Dietary Magnesium and Genetic Interactions in Diabetes and Related Risk Factors: A Brief Overview of Current Knowledge
Abstract
:1. Introduction
2. Basics of Magnesium Homeostasis
3. Magnesium and Its Putative Mechanisms in Glucose and Insulin Metabolism
4. Epidemiological Evidence for Magnesium in Offsetting Risk of Type 2 Diabetes
Author (Year) | Study/Population | Total No. (No. Cases) | Follow-up (Years) | Association 1 |
---|---|---|---|---|
Dong et al. (2011) [3] | Meta-analysis of 13 studies through 2011 | 536,318 (24,516) | 4–20 | RR = 0.78 (0.73–0.84) |
Schulze et al. (2007) [49] | Meta-analysis of 8 studies through 2006 | 271,869 (9192) | 4–16 | RR = 0.77 (0.72–0.84) |
Larsson and Wolk (2007) [44] | Meta-analysis of 7 studies 1966–2007 | 286,668 (10,915) | 4–17 | RR per 100 mg/day = 0.85 (0.79–0.92) |
Hruby et al. (2013) [50] | ~54 years old; Framingham Heart Study (US) | 2582 (179) | 7 | RR = 0.49 (0.27–0.88), p trend = 0.01 |
Hopping et al. (2010) [51] | 45–75 years old; Multi-Ethnic Cohort Study (US) | 75,512 (8587) | 14 | Men HR = 0.77 (0.70–0.85), p trend < 0.0001; Women HR = 0.84 (0.76–0.93), p trend = 0.0003 |
Kim et al. (2010) [42] | 18–30 years old; Coronary Artery Risk Development in Young Adults (US) | 4497 (330) | 20 | HR = 0.53 (0.32–0.86), p trend < 0.01 |
Kirii et al. (2010) [52] | 40–65 years old; Japan Collaborative Cohort Study for Evaluation of Cancer Risk (Japan) | 17,592 (459) | 5 | OR = 0.64 (0.44 to 0.94), p trend = 0.04 |
Nanri et al. (2010) [53] | 45–75 years old; Japan Public Health Center-based Prospective Study (Japan) | 59,791 (1114) | 5 | Men OR = 0.86 (0.63–1.16), p ≥ 0.05; Women OR = 0.92 (0.66–1.28), p ≥ 0.05 |
Villegas et al. (2009) [47] | ~50 years old; Shanghai Women’s Health Study (China) | 64,191 (2270) | 7 | HR = 0.80 (0.68, 0.93), p trend < 0.0001 |
Schulze et al. (2007) [49] | 35–65 years old; EPIC–Potsdam (Germany) | 25,067 (844) | 11 | RR = 0.90 (0.72–1.12), p trend = 0.44 |
He et al. (2006) [54] 2 | 18–30 years old; Coronary Artery Risk Development in Young Adults (US) | 4637 (226) | 15 | HR = 0.51 (0.32–0.83), p trend < 0.01 |
van Dam et al. (2006) [48] | ~38 years old; Black Women’s Health Study (US) | 41,186 (1964) | 8 | HR = 0.65 (0.54–0.78), p trend < 0.0001 |
Lopez-Ridaura et al. (2004) [45] | ~46 years old; Nurses’ Health Study (US) | 85,060 (4085) | 18 | RR = 0.66 (0.60–0.73), p trend < 0.001 |
Lopez-Ridaura et al. (2004) [45] | ~54 years old; Health Professionals’ Follow-up Study (US) | 42,872 (1333) | 12 | RR = 0.67 (0.56–0.80), p trend < 0.001 |
Hodge et al. (2004) [55] | ~54 years old; Melbourne Collaborative Cohort Study (Australia) | 31,641 (365) | 4 | OR per 500 mg/day = 0.62 (0.43–0.90) |
Song et al. (2004) [41] | ~54 years old; Women’s Health Study (US) | 39,345 (918) | 6 | RR = 0.89 (0.71–1.10), p trend = 0.05 |
Meyer et al. (2000) [56] | ~61.5 years old; Iowa Women’s Health Study (US) | 35,988 (1141) | 6 | RR = 0.67 (0.55–0.82), p trend = 0.0003 |
Kao et al. (1999) [57] | ~53 years old; Atherosclerosis Risk in Communities (US) | 12,128 (1106) | 6 | Black OR = 1.02 (0.58–1.76) 3, p trend = 0.68; White OR = 0.93 (0.67–1.29) 3, p trend = 0.84 |
Author (Year) | Study/Population | No. | Outcome and Association 1 |
---|---|---|---|
Hruby et al. (2013) [58] | Meta-analysis of 15 studies (US and Europe) | 52,684 | FG β per 50 mg/day: −0.009 mmol/L (−0.013, −0.005), p < 0.0001; FI β per 50 mg/day: −0.020 ln-pmol/L (−0.024, −0.017), p < 0.0001 |
