol. 2012, 96, 752–756. [Google Scholar] [CrossRef]
- Friedman, D.S.; O’Colmain, B.J.; Munoz, B. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 2004, 122, 564–572. [Google Scholar] [CrossRef]
- Taylor, H.; Guymer, R.; Keefe, J. The Impact of Age-Related Macular Degeneration; Limited, A.E.P., Ed.; University of Melbourne: Melbourne, Australia, 2006; pp. 1–72. [Google Scholar]
- IAPB (The International Agency for the Prevention of Blindness). Vision 2020—The Right to Sight. Available online: http://www.iapb.org (accessed on 3 April 2013).
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Mille, D.T.; et al. Dietary carotenoids, vitamin A,C and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 1994, 272, 1413–1420. [Google Scholar] [CrossRef]
- Richer, S.; Stiles, W.; Statkute, L.; Pulido, J.; Frankowski, J.; Rudy, D.; Pei, K.; Tsipursky, M.; Nyland, J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 2004, 75, 216–230. [Google Scholar] [CrossRef]
- Basu, H.N.; Del Vacchio, A.; Flider, F.; Orthoefer, F.T. Nutritional and potential disease prevention properties of carotenoids. J. Am. Oil Chem. Soc. 2001, 78, 665–675. [Google Scholar] [CrossRef]
- Delcourt, C.; Carriere, I.; Delage, M.; Barberger-Gateau, P.; Schalch, W. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study. Invest. Ophthalmol. Vis. Sci. 2006, 47, 2329–2335. [Google Scholar] [CrossRef]
- Tan, J.S.L.; Wang, J.J.; Flood, V.; Rochtina, E.; Smith, W.; Mitchell, P. Dietary antioxidants and the long-term incidences of age-related macular degeneration—The Blue Mountains Eye Study. Ophthalmology 2008, 115, 334–341. [Google Scholar] [CrossRef]
- Lyle, B.J.; Mares-Perlman, J.A.; Klein, B.E.; Klein, R.; Patta, M.; Bowen, P.E.; Greger, J.L. Serum carotenoids and tocopherols and incidence of age-related nuclear cataract. Am. J. Clin. Nutr. 1999, 69, 272–277. [Google Scholar]
- Cho, E.; Hankinson, S.E.; Rosner, B.; Willet, W.C.; Colditz, G.A. Prospective study of lutein/zeaxanthin intake and risk of age-related macular degeneration. Am. J. Clin. Nutr. 2008, 87, 1837–1843. [Google Scholar]
- SanGiovanni, J.P.; Neuringer, M. The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of macular genetics for guiding mechanism and translational research in the field. Am. J. Clin. Nutr. 2012, 96, 1223S–1233S. [Google Scholar] [CrossRef]
- Snodderly, D.M. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am. J. Nutr. 1995, 62, 1448s–1461s. [Google Scholar]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Khachik, F.; Beecher, G.R.; Goli, M.B. Separation and identification of carotenoids and their oxidation products in the extrcats of human plasma. Anal. Chem. 1992, 64, 2111–2122. [Google Scholar] [CrossRef]
- Khachik, F.; Spangler, C.J.; Smith, J.C., Jr.; Canfield, L.M.; Steck, A.; Pfander, H. Identification, quantification, and relative concentration of carotenoids and their metabolites in human milk and serum. Anal. Chem. 1997, 69, 1873–1881. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Landrum, J.I.; Bone, R.A. Biological mechanisms of the protective role of lutein and zeaxanthin in the eye. Ann. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Fernandez, L.; Tarsis, S.L. Analysis of macular pigment by HPLC: Retinal distribution and age study. Invest. Ophthalmol. Vis. Sci. 1988, 28, 843–849. [Google Scholar]
