Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health
Abstract
:1. Introduction
Activity | Yeast species | Heath effects | Ref. |
---|---|---|---|
Probiotic effect | Saccharomyces cerevisiae var. boulardii | Effect on enteric bacterial pathogen | [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] |
Maintenance of epithelial barrier integrity | [21,22,31,36] | ||
Anti-inflammatory effects | [21,22,31,32,33,34,35,37,39,40,41] | ||
Effects on immune response | [42,43,44,45] | ||
Trophic effects on intestinal mucosa | [46,47,48,49,52,53] | ||
Clinical effects on diarrheal diseases | [62,63,65,66,67,68,69,70,71,72,73,74,75] | ||
Biodegradation of phytate | Saccharomyces cerevisiae, Saccharomyceskluyveri, Schwanniomyces castellii, Debaryomyces castellii, Arxula adeninivorans, Pichia anomala, Pichia rhodanensis, Pichia spartinae, Cryptococcus laurentii, Rhodotorula gracilis, Torulaspora delbrueckii, Kluyveromyces lactis Candida krusei (Issatchenkia orientalis) and Candida spp. | Nutritional importance, i.e., bioavailability of divalent minerals such as iron, zink, calcium and magnesium | [87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108] |
Folate biofortification | S. cerevisiae | Prevention of neural tube defects in the foetus, megaloblastic anaemia and reduction of the risk for cardiovascular disease, cancer and Alzheimer's disease | [109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,130] |
Saccharomyces bayanus, Saccharomyces paradoxus, Saccharomyces pastorianus, Metschnikowia lochheadii, Debaryomyces melissophilus, Debaryomyces vanrijiae var. vanrijiae, Debaryomyces hansenii, Pichia philogaea, Kodamaea anthophila, Wickerhamiella lipophilia, Candida cleridarum and Candida drosophilae | [121] | ||
Candida milleri and T. delbrueckii | [126] | ||
Saccharomyces exiguous and Candida lambica | [128,129] | ||
P. anomala and Candida glabrata | [130] | ||
Kluyveromyces marxianus and C. krusei (I. orientalis) | [128,130] | ||
Degradation of mycotoxins | S. cerevisiae | Antitoxic in some degree | [138,139,140,141] |
Phaffia rhodozyma and Xanthophyllomyces dendrorhous | [142] | ||
Absorption of mycotoxins | S. cerevisiae | Antitoxic | [143,144,145] |
2. Beneficial Effects of Yeast as Probiotics
2.1. Taxonomic Characterization of Probiotic Yeasts
2.2. Experimental Effects of S. cerevisiae var. boulardii
2.2.1. Effects on enteric bacterial pathogens
2.2.3. Anti-inflammatory effects
2.2.4. Effects on immune response
2.2.5. Trophic effects on intestinal mucosa
2.3. Application of S. cerevisiae var. boulardii in Clinical Trails
3. Beneficial Effects of Yeasts on Bioavailability of Nutrients
3.1. Biodegradation of Phytate by Yeasts
3.1.1. Antinutritional effects of phytate
3.1.2. Phytase activity by yeasts
3.1.3. Application of yeast phytases in foods
3.2. Folate Biofortification by Yeasts
3.2.1. Importance of folate in the human diet
3.2.2. Folate production by yeasts
3.2.3. Effect of yeasts on folate biofortification of food
4. Beneficial Effects of Yeasts on Detoxification of Mycotoxins
4.1. Prevention of Toxic Effects of Mycotoxins
4.2. Biodegradation of Mycotoxins by Yeasts
4.3. Mycotoxin Absorption by Yeasts
5. Conclusions
Acknowledgements
References
- Qualified Presumption of Safety of Micro-organisms in Food and Feed of Micro-organisms in Food and Feed. In The EFSA's 2nd Scientific Colloquium Report; European Food Safety Authority: Parma, Italy, 2005.