Cahill et al. (2013) [59] | ~43 years old; Complex Diseases in the Newfoundland Population: Environment and Genetics Study (Canada) | 2295 | FG low vs. high intake: 5.18 vs. 5.17 mmol/L, p trend ≥ 0.05; FI low vs. high intake: 72.8 vs. 60.6 pmol/L, p trend < 0.001; HOMA-IR low vs. high intake: 2.5 vs. 2.1 units, p trend = 0.003; HOMA-β low vs. high intake: 142.4 vs. 116.2 units, p trend < 0.001 |
McKeown et al. (2008) [60] 2 | ~72 years old (elderly) (US) | 535 | IFG/T2D OR high vs. low intake: 0.41 (0.22–0.77), p trend = 0.005 |
Ford et al. (2007) [61] 2 | ~43 years old; National Health and Nutrition Examination Survey (US) | 7669 | IFG/T2D OR high vs. low intake: 0.85 (0.57–1.28), p trend = 0.371 |
Bo et al. (2006) [62] | 45–64 years old; (Italy) | 1653 | T2D OR low vs. high intake: 4.3, p trend < 0.001; HOMA-IR low vs. high intake: 0.5 vs. 0.4 units, p trend < 0.001; FG 3 low vs. high intake: 112.1 vs. 99.8 mg/dL, p trend < 0.001; FI 3 low vs. high intake: 1.9 vs. 1.7 uU/mL, p trend < 0.001 |
Rumawas et al. (2006) [35] | ~54 years old; Framingham Heart Study (US) | 2708 | FG low vs. high intake: 94.8 vs. 94.9 mg/dL, p trend = 0.41; FI low vs. high intake: 29.9 vs. 26.7 uU/mL, p trend < 0.001; 2h OGTT glucose low vs. high intake: 104.4 vs. 100.7 mg/dL, p trend = 0.04; 2h OGTT insulin low vs. high intake: 86.4 vs. 72 mU/mL, p trend < 0.001; HOMA-IR low vs. high intake: 7.0 vs. 6.2 units, p trend < 0.001 |
Song et al. (2005) [63] 2 | ~52 years old; Women’s Health Study (US) | 9887 | Prevalence 3 IFG/T2D low vs. high intake: 5.0% vs. 3.3%, p trend = 0.005 |
Huerta et al. (2005) [38] 4 | ~13 years old (US) | 48 | Correlation, r, HOMA-IR: −0.43 (−0.64 to −0.16), p = 0.002; Correlation, r, FI: −0.43 (−0.64 to −0.16), p = 0.002; Correlation, r, QUICKI: 0.43 (0.16-0.64), p = 0.002; Correlation, r, IS: Not significant, association not specified |
Song et al. (2004) [41] | ~55 years old; Women’s Health Study (US) | 349 | Geometric mean FI low vs. high intake: 42.1 vs. 38.5 pmol/L, p trend = 0.08; BMI ≥ 25 kg/m2: 53.5 vs. 41.5 pmol/L, p trend = 0.03; BMI < 25 kg/m2: 34.8 vs. 33.0 pmol/L, p trend = 0.22 |
Fung et al. (2003) [36] | 45–60 years old; Nurses’ Health Study (US) | 219 | Geometric mean FI low vs. high intake: 11.0 vs. 9.3 μU/mL, p trend = 0.04 |
Ma et al. (1995) [43] | 45–64 years old; Atherosclerosis Risk in Communities (US) | 15,248 | Mean difference FI high vs. low intake: White men, 13 pmol/L, p < 0.001; Black men, 2 pmol/L, p = 0.72; White women, 12 pmol/L, p < 0.001; Black women, 27 pmol/L, p < 0.001; Mean difference FG high vs. low intake: Not specified |
Manolio et al. (1991) [64] | 18–30 years old; Coronary Artery Risk Development in Young Adults (US) | 3287 | Correlation, r, FI: −0.08 to −0.13, p < 0.01; FI β per mg/1000 kcal: −0.0006 ln-μU/mL, p = 0.0006 |
5. The Genetics of Magnesium Homeostasis
Author (Year) | Design/Population 1 | No., Tx (control) | Mg Tx vs. Control | Post-Tx Effects |
---|---|---|---|---|
Song et al. (2006) [2] | Meta-analysis of 9 RCTs through January 2005, 4–16 week durations | 370 with T2D | Median 360 mg/day | FG: decreased; HbA1c: no change |
Guerrero-Romero and Rodriguez-Moran (2011) [37] | 12 week; hypomagnesaemic, overweight; ~40 years old (Mexico) | 49 (48) | 2.5 g/day MgCl2 (solution); 50 mL inactive solution | FG: decreased; FI: decreased; Belfiore index: improved; HOMA-β: decreased only in placebo; serum Mg: increased |