- Handelmam, G.J.; Dratz, E.A.; Reay, C.C.; van Kuijk, J.G. Carotenoids in the human macula and whole retina. Invest. Ophthalmol. Vis. Sci. 1988, 29, 850–855. [Google Scholar]
- Landrum, J.T.; Bone, R.A. Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef]
- Moukarzel, A.A.; Bejjani, R.A.; Fares, F.N. Xanthophylls and eye health in infants and adults. J. Med. Liban. 2009, 57, 261–267. [Google Scholar]
- Perry, A.; Rasmussen, H.; Johnson, E.J. Xanthophyll (lutein, zeaxanthin) content of fruits, vegetables and corn and egg products. J. Food Comp. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Maiani, G.; Periago Caston, M.J.; Catasta, G.; Toti, E.; Cambrodon, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, S194–S218. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Young, J.C.; Akhtar, H.; Rabalski, I. Stability of lutein in wholegrain bakery products naturally high in lutein or fortified with free lutein. J. Agric. Food Chem. 2010, 58, 10109–10117. [Google Scholar]
- De La Parra, C.; Saldivar, S.O.S.; Lui, R.H. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas and tortilla chips. J. Agric. Food Chem. 2007, 55, 4177–4183. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I.; Frégeau-Reid, J.; Hucl, P. Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem. 2007, 55, 787–794. [Google Scholar]
- Humphries, J.M.; Khachik, F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruits, vegetable, wheat, and pasta products. J. Agric. Food Chem. 2003, 51, 1322–1327. [Google Scholar] [CrossRef]
- Mangels, A.R.; Holden, J.M.; Beecher, G.R.; Forman, M.R.; Lanza, E. Carotenoid contents of fruits and vegetables—an evaluation of analytical data. J. Am. Diet. Assoc. 1993, 93, 284–296. [Google Scholar] [CrossRef]
- Schaeffer, T.L.; Tyczkowski, J.R.; Parkhurst, C.R.; Hamilton, P.B. Carotenoid composition of serum and egg yolk of hens fed diets varying in carotenoid composition. Poultry Sci. 1988, 67, 608–614. [Google Scholar] [CrossRef]
- Handleman, G.H.; Nightingale, Z.D.; Lichtenstein, A.H.; Schaefer, E.J.; Blumberg, J.P. Lutein and zeaxnathin concentrations in plasm after dietary supplementation with egg yolk. Am. J. Clin. Nutr. 1999, 70, 247–251. [Google Scholar]
- Chandrika, U.G.; Jansz, E.R.; Wickranasinghe, S.M.D.N.; Warnasuriya, N.D. Carotenoids in yellow and red-fleshed papaya (Carcia papaya L). J. Sci. Food Agric. 2003, 83, 1279–1282. [Google Scholar] [CrossRef]
- United States Department of Agriculture, USDA Nutritional database for standard reference release 22, 2009. In Nutritional data laboratory home page. Available online: http://www.ars.usda.gov/Services/docs.htm?docid=20960 (accessed on 24 November 2012).
- Abdel-Aal, E.-S.M.; Young, J.C.; Wood, P.J.; Rabalski, I.; Hucl, P.; Fregeau-Reid, J. Einkorn: A potential candidate for developing high lutein wheat. Cereal Chem. 2002, 79, 455–457. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef]
- Moros, E.E.; Darnoko, D.; Cheryan, M.; Perkins, E.G.; Jerrell, J. Analysis of xanthophylls in corn by HPLC. J. Agric. Food Chem. 2002, 50, 5787–5790. [Google Scholar] [CrossRef]
- Van Het Hof, K.H.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. Nutr. Res. 1999, 130, 503–506. [Google Scholar]
- Castenmiller, J.J.; West, C.E. Bioavailability and bioconversion of carotenoids. Annu. Rev. Nutr. 1998, 18, 19–38. [Google Scholar] [CrossRef]
- Bohn, T. Bioavailability of non-provitamin A carotenoids. Curr. Nutr. Food Sci. 2008, 4, 240–258. [Google Scholar] [CrossRef]