- Jespersen, L. Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res. 2003, 3, 191–200. [Google Scholar]
- Maugeri, F.; Hernalsteens, S. Screening of yeast strains for transfructosylating activity. J. Mol. Catal. B Enzym. 2007, 49, 43–49. [Google Scholar]
- Psomas, E.I.; Fletouris, D.J.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Assimilation of cholesterol by yeast strains isolated from infant feces and Feta cheese. J. Dairy Sci. 2003, 86, 3416–3422. [Google Scholar]
- Klimek, M.; Wang, S.; Ogunkanmi, A. Safety and efficacy of red yeast rice (Monascus purpureus) as an alternative therapy for hyperlipidemia. P. T. 2009, 34, 313–327. [Google Scholar]
- Kogan, G.; Pajtinka, M.; Babincova, M.; Miadokova, E.; Rauko, P.; Slamenova, D.; Korolenko, T. A. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Minireview. Neoplasma 2008, 55, 387–393. [Google Scholar]
- Fleet, G.H.; Balia, R. Yeasts in Food and Beverages; Querol A.;, Fleet, G.H., Eds., Eds.; Springer-Verlag: Berlin, Heidelberg, Germany, 2006; Volume 2, pp. 381–398. [Google Scholar]
- Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. In Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report; FAO/WHO: Geneva, Switzerland, 2001.
- Psani, M.; Kotzekidou, P. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J. Microbiol. Biotechnol. 2006, 22, 1329–1336. [Google Scholar]
- Kumura, H.; Tanoue, Y.; Tsukahara, M.; Tanaka, T.; Shimazaki, K. Screening of dairy yeast strains for probiotic applications. J. Dairy Sci. 2004, 87, 4050–4056. [Google Scholar]
- Sazawal, S.; Hiremath, G.; Dhingra, U.; Malik, P.; Deb, S.; Black, R.E. Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trial. Lancet Infect. Dis. 2006, 6, 374–382. [Google Scholar]
- van der Aa Kühle, A.; Jespersen, L. The taxonomic position of Saccharomyces boulardii as evaluated by sequence analysis of the D1/D2 domain of 26S rDNA, the ITS1-5.8S rDNA-ITS2 region and the mitochondrial cytochrome-c oxidase II gene. Syst. Appl. Microbiol. 2003, 26, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Hennequin, C.; Thierry, A.; Richard, G.F.; Lecointre, G.; Nguyen, H.V.; Gaillardin, C.; Dujon, B. Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J. Clin. Microbiol. 2001, 39, 551–559. [Google Scholar]
- Edwards-Ingram, L.; Gitsham, P.; Burton, N.; Warhurst, G.; Clarke, I.; Hoyle, D.; Oliver, S. G.; Stateva, L. Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2007, 73, 2458–2467. [Google Scholar]
- Fietto, J.L.; Araujo, R.S.; Valadao, F.N.; Fietto, L.G.; Brandao, R.L.; Neves, M.J.; Gomes, F.C.; Nicoli, J.R.; Castro, I.M. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can. J. Microbiol. 2004, 50, 615–621. [Google Scholar]
- Gedek, B.R. Adherence of Escherichia coli serogroup 0 157 and the Salmonella Typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 1999, 42, 261–264. [Google Scholar]
- Tasteyre, A.; Barc, M.C.; Karjalainen, T.; Bourlioux, P.; Collignon, A. Inhibition of in vitro cell adherence of Clostridium difficile by Saccharomyces boulardii. Microb. Pathog. 2002, 32, 219–225. [Google Scholar]
- Lessard, M.; Dupuis, M.; Gagnon, N.; Nadeau, E.; Matte, J.J.; Goulet, J.; Fairbrother, J.M. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim Sci. 2009, 87, 922–934. [Google Scholar]
- Wu, X.; Vallance, B.A.; Boyer, L.; Bergstrom, K.S.B.; Walker, J.; Madsen, K.; O'Kusky, J.R.; Buchan, A.M.; Jacobson, K. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G295–G306. [Google Scholar]
- Herek, O.; Kara, I.G.; Kaleli, I. Effects of antibiotics and Saccharomyces boulardii on bacterial translocation in burn injury. Surg. Today 2004, 34, 256–260. [Google Scholar]