Hadjistavri et al. (2010) [32] | 12 week; mild hypertensive, overweight; ~45 years old (Greece) | 24 (24) | 600 mg/day Mg pidolate (solution); lifestyle recommendations | FG: no change; FI: decreased; HOMA-IR: decreased; Cedercholm index: increased; Matsuda index: increased; Stumvoll index: increased; AUC glucose: decreased; AUC insulin: decreased; serum and 24h urine Mg: increased |
Lee et al. (2009) [74] | 12 week; healthy, normo-magnesaemic, overweight; 30–60 years old (Korea) | 75 (80) | 12.2 mmol (300 mg) as MgO; placebo | FG: no difference between groups; FI: no difference between groups; HOMA-IR: no difference between groups; serum Mg: no change (except in those with hypertension) |
Guerrero-Romero et al. (2004) [31] | 12 week; hypomagnesaemic, insulin resistant, overweight; ~42.5 years old (Mexico) | 30 (30) | 2.5 g/day MgCl2 (solution); 50 mL inactive solution | FG: decreased; FI: decreased; HOMA-IR: decreased; serum Mg: increased |
Rodriguez-Moran and Guerrero-Romero (2003) [75] | 16 week; T2D, hypomagnesaemic; ~56 years old (Mexico) | 32 (31) | 50 g MgCl2 (50 mL solution); placebo | FG: decreased; FI: increased; HbA1c: decreased; HOMA-IR: decreased; serum Mg: increased |
Chacko et al. (2010) [12] | Randomized, double-blind, crossover; 4 week; 4 week washout; healthy, overweight; ~44.4 years old (US) | 13 | 500 mg/day elemental Mg as Mg citrate; placebo | FG: No change; HbA1c: increased (p = 0.08); FI: no change; C-peptide: decreased; serum Mg: no change |
Paolisso et al. (1994) [76] | Randomized, double-blind, crossover; 4 week; 3 week run-in; T2D, elderly (Italy) | 9 | 15.8 mmol/day; placebo | FG: No change; glucose disposal: increased; glucose oxidation: increased; plasma and erythrocyte Mg: increased |
Purvis et al. (1994) [77] | Randomized, double-blind, crossover; 6 week; 2 week run-in, 2 week washout; T2D, hypercholesterolemic; ~53.8 years old (US) | 28 | 384 mg/day MgCl (Slo-Mag); placebo | FG: no change; serum Mg: no change |
Paolisso et al. (1992) [34] | Randomized, double-blind, crossover; 4 week; 4 week run-in, 2 week washout; generally healthy, non-obese; ~77.8 years old (Italy) | 12 | 4.5 g/day Mg pidolate (16.2 mmol Mg); placebo | FG: decreased; FI: no change; acute and total insulin response: increased; glucose disappearance: improved; hepatic glucose output: no difference; glucose uptake: improved; plasma and erythrocyte Mg: increased |
Paolisso et al. (1989) [78] | Randomized, crossover; 4 week; 3 week run-in, 2 week washout; T2D, moderately obese; ~67 years old (Italy) | 8 | 3 g/day as Mag 2 | FG: decreased; acute and total insulin response: increased; glucose disappearance: improved; plasma and erythrocyte Mg: improved |
Paolisso et al. (1989) [79] | Randomized, crossover; 4 week; 3 week run-in, 2 week washout; T2D, moderately obese; ~67 years old (Italy) | 8 | 2 g/day as Mag 2; placebo | FG: decreased; acute insulin response: increased glucose infusion rate: increased; plasma and erythrocyte Mg: improved |
Yokota et al. (2004) [46] | Uncontrolled supplementation study; 30 day; mild T2D (no insulin); ~51.6 years old (Japan) | 9 | 300 mg/day as mineral water (Mag21, “bittern”); n/a | FG: No change; HbA1c: no change; FI: 8.08 to 5.89 μU/mL, p ≤ 0.05; HOMA-IR: 2.73 to 2.05 units p ≤ 0.05; serum and urinary Mg excretion: increased |
Nielsen et al (2007) [10] | Depletion/repletion; depletion: ≤78 day; repletion: ≥58 day; healthy, post-menopausal; 47–75 years old (US) | 14 | Depletion: 33% of Mg RDA (101 mg/2000 kcal/day) diet; repletion: diet plus extra 200 mg/day | AUC glucose: higher during depletion than repletion; AUC insulin: no change; erythrocyte Mg: initial increase, then decrease during depletion; serum Mg: initial decrease, then increase during depletion |