- Yonekura, L.; Nagao, A. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 2007, 51, 107–115. [Google Scholar] [CrossRef]
- Nagao, A. Absorption and metabolism of dietary carotenoids. BioFactors 2011, 37, 83–87. [Google Scholar] [CrossRef]
- Read, A. Influence of digestion model, product type and enrichment level on in vitro bioavailability of lutein from high lutein functional bakery products. M.Sc. Thesis, University of Guelph, Guelph, Canada, 2011. [Google Scholar]
- O’Connell, O.F.; Ryan, L.; O’Brien, N.B. Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutr. Res. 2007, 27, 258–264. [Google Scholar] [CrossRef]
- Thurnham, D.I. Macular zeaxanthins and lutein- a review of dietary sources and bioavailability and some relationships with macular optical density and age-related disease. Nutr. Res. Rev. 2007, 20, 163–179. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Friedes, L.M.; Gomez, C.M.; Kilburn, M.D.; Menendez, E.; Vidal, I.; Wang, W. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res. 1997, 64, 211–218. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Dixon, Z.; Chen, Y.; Llerena, C.M. Lutein and zeaxanthin in the eyes, serum and diet of human subjects. Exp. Eye Res. 2000, 71, 239–245. [Google Scholar] [CrossRef]
- Whitehead, A.J.; Mares, J.A.; Danis, R.P. Macular pigment: A review of current knowledge. Arch. Ophthalmol. 2006, 124, 1038–1045. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Hime, G.W.; Cains, A.; Zamor, J. Stereochemistry of the human macular carotenoids. Invest. Ophthalmol. Vis. Sci. 1993, 34, 2033–2040. [Google Scholar]
- Mozaffarieh, M.; Sacu, S.; Wedrich, A. The role of the carotenoids lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J. 2003, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Bone, R.A.; Landrum, J.T.; Beatty, S.; Nolan, J. Targeting AMD with a critical carotenoid. Rev. Ophthalmol. 2011, 7, 91–94. [Google Scholar]
- Albert, G.; Hoeller, U.; Schierle, J.; Neuringer, M.; Johnson, E.; Schaich, W. Metabolism of lutein and zeaxanthin in Rhesus monkey: Identification of (3R,6′R)-, and (3R,6′S)-3′-hydro-lutein as common metabolites and comparison of humans. Comp. Biochem. Physisol. B Biochem. Mol. Biol. 2008, 15, 70–78. [Google Scholar]
- Hammond, B.R.; Johnson, E.J.; Russell, R.M.; Krinsky, N.I.; Yeum, K.J.; Edwards, R.B.; Snodderly, D.; Russell, R.M. Dietary modification of human macular pigment density. Invest. Ophthalmol. Vis. Sci. 1997, 38, 1795–1801. [Google Scholar]
- Berendschot, T.T.M.; Goldbohn, R.A.; Klopping, W.A.A.; van der Kraats, J.; van Norel, J.; van Norren, D. Influence of lutein supplementation on macular pigment assessed with two objective techniques. Invest. Ophthalmol. Vis. Sci. 2000, 41, 3322–3326. [Google Scholar]
- Johnson, E.J.; Hammond, B.R.; Yeum, K.-J.; Qin, J.; Wang, X.D.; Castaneda, C.; Snodderly, D.; Russell, R.M. Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am. J. Clin. Nutr. 2000, 71, 1555–1562. [Google Scholar]
- Landrum, J.T.; Bone, R.A.; Joa, H.; Kilburn, M.D.; Moore, L.L.; Sprague, K.E. A one-year study on the macular pigment—the effect of 140 days of a lutein supplementation. Exp. Eye Res. 1997, 65, 57–62. [Google Scholar] [CrossRef]
- Loane, E.; Nolan, J.M.; Beatty, S. The respective relationships between lipoprotein profile, macular pigment optical density, and serum concentrations of lutein and zeaxanthin. Invest. Ophthalmol. Vis. Sci. 2010, 51, 5897–5905. [Google Scholar] [CrossRef]