- Czerucka, D.; Dahan, S.; Mograbi, B.; Rossi, B.; Rampal, P. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect. Immun. 2000, 68, 5998–6004. [Google Scholar]
- Mumy, K.L.; Chen, X.H.; Kelly, C.P.; McCormick, B.A. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G599–G609. [Google Scholar]
- Rodrigues, A.C.; Nardi, R.M.; Bambirra, E.A.; Vieira, E.C.; Nicoli, J.R. Effect of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. J. Appl. Bacteriol. 1996, 81, 251–256. [Google Scholar]
- Castagliuolo, I.; LaMont, J.T.; Nikulasson, S.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun. 1996, 64, 5225–5232. [Google Scholar]
- Castagliuolo, I.; Riegler, M.F.; Valenick, L.; LaMont, J.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect. Immun. 1999, 67, 302–307. [Google Scholar]
- Pothoulakis, C.; Kelly, C.P.; Joshi, M.A.; Gao, N.; O'Keane, C.J.; Castagliuolo, I.; LaMont, J.T. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterol. 1993, 104, 1108–1115. [Google Scholar]
- Czerucka, D.; Roux, I.; Rampal, P. Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3',5'-cyclic monophosphate induction in intestinal cells. Gastroenterol. 1994, 106, 65–72. [Google Scholar]
- Czerucka, D.; Rampal, P. Effect of Saccharomyces boulardii on cAMP- and Ca2+ -dependent Cl- secretion in T84 cells. Dig. Dis. Sci. 1999, 44, 2359–2368. [Google Scholar]
- Brandão, R.L.; Castro, I.M.; Bambirra, E.A.; Amaral, S.C.; Fietto, L.G.; Tropia, M.J.; Neves, M.J.; Dos Santos, R.G.; Gomes, N.C.; Nicoli, J.R. Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1998, 64, 564–568. [Google Scholar]
- Buts, J.P.; Dekeyser, N.; Stilmant, C.; Delem, E.; Smets, F.; Sokal, E. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr. Res. 2006, 60, 24–29. [Google Scholar]
- Dahan, S.; Dalmasso, G.; Imbert, V.; Peyron, J.F.; Rampal, P.; Czerucka, D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect. Immun. 2003, 71, 766–773. [Google Scholar]
- Dalmasso, G.; Loubat, A.; Dahan, S.; Calle, G.; Rampal, P.; Czerucka, D. Saccharomyces boulardii prevents TNF-α-induced apoptosis in EHEC-infected T84 cells. Res. Microbiol. 2006, 157, 456–465. [Google Scholar]
- Chen, X.; Kokkotou, E.G.; Mustafa, N.; Bhaskar, K.R.; Sougioultzis, S.; O'Brien, M.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J. Biol. Chem. 2006, 281, 24449–24454. [Google Scholar]
- Sougioultzis, S.; Simeonidis, S.; Bhaskar, K.R.; Chen, X.; Anton, P.M.; Keates, S.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem. Biophys. Res. Commun. 2006, 343, 69–76. [Google Scholar]
- van der Aa Kühle, A.; Skovgaard, K.; Jespersen, L. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 2005, 101, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, T.D.; Lesnik, U.; Arneborg, N.; Raspor, P.; Jespersen, L. Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits. FEMS Yeast Res. 2008, 8, 631–640. [Google Scholar]
- Lee, S.K.; Kim, H.J.; Chi, S.G.; Jang, J.Y.; Nam, K.D.; Kim, N.H.; Joo, K.R.; Dong, S.H.; Kim, B.H.; Chang, Y.W.; Lee, J.I.; Chang, R. Saccharomyces boulardii activates expression of peroxisome proliferator-activated receptor-gamma in HT-29 cells. Korean J. Gastroenterol. 2005, 45, 328–334. [Google Scholar]
- Su, C.G.; Wen, X.; Bailey, S.T.; Jiang, W.; Rangwala, S.M.; Keilbaugh, S.A.; Flanigan, A.; Murthy, S.; Lazar, M.A.; Wu, G.D. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J. Clin. Invest. 1999, 104, 383–389. [Google Scholar]
- Dalmasso, G.; Cottrez, F.; Imbert, V.; Lagadec, P.; Peyron, J.F.; Rampal, P.; Czerucka, D.; Groux, H.; Foussat, A.; Brun, V. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterol. 2006, 131, 1812–1825. [Google Scholar]