Nadler et al. (1993) [67] | Depletion; 3 week; presumably healthy, overweight (US) | 12 | Liquid diet: 1 week with 400 mg/day MgCl2 followed by 3 week with low Mg [12 mg/day (<0.05 mmol/day)]; n/a | FG: no change; FI: no change; Bergman index: decreased; serum and intracellular Mg: decreased |
Interactions of Dietary Magnesium and Genes in Glucose and Insulin Homeostasis and Metabolism
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Florez, J.C.; Jablonski, K.A.; Bayley, N.; Pollin, T.I.; de Bakker, P.I.W.; Shuldiner, A.R.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. N. Engl. J. Med. 2006, 355, 241–250. [Google Scholar] [CrossRef]
- Song, Y.; He, K.; Levitan, E.B.; Manson, J.E.; Liu, S. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: A meta-analysis of randomized double-blind controlled trials. Diabet. Med. 2006, 23, 1050–1056. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Xun, P.; He, K.; Qin, L.-Q. Magnesium intake and risk of type 2 diabetes: Meta-analysis of prospective cohort studies. Diabetes Care 2011, 34, 2116–2122. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium, the metabolic syndrome, insulin resistance, and type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2008, 48, 293–300. [Google Scholar] [CrossRef]
- Del Gobbo, L.C.; Imamura, F.; Wu, J.H.; de Oliveira Otto, M.C.; Chiuve, S.E.; Mozaffarian, D. Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2013. [Google Scholar] [CrossRef]
- Arnaud, M.J. Update on the assessment of magnesium status. Br. J. Nutr. 2008, 99, S24–S36. [Google Scholar]
- Jacques, P.F.; Sulsky, S.I.; Sadowski, J.A.; Phillips, J.C.; Rush, D.; Willett, W.C. Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am. J. Clin. Nutr. 1993, 57, 182–189. [Google Scholar]
- Peacock, J.M.; Folsom, A.R.; Arnett, D.K.; Eckfeldt, J.H.; Szklo, M. Relationship of serum and dietary magnesium to incident hypertension: The Atherosclerosis Risk in Communities (ARIC) Study. Ann. Epidemiol. 1999, 9, 159–165. [Google Scholar]
- Dunn, M.J.; Walser, M. Magnesium depletion in normal man. Metabolism 1966, 15, 884–895. [Google Scholar] [CrossRef]
- Nielsen, F.H.; Milne, D.B.; Klevay, L.M.; Gallagher, S.; Johnson, L. Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J. Am. Coll. Nutr. 2007, 26, 121–132. [Google Scholar] [CrossRef]
- Aydin, H.; Deyneli, O.; Yavuz, D.; Gözü, H.; Mutlu, N.; Kaygusuz, I.; Akalin, S. Short-term oral magnesium supplementation suppresses bone turnover in postmenopausal osteoporotic women. Biol. Trace Elem. Res. 2010, 133, 136–143. [Google Scholar]
- Chacko, S.A.; Sul, J.; Song, Y.; Li, X.; LeBlanc, J.; You, Y.; Butch, A.; Liu, S. Magnesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: A randomized, double-blind, controlled, crossover trial in overweight individuals. Am. J. Clin. Nutr. 2010, 93, 463–473. [Google Scholar]
- Rude, R.K. Magnesium deficiency: A cause of heterogeneous disease in humans. J. Bone Miner. Res. 1998, 13, 749–758. [Google Scholar] [CrossRef]
- Ames, B.N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc. Natl. Acad. Sci. USA 2006, 103, 17589–17594. [Google Scholar] [CrossRef]
- Geiger, H.; Wanner, C. Magnesium in disease. Clin. Kidney J. 2012, 5, i25–i38. [Google Scholar] [CrossRef]
- FDA Drug Safety Communication: Low Magnesium Levels can be Associated with Long-Term Use of Proton Pump Inhibitor Drugs (PPIs). Available online: http://www.fda.gov/drugs/drugsafety/ucm245011.htm (accessed on 1 October 2013).