- Ma, L.; Dou, H.-L.; Wu, Y.-Q.; Huang, Y.-M.; Huang, Y.-B.; Zou, Z.-Y.; Lin, X.-M. Lutein and zeaxanthin intake and the risk of age-related macular degeneration: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107, 350–359. [Google Scholar] [CrossRef]
- Khachik, F.; de Moura, F.F.; Zhao, D.Y.; Aebischer, C.P.; Bernstein, P.S. Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Invest. Ophthalmol. Vis. Sci. 2002, 43, 3383–3392. [Google Scholar]
- Handelman, G.J.; Snodderly, D.M.; Adler, A.J.; Russett, M.D.; Dratz, E.A. Measurement of carotenoids in human and monkey reina. Methods Enzymol. 1992, 213, 220–230. [Google Scholar]
- Handelman, G.J.; Shen, B.; Kinsky, N.L. High resolution analysis of carotenoids in human plasma by high performance liquid chromatography. Methods Enzymol. 1992, 213, 336–356. [Google Scholar]
- Clevendice, B.A.; Bieri, J.G. Association of carotenoids with human plasma lipoproteins. Methods Enzymol. 1993, 214, 33–46. [Google Scholar]
- Goulinet, S.; Chapman, M.J. Plasma LDL and HDL subspecies are heterogeneous in particle content of tocopherols and oxygenated and hydrocarbon carotenoids. Relevance to oxidative resistance and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 786–796. [Google Scholar] [CrossRef]
- Broekmans, W.M.R.; Berendschot, T.T.J.M.; Klopping-Ketelaars, I.A.A.; de Vries, A.J.; Goldbohm, R.A.; Tijburg, L.B.M.; Kardinaal, A.F.M.; van Poppel, G. Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am. J. Clin. Nutr. 2002, 76, 595–603. [Google Scholar]
- Renzi, L.M.; Hammond, B.R., Jr.; Dengler, M.; Roberts, R. The relation between serum lipids and lutein and zeaxanthin in the serum and retina: Results from cross-sectional, case control and case study designs. Lipids Health Dis. 2012, 11, 33. [Google Scholar] [CrossRef]
- Conner, W.E.; Duell, P.B.; Kean, R.; Wang, Y. The prime role of HDL to transport lutein into the retina: Evidence from HDL-defiocient WHAM chickens having a mutant ABCA1 transporter. Invest. Ophthalmol. Vis. Sci. 2007, 48, 4226–4231. [Google Scholar] [CrossRef]
- Goodrow, E.F.; Wilson, T.A.; Houde, S.C.; Vishwanathan, R.; Scollin, P.A.; Handelman, G.; Nicholsi, R.J. Consumption of one egg per day increases serum lutein and lipoprotein concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J. Nutr. 2006, 136, 2519–2524. [Google Scholar]
- Blesso, C.N.; Andersen, C.J.; Bolling, B.W.; Fernandez, M.L. Egg intake improves carotenoid status by increasing plasma HDL, cholesterol in adults with metabolic syndrome. Food Funct. 2013, 4, 213–221. [Google Scholar] [CrossRef]
- Wang, Y.; Illingworth, D.R.; Conner, S.L.; Duell, P.B.; Conner, W.E. Competitive inhibition of carotenoids transport and tissue concentrations by high supplements of lutein, zeaxanthin and beta-carotene. Eur. J. Nutr. 2010, 49, 327–336. [Google Scholar] [CrossRef]
- Connolly, E.E.; Beatty, S.; Thurnham, D.I.; Loughman, J.; Howard, A.N.; Stack, J.; Nolan, M. Augmentation of macula pigment following supplementation with all three macular carotenoids: An exploratory study. Curr. Eye Res. 2010, 35, 335–351. [Google Scholar] [CrossRef]
- Wald, G.; Nathauson, N.; Jencks, W.P.; Tarr, E. Crustacyanin, the blue carotenoid protein of the lobster shell. Biol. Bull. 1948, 95, 249–250. [Google Scholar]