- Dijkstra, G.; Moshage, H.; van Dullemen, H.M.; de Jager-Krikken, A.; Tiebosch, A.T.; Kleibeuker, J.H.; Jansen, P.L.; van, G.H. Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J. Pathol. 1998, 186, 416–421. [Google Scholar]
- Girard, P.; Pansart, Y.; Gillardin, J.M. Inducible nitric oxide synthase involvement in the mechanism of action of Saccharomyces boulardii in castor oil-induced diarrhoea in rats. Nitric. Oxide. 2005, 13, 163–169. [Google Scholar]
- Caetano, J.A.; Parames, M.T.; Babo, M.J.; Santos, A.; Ferreira, A.B.; Freitas, A.A.; Coelho, M.R.; Mateus, A.M. Immunopharmacological effects of Saccharomyces boulardii in healthy human volunteers. Int. J. Immunopharmacol. 1986, 8, 245–259. [Google Scholar]
- Buts, J.P.; Bernasconi, P.; Vaerman, J.P.; Dive, C. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig. Dis. Sci. 1990, 35, 251–256. [Google Scholar]
- Qamar, A.; Aboudola, S.; Warny, M.; Michetti, P.; Pothoulakis, C.; LaMont, J.T.; Kelly, C.P. Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect. Immun. 2001, 69, 2762–2765. [Google Scholar]
- Rodrigues, A.C.; Cara, D.C.; Fretez, S.H.; Cunha, F.Q.; Vieira, E.C.; Nicoli, J.R.; Vieira, L.Q. Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J. Appl. Microbiol. 2000, 89, 404–414. [Google Scholar]
- Buts, J.P.; Bernasconi, P.; Van Craynest, M.P.; Maldague, P.; De, M.R. Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr. Res. 1986, 20, 192–196. [Google Scholar]
- Jahn, H.U.; Ullrich, R.; Schneider, T.; Liehr, R.M.; Schieferdecker, H.L.; Holst, H.; Zeitz, M. Immunological and trophical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 1996, 57, 95–104. [Google Scholar]
- Buts, J.P.; De, K.N.; Marandi, S.; Hermans, D.; Sokal, E.M.; Chae, Y.H.; Lambotte, L.; Chanteux, H.; Tulkens, P.M. Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 1999, 45, 89–96. [Google Scholar]
- Buts, J.P.; De, K.N.; De, R.L. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr. Res. 1994, 36, 522–527. [Google Scholar]
- Bowling, T.E.; Raimundo, A.H.; Grimble, G.K.; Silk, D.B. Reversal by short-chain fatty acids of colonic fluid secretion induced by enteral feeding. Lancet 1993, 342, 1266–1268. [Google Scholar]
- Schneider, S.M.; Le Gall, P.; Girard-Pipau, E.; Piche, T.; Pompei, A.; Nano, J.L.; Hebuterne, X.; Rampal, P. Total artificial nutrition is associated with major changes in the fecal flora. Eur. J. Nutr. 2000, 39, 248–255. [Google Scholar]
- Schneider, S.M.; Girard-Pipau, F.; Filippi, J.; Hebuterne, X.; Moyse, D.; Hinojosa, G.C.; Pompei, A.; Rampal, P. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J. Gastroenterol. 2005, 11, 6165–6169. [Google Scholar]
- Buts, J.P.; De, K.N.; Stilmant, C.; Sokal, E.; Marandi, S. Saccharomyces boulardii enhances N-terminal peptide hydrolysis in suckling rat small intestine by endoluminal release of a zinc-binding metalloprotease. Pediatr. Res. 2002, 51, 528–534. [Google Scholar]
- De Llanos, R.; Querol, A.; Peman, J.; Gobernado, M.; Fernandez-Espinar, M.T. Food and probiotic strains from the Saccharomyces cerevisiae species as a possible origin of human systemic infections. Int. J. Food Microbiol. 2006, 110, 286–290. [Google Scholar]
- Hennequin, C.; Kauffmann-Lacroix, C.; Jobert, A.; Viard, J.P.; Ricour, C.; Jacquemin, J.L.; Berche, P. Possible role of catheters in Saccharomyces boulardii fungemia. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 16–20. [Google Scholar]