- Weyer, C.; Bogardus, C.; Mott, D.M.; Pratley, R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Investig. 1999, 104, 787–794. [Google Scholar] [CrossRef]
- Günther, T. The biochemical function of Mg2+ in insulin secretion, insulin signal transduction and insulin resistance. Magnes. Res. 2010, 23, 5–18. [Google Scholar]
- Bo, S.; Pisu, E. Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr. Opin. Lipidol. 2008, 19, 50–56. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch. Biochem. Biophys. 2007, 458, 40–47. [Google Scholar] [CrossRef]
- Suárez, A.; Pulido, N.; Casla, A.; Casanova, B.; Arrieta, F.J.; Rovira, A. Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 1995, 38, 1262–1270. [Google Scholar] [CrossRef]
- Kandeel, F.R.; Balon, E.; Scott, S.; Nadler, J.L. Magnesium deficiency and glucose metabolism in rat adipocytes. Metabolism 1996, 45, 838–843. [Google Scholar] [CrossRef]
- Chaudhary, D.P.; Sharma, R.; Bansal, D.D. Implications of magnesium deficiency in type 2 diabetes: A review. Biol. Trace Elem. Res. 2010, 134, 119–129. [Google Scholar] [CrossRef]
- Curry, D.L.; Joy, R.M.; Holley, D.C.; Bennett, L.L. Magnesium modulation of glucose-induced insulin secretion by the perfused rat pancreas. Endocrinology 1977, 101, 203–208. [Google Scholar] [CrossRef]
- Persaud, S.J.; Harris, T.E.; Burns, C.J.; Jones, P.M. Tyrosine kinases play a permissive role in glucose-induced insulin secretion from adult rat islets. J. Mol. Endocrinol. 1999, 22, 19–28. [Google Scholar] [CrossRef]
- Kowluru, A.; Chen, H.Q.; Modrick, L.M.; Stefanelli, C. Activation of acetyl-CoA carboxylase by a glutamate- and magnesium-sensitive protein phosphatase in the islet β-cell. Diabetes 2001, 50, 1580–1587. [Google Scholar] [CrossRef]
- Balon, T.W.; Gu, J.L.; Tokuyama, Y.; Jasman, A.P.; Nadler, J.L. Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am. J. Physiol. 1995, 269, E745–E752. [Google Scholar]
- Henquin, J.C.; Nenquin, M.; Awouters, P.; Cogneau, M. Magnesium uptake by pancreatic islet cells is modulated by stimulators and inhibitors of the B-cell function. FEBS J. 1986, 155, 653–657. [Google Scholar]
- Murphy, E. Mysteries of magnesium homeostasis. Circ. Res. 2000, 86, 245–248. [Google Scholar] [CrossRef]
- Li, F.-Y.; Chaigne-Delalande, B.; Kanellopoulou, C.; Davis, J.C.; Matthews, H.F.; Douek, D.C.; Cohen, J.I.; Uzel, G.; Su, H.C.; Lenardo, M.J. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 2011, 475, 471–476. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Tamez-Perez, H.E.; González-González, G.; Salinas-Martínez, A.M.; Montes-Villarreal, J.; Treviño-Ortiz, J.H.; Rodríguez-Morán, M. Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab. 2004, 30, 253–258. [Google Scholar] [CrossRef]
- Hadjistavri, L.S.; Sarafidis, P.A.; Georgianos, P.I.; Tziolas, I.M.; Aroditis, C.P.; Hitoglou-Makedou, A.; Zebekakis, P.E.; Pikilidou, M.I.; Lasaridis, A.N. Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med. Sci. Monit. 2010, 16, CR307–CR312. [Google Scholar]
- Mooren, F.C.; Krüger, K.; Völker, K.; Golf, S.W.; Wadepuhl, M.; Kraus, A. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects—A double-blind, placebo-controlled, randomized trial. Diabetes Obes. Metab. 2011, 13, 281–284. [Google Scholar] [CrossRef]
- Paolisso, G.; Sgambato, S.; Gambardella, A.; Pizza, G.; Tesauro, P.; Varricchio, M.; D’Onofrio, F. Daily magnesium supplements improve glucose handling in elderly subjects. Am. J. Clin. Nutr. 1992, 55, 1161–1167. [Google Scholar]
- Rumawas, M.E.; McKeown, N.M.; Rogers, G.; Meigs, J.B.; Wilson, P.W.; Jacques, P.F. Magnesium intake is related to improved insulin homeostasis in the framingham offspring cohort. J. Am. Coll. Nutr. 2006, 25, 486–492. [Google Scholar] [CrossRef]
- Fung, T.T.; Manson, J.E.; Solomon, C.G.; Liu, S.; Willett, W.C.; Hu, F.B. The association between magnesium intake and fasting insulin concentration in healthy middle-aged women. J. Am. Coll. Nutr. 2003, 22, 533–538. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodríguez-Morán, M. Magnesium improves the β-cell function to compensate variation of insulin sensitivity: Double-blind, randomized clinical trial. Eur. J. Clin. Investig. 2011, 41, 405–410. [Google Scholar] [CrossRef]