- Bhosale, P.; Larson, A.J.; Frederick, J.M.; Southwick, K.; Thulin, C.D.; Bernstein, P.S. Identification and characterization of a Pi isoform of glutathione s-transferase (GST1) as a zeaxanthin-binding protein in the macula of the human eye. J. Biol. Chem. 2004, 279, 49447–49454. [Google Scholar]
- Bhosale, P.; Li, B.; Sharifzadeh, M.; Gellermann, W.; Frederick, J.M.; Tscuchida, K.; Bernstein, P.S. Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry 2009, 48, 4798–4807. [Google Scholar] [CrossRef]
- Li, B.; Vachali, P.; Frederick, J.M.; Bersntein, P.S. Identification of StARD3 as the lutein-binding protein in the macular of primate retina. Biochemistry 2011, 50, 2541–2549. [Google Scholar]
- During, A.; Doraiswamy, S.; Harrison, E.H. Xanthophylls are preferentially taken up compared with β-carotene by retinal cells via a SRBI-dependent mechanism. J. Lipid Res. 2008, 49, 1715–1724. [Google Scholar] [CrossRef]
- Beatty, S.; Koh, H.; Phil, M.; Henson, D.D.; Boulton, M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000, 45, 115–134. [Google Scholar] [CrossRef]
- Chatterjee, A.; Milton, R.C.; Thyle, S. Prevalence and etiology of cataracts in Punjab. Br. J. Ophthalmol. 1982, 66, 35–42. [Google Scholar] [CrossRef]
- Das, B.N.; Thompson, J.R.; Patel, R.; Rosenthal, A.R. The prevalence of age-related cataracts in the Asian community of Leicester: A community based study. Eye 1990, 4, 723–726. [Google Scholar] [CrossRef]
- Wolf-Schnurrbusch, U.E.K.; Roosli, N.; Weyermann, E.; Heldner, M.R. Ethnic differences in macular pigment density and distribution. Invest. Ophthalmol. 2007, 48, 3783–3788. [Google Scholar] [CrossRef]
- Sommer, A.; Tielsch, J.M.; Katz, J.; Quigly, H.A.; Gottsch, J.D.; Javitt, J.C.; Martone, J.F.; Royall, R.M.; Witt, K.A.; Ezrine, S. Racial differences in the cause-specific prevalence of blindess in East Baltimore. N. Engl. J. Med. 1991, 325, 1412–1417. [Google Scholar] [CrossRef]
- Dherani, M.; Murthy, G.V.; Gupta, S.K.; Young, I.S.; Maraini, G.; Camparini, M.; Priuce, G.M.; John, N.; Chakravarthy, U.; Fletcher, A.E. Blood levels of vitamin C, carotenoids and retinol are inversely associated with cataract in a North Indian population. Invest. Ophthalmol. Vis. Sci. 2008, 49, 3328–3335. [Google Scholar] [CrossRef]
- Moeller, S.M.; Voland, R.; Tinker, L.; Blodi, B.A.; Klein, M.L.; Gehrs, M.; Johnson, E.J.; Snodderly, M.; Wallace, R.B.; Chappell, R.J.; et al. Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the carotenoids in the Age-Related Eye Disease Study, an ancillary study of the women’s Health Institute Initiative. Arch. Ophthalmol. 2008, 126, 354–364. [Google Scholar] [CrossRef]
- Vu, H.T.; Robman, L.; Hodge, A.; McCarty, C.A.; Taylor, H.R. Lutein and zeaxanthin and the risk of cataract: The Melbourne visual impairment project. Invest. Ophthalmol. Vis. Sci. 2006, 47, 3783–3786. [Google Scholar]
- Laitinen, A.; Laatikainen, L.; Harkanen, T.; Seppo, K.; Reunanen, A.; Aromaa, A. Prevalence of major eye diseases and causes of visual impairement in the adult Finnish population, a nationwide population-based survey. Acta Ophtahlmol. 2010, 88, 463–471. [Google Scholar]
- Karppi, J.; Laukkanen, J.A.; Kurl, S. Plasma lutein and zeaxanthin and the risk of age-related nuclear cataract among the elderly Finnish population. Br. J. Nutr. 2012, 108, 148–154. [Google Scholar] [CrossRef]