- Huerta, M.G.; Roemmich, J.N.; Kington, M.L.; Bovbjerg, V.E.; Weltman, A.L.; Holmes, V.F.; Patrie, J.T.; Rogol, A.D.; Nadler, J.L. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care 2005, 28, 1175–1181. [Google Scholar] [CrossRef]
- Humphries, S.; Kushner, H.; Falkner, B. Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic Black Americans. Am. J. Hypertens. 1999, 12, 747–756. [Google Scholar] [CrossRef]
- Ma, B.; Lawson, A.B.; Liese, A.D.; Bell, R.A.; Mayer-Davis, E.J. Dairy, magnesium, and calcium intake in relation to insulin sensitivity: Approaches to modeling a dose-dependent association. Am. J. Epidemiol. 2006, 164, 449–458. [Google Scholar] [CrossRef]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 2004, 27, 59–65. [Google Scholar] [CrossRef]
- Kim, D.J.; Xun, P.; Liu, K.; Loria, C.; Yokota, K.; Jacobs, D.R.; He, K. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010, 33, 2604–2610. [Google Scholar] [CrossRef]
- Ma, J.; Folsom, A.R.; Melnick, S.L.; Eckfeldt, J.H.; Sharrett, A.R.; Nabulsi, A.A.; Hutchinson, R.G.; Metcalf, P.A. Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: The ARIC study. Atherosclerosis risk in communities study. J. Clin. Epidemiol. 1995, 48, 927–940. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Magnesium intake and risk of type 2 diabetes: A meta-analysis. J. Intern. Med. 2007, 262, 208–214. [Google Scholar] [CrossRef]
- Lopez-Ridaura, R.; Willett, W.C.; Rimm, E.B.; Liu, S.; Stampfer, M.J.; Manson, J.E.; Hu, F.B. Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care 2004, 27, 134–140. [Google Scholar] [CrossRef]
- Yokota, K.; Kato, M.; Lister, F.; Ii, H.; Hayakawa, T.; Kikuta, T.; Kageyama, S.; Tajima, N. Clinical efficacy of magnesium supplementation in patients with type 2 diabetes. J. Am. Coll. Nutr. 2004, 23, 506S–509S. [Google Scholar] [CrossRef]
- Villegas, R.; Gao, Y.-T.; Dai, Q.; Yang, G.; Cai, H.; Li, H.; Zheng, W.; Shu, X.O. Dietary calcium and magnesium intakes and the risk of type 2 diabetes: The Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2009, 89, 1059–1067. [Google Scholar] [CrossRef]
- Van Dam, R.M.; Hu, F.B.; Rosenberg, L.; Krishnan, S.; Palmer, J.R. Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women. Diabetes Care 2006, 29, 2238–2243. [Google Scholar] [CrossRef]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965. [Google Scholar] [CrossRef]
- Hruby, A.; Meigs, J.B.; O’Donnell, C.J.; Jacques, P.F.; McKeown, N.M. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism, and progression from prediabetes to diabetes in middle-aged Americans. Diabetes Care 2013. [Google Scholar] [CrossRef]
- Hopping, B.N.; Erber, E.; Grandinetti, A.; Verheus, M.; Kolonel, L.N.; Maskarinec, G. Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J. Nutr. 2010, 140, 68–74. [Google Scholar] [CrossRef]
- Kirii, K.; Iso, H.; Date, C.; Fukui, M.; Tamakoshi, A. The JACC study group magnesium intake and risk of self-reported type 2 diabetes among Japanese. J. Am. Coll. Nutr. 2010, 29, 99–106. [Google Scholar] [CrossRef]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kirii, K.; Inoue, M.; Tsugane, S. Magnesium intake and type II diabetes in Japanese men and women: The Japan public health center-based prospective study. Eur. J. Clin. Nutr. 2010, 64, 1244–1247. [Google Scholar] [CrossRef]
- He, K.; Liu, K.; Daviglus, M.L.; Morris, S.J.; Loria, C.M.; van Horn, L.; Jacobs, D.R.; Savage, P.J. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation 2006, 113, 1675–1682. [Google Scholar] [CrossRef]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Giles, G.G. Glycemic Index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004, 27, 2701–2706. [Google Scholar] [CrossRef]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 2000, 71, 921–930. [Google Scholar]