- Augood, C.A.; Vingerling, J.R.; de Jong, P.T.; Chakravarthy, U.; Seland, J.; Soubrane, G.; Tomazzolis, L.; Topouzis, F.; Bentham, G.; Rahu, M.; et al. Prevalence of age-related maculopathy in older Europeans: The European Eye Study (EUREYE). Arch. Ophthalmol. 2006, 124, 529–535. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Jonas, J.B.; Yang, H.; Ma, Y.; Li, J. Prevalence of age-related maculopathy in the adult population in China: The Beijing Eye Study. Am. J. Ophthalmol. 2006, 142, 788–793. [Google Scholar] [CrossRef]
- Gupta, S.K.; Murthy, G.V.; Morrison, N.; Price, G.M.; Dherani, M.; John, N.; Fletcher, A.E.; Chakravarthy, U. Prevalence of early and late age-related macular degeneration in a rural population in north India: The INDEYE feasibility study. Invest. Ophthalmol. Vis. Sci. 2007, 48, 1007–1011. [Google Scholar] [CrossRef]
- Moon, B.G.; Joe, S.G.; Hwang, J.-U.; Kim, H.K.; Choe, J.; Yoon, Y.H. Prevalence and risk factors of early-stage, age-related macular degeneration in patients examined at a health promotion centre in Korea. J. Korean Med. Sci. 2012, 27, 537–541. [Google Scholar] [CrossRef]
- Mares-Perlman, J.A.; Klein, R. Diet and Age-related Macular Degeneration. In Nutritional and Environmental Influences on the Eye; Taylor, A., Ed.; Fla CRC Press: Boca Raton, FL, USA, 1999; pp. 181–214. [Google Scholar]
- Moeller, S.M.; Jacques, P.F.; Blumberg, J.B. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J. Am. Coll. Nutr. 2000, 19, 522S–527S. [Google Scholar]
- Carpentier, S.; Knaus, M.; Suh, M. Associations between lutein, zeaxanthin, and age-related macular degeneration. Crit. Rev. Food Sci. Nutr. 2009, 49, 313–326. [Google Scholar] [CrossRef]
- Frégeau-Reid, J.; Abdel-Aal, E.-S.M. Einkorn: A Potential Functional Wheat and Genetic Resource. In Specialty Grains for Food and Feed; Abdel-Aal, E.-S.M., Wood, P.J., Eds.; American Association of Cereal Chemists Inc.: St. Paul, MN, USA, 2005; pp. 37–61. [Google Scholar]
- Abdel-Aal, E.-S.M.; Akhtar, M.H. Recent advances in the analyses of carotenoids and their role in human health. Curr. Pharmaceut. Anal. 2006, 2, 195–204. [Google Scholar] [CrossRef]
- Kean, E.G.; Hamaker, B.R.; Ferruzzi, M.G. Carotenoids bioaccessibility from whole grain and degermed maize meal products. J. Agric. Food Chem. 2008, 56, 9918–9926. [Google Scholar]
- Abdel-Aal, E.-S.M.; Rabalski, I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Ceral Sci. 2013, in press.. [Google Scholar]
- Abdel-Aal, E.-S.M.; Rabalski, I. Antioxidant Properties of high-lutein grain-based functional foods in comparison with ferulic acid and lutein. Am. J. Biomed. Sci. 2013, in press.. [Google Scholar]
- De Oliveira, G.P.R.; Rodriguez-Amaya, D.B. Processed and prepared corn products as sources of lutein and zeaxanthin: Compositional variation in the food chain. J. Food Sci. 2007, 72, S79–S85. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Abdel-Aal, E.-S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients 2013, 5, 1169-1185. https://doi.org/10.3390/nu5041169
Abdel-Aal E-SM, Akhtar H, Zaheer K, Ali R. Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients. 2013; 5(4):1169-1185. https://doi.org/10.3390/nu5041169
Chicago/Turabian StyleAbdel-Aal, El-Sayed M., Humayoun Akhtar, Khalid Zaheer, and Rashida Ali. 2013. "Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health" Nutrients 5, no. 4: 1169-1185. https://doi.org/10.3390/nu5041169