- Kao, W.H.; Folsom, A.R.; Nieto, F.J.; Mo, J.P.; Watson, R.L.; Brancati, F.L. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: The Atherosclerosis Risk in Communities Study. Arch. Intern. Med. 1999, 159, 2151–2159. [Google Scholar] [CrossRef]
- Hruby, A.; Ngwa, J.S.; Renström, F.; Wojczynski, M.K.; Ganna, A.; Hallmans, G.; Houston, D.K.; Jacques, P.F.; Kanoni, S.; Lehtimäki, T.; et al. Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE consortium studies. J. Nutr. 2013, 143, 345–353. [Google Scholar] [CrossRef]
- Cahill, F.; Shahidi, M.; Shea, J.; Wadden, D.; Gulliver, W.; Randell, E.; Vasdev, S.; Sun, G. High dietary magnesium intake is associated with low insulin resistance in the newfoundland population. PLoS One 2013, 8, e58278. [Google Scholar]
- McKeown, N.M.; Jacques, P.F.; Zhang, X.L.; Juan, W.; Sahyoun, N.R. Dietary magnesium intake is related to metabolic syndrome in older Americans. Eur. J. Nutr. 2008, 47, 210–216. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C.; McGuire, L.C.; Mokdad, A.H.; Liu, S. Intake of dietary magnesium and the prevalence of the metabolic syndrome among U.S. adults. Obesity 2007, 15, 1139–1146. [Google Scholar] [CrossRef]
- Bo, S.; Durazzo, M.; Guidi, S.; Carello, M.; Sacerdote, C.; Silli, B.; Rosato, R.; Cassader, M.; Gentile, L.; Pagano, G. Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. Am. J. Clin. Nutr. 2006, 84, 1062–1069. [Google Scholar]
- Song, Y.; Ridker, P.M.; Manson, J.E.; Cook, N.R.; Buring, J.E.; Liu, S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 2005, 28, 1438–1444. [Google Scholar] [CrossRef]
- Manolio, T.A.; Savage, P.J.; Burke, G.L.; Hilner, J.E.; Liu, K.; Orchard, T.J.; Sidney, S.; Oberman, A. Correlates of fasting insulin levels in young adults: The cardia study. J. Clin. Epidemiol. 1991, 44, 571–578. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodriguez-Moran, M. Serum magnesium in the metabolically-obese normal-weight and healthy-obese subjects. Eur. J. Intern. Med. 2013, 24, 639–643. [Google Scholar] [CrossRef]
- Lecube, A.; Baena-Fustegueras, J.A.; Fort, J.M.; Pelegrí, D.; Hernández, C.; Simó, R. Diabetes is the main factor accounting for hypomagnesemia in obese subjects. PLoS One 2012, 7, e30599. [Google Scholar]
- Nadler, J.L.; Buchanan, T.; Natarajan, R.; Antonipillai, I.; Bergman, R.; Rude, R. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 1993, 21, 1024–1029. [Google Scholar] [CrossRef]
- Romero, J.R.; Castonguay, A.J.; Barton, N.S.; Germer, S.; Martin, M.; Zee, R.Y. Gene variation of the transient receptor potential cation channel, subfamily M, members 6 (TRPM6) and 7 (TRPM7), and type 2 diabetes mellitus: A case-control study. Transl. Res. 2010, 156, 235–241. [Google Scholar] [CrossRef]
- Claverie-Martín, F.; García-Nieto, V.; Loris, C.; Ariceta, G.; Nadal, I.; Espinosa, L.; Fernández-Maseda, Á.; Antón-Gamero, M.; Avila, Á.; Madrid, Á.; et al. Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS One 2013, 8, e53151. [Google Scholar] [CrossRef]
- Kolisek, M.; Galaviz-Hernández, C.; Vázquez-Alaniz, F.; Sponder, G.; Javaid, S.; Kurth, K.; Nestler, A.; Rodríguez-Moran, M.; Verlohren, S.; Guerrero-Romero, F.; et al. SLC41A1 is the only magnesium responsive gene significantly overexpressed in placentas of preeclamptic women. Hypertens. Pregnancy 2013, 32, 378–389. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C.; Wang, L.; Dai, Q.; Liu, S. Magnesium Intake, Genetic Variants, and Diabetes Risk. In Magnesium in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Humana Press: New York, NY, USA, 2013; pp. 103–118. [Google Scholar]
- Sahni, J.; Scharenberg, A.M. The SLC41 family of MgtE-like magnesium transporters. Mol. Asp. Med. 2013, 34, 620–628. [Google Scholar] [CrossRef]
- Quamme, G.A. Molecular identification of ancient and modern mammalian magnesium transporters. Am. J. Physiol. Cell Physiol. 2009, 298, C407–C429. [Google Scholar] [CrossRef]
- Lee, S.; Park, H.K.; Son, S.P.; Lee, C.W.; Kim, I.J.; Kim, H.J. Effects of oral magnesium supplementation on insulin sensitivity and blood pressure in normo-magnesemic nondiabetic overweight Korean adults. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 781–788. [Google Scholar] [CrossRef]
- Rodríguez-Morán, M.; Guerrero-Romero, F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: A randomized double-blind controlled trial. Diabetes Care 2003, 26, 1147–1152. [Google Scholar] [CrossRef]
- Paolisso, G.; Scheen, A.; Cozzolino, D.; di Maro, G.; Varricchio, M.; D’Onofrio, F.; Lefebvre, P.J. Changes in glucose turnover parameters and improvement of glucose oxidation after 4-week magnesium administration in elderly noninsulin-dependent (type II) diabetic patients. J. Clin. Endocrinol. Metab. 1994, 78, 1510–1514. [Google Scholar] [CrossRef]
- Purvis, J.R.; Cummings, D.M.; Landsman, P.; Carroll, R.; Barakat, H.; Bray, J.; Whitley, C.; Horner, R.D. Effect of oral magnesium supplementation on selected cardiovascular risk factors in non-insulin-dependent diabetics. Arch. Fam. Med. 1994, 3, 503–508. [Google Scholar]
- Paolisso, G.; Passariello, N.; Pizza, G.; Marrazzo, G.; Giunta, R.; Sgambato, S.; Varricchio, M.; D’Onofrio, F. Dietary magnesium supplements improve B-cell response to glucose and arginine in elderly non-insulin dependent diabetic subjects. Acta Endocrinol. 1989, 121, 16–20. [Google Scholar]
- Paolisso, G.; Sgambato, S.; Pizza, G.; Passariello, N.; Varricchio, M.; D’Onofrio, F. Improved insulin response and action by chronic magnesium administration in aged NIDDM subjects. Diabetes Care 1989, 12, 265–269. [Google Scholar]
- Meyer, T.E.; Verwoert, G.C.; Hwang, S.-J.; Glazer, N.L.; Smith, A.V.; van Rooij, F.J.; Ehret, G.B.; Boerwinkle, E.; Felix, J.F.; Leak, T.S.; et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six loci influencing serum magnesium levels. PLoS Genet. 2010, 6, e1001045. [Google Scholar] [CrossRef] [Green Version]
- Takaya, J.; Iharada, A.; Okihana, H.; Kaneko, K. Magnesium deficiency in pregnant rats alters methylation of specific cytosines in the hepatic hydroxysteroid dehydrogenase-2 promoter of the offspring. Epigenetics 2011, 6, 573–578. [Google Scholar] [CrossRef]
- Takaya, J.; Iharada, A.; Okihana, H.; Kaneko, K. A calcium-deficient diet in pregnant, nursing rats induces hypomethylation of specific cytosines in the 11β-hydroxysteroid dehydrogenase-1 promoter in pup liver. Nutr. Res. 2013, 33, 961–970. [Google Scholar] [CrossRef]
- Nair, A.V.; Hocher, B.; Verkaart, S.; van Zeeland, F.; Pfab, T.; Slowinski, T.; Chen, Y.-P.; Schlingmann, K.P.; Schaller, A.; Gallati, S.; et al. Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc. Natl. Acad. Sci. USA 2012, 109, 11324–11329. [Google Scholar] [CrossRef]
- Song, Y.; Hsu, Y.-H.; Niu, T.; Manson, J.E.; Buring, J.E.; Liu, S. Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women. BMC Med. Genet. 2009, 10, 4. [Google Scholar]
- Franks, P.W. Gene × environment interactions in type 2 diabetes. Curr. Diabetes Rep. 2011, 11, 552–561. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hruby, A.; McKeown, N.M.; Song, Y.; Djoussé, L. Dietary Magnesium and Genetic Interactions in Diabetes and Related Risk Factors: A Brief Overview of Current Knowledge. Nutrients 2013, 5, 4990-5011. https://doi.org/10.3390/nu5124990
Hruby A, McKeown NM, Song Y, Djoussé L. Dietary Magnesium and Genetic Interactions in Diabetes and Related Risk Factors: A Brief Overview of Current Knowledge. Nutrients. 2013; 5(12):4990-5011. https://doi.org/10.3390/nu5124990
Chicago/Turabian StyleHruby, Adela, Nicola M. McKeown, Yiqing Song, and Luc Djoussé. 2013. "Dietary Magnesium and Genetic Interactions in Diabetes and Related Risk Factors: A Brief Overview of Current Knowledge" Nutrients 5, no. 12: 4990-5011. https://doi.org/10.3390/nu5124990
APA StyleHruby, A., McKeown, N. M., Song, Y., & Djoussé, L. (2013). Dietary Magnesium and Genetic Interactions in Diabetes and Related Risk Factors: A Brief Overview of Current Knowledge. Nutrients, 5(12), 4990-5011. https://doi.org/10.3390/nu5124990