- Lherm, T.; Monet, C.; Nougiere, B.; Soulier, M.; Larbi, D.; Le Gall, C.; Caen, D.; Malbrunot, C. Seven cases of fungemia with Saccharomyces boulardii in critically ill patients. Intensive Care Med. 2002, 28, 797–801. [Google Scholar]
- Katz, J.A. Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea. J. Clin. Gastroenterol. 2006, 40, 249–255. [Google Scholar]
- McFarland, L.V. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am. J. Gastroenterol. 2006, 101, 812–822. [Google Scholar]
- Rohde, C.L.; Bartolini, V.; Jones, N. The use of probiotics in the prevention and treatment of antibiotic-associated diarrhea with special interest in Clostridium difficile-associated diarrhea. Nutr. Clin. Pract. 2009, 24, 33–40. [Google Scholar]
- Beaugerie, L.; Petit, J.C. Antibiotic-associated diarrhoea. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Asha, N.J.; Tompkins, D.; Wilcox, M.H. Comparative analysis of prevalence, risk factors, and molecular epidemiology of antibiotic-associated diarrhea due to Clostridium difficile, Clostridium perfringens, and Staphylococcus aureus. J. Clin. Microbiol. 2006, 44, 2785–2791. [Google Scholar] [PubMed]
- Kotowska, M.; Albrecht, P.; Szajewska, H. Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Aliment. Pharmacol. Ther. 2005, 21, 583–590. [Google Scholar]
- Surawicz, C.M.; McFarland, L.V.; Greenberg, R.N.; Rubin, M.; Fekety, R.; Mulligan, M. E.; Garcia, R. J.; Brandmarker, S.; Bowen, K.; Borjal, D.; Elmer, G. W. The search for a better treatment for recurrent Clostridium difficile disease: Use of high-dose vancomycin combined with Saccharomyces boulardii. Clin. Infect. Dis. 2000, 31, 1012–1017. [Google Scholar]
- Sanders, J.W.; Tribble, D.R. Diarrhea in the returned traveler. Curr. Gastroenterol. Rep. 2001, 3, 304–314. [Google Scholar]
- McFarland, L.V. Meta-analysis of probiotics for the prevention of traveler's diarrhea. Travel. Med. Infect. Dis. 2007, 5, 97–105. [Google Scholar]
- Szajewska, H.; Skorka, A.; Dylag, M. Meta-analysis: Saccharomyces boulardii for treating acute diarrhoea in children. Aliment. Pharmacol. Ther. 2007, 25, 257–264. [Google Scholar]
- Szajewska, H.; Ruszczynski, M.; Radzikowski, A. Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J. Pediatr. 2006, 149, 367–372. [Google Scholar]
- Bleichner, G.; Blehaut, H.; Mentec, H.; Moyse, D. Saccharomyces boulardii prevents diarrhea in critically ill tube-fed patients - A multicenter, randomized, double-blind placebo-controlled trial. Intensive Care Med. 1997, 23, 517–523. [Google Scholar] [CrossRef] [PubMed]
- James, J.S. Diarrhea, and the experimental treatment Saccharomyces boulardii. AIDS Treat. News 1995, 1–4. [Google Scholar]
- Maupas, J.; Champemont, P.; Delforge, M. Efficacy of Saccharomyces boulardii in the treatment of diarrhea in AIDS. Ann. Med. Interne (Paris) 1991, 142, 64–65. [Google Scholar] [PubMed]
- Maupas, J.; Champemont, P.; Delforge, M. Treatment of irritable bowel syndrome with Saccharomyces boulardii: A double-blind, placebo-controlled study. Med. Chir. Dig. 1983, 12, 77–79. [Google Scholar]
- Plein, K.; Hotz, J. Therapeutic effects of Saccharomyces boulardii on mild residual symptoms in a stable phase of Crohns-disease with special respect to chronic diarrhea - a pilot-study. Z. Gastroenterol. 1993, 31, 129–134. [Google Scholar]
- Guslandi, M.; Mezzi, G.; Sorghi, M.; Testoni, P.A. Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig. Dis. Sci. 2000, 45, 1462–1464. [Google Scholar]
- Guslandi, M.; Giollo, P.; Testoni, P.A. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 2003, 15, 697–698. [Google Scholar]
- Vilela, E.G.; Ferrari, M.D.D.; Torres, H.O.D.; Pinto, A.G.; Aguirre, A.C.C.; Martins, F.P.; Goulart, E.M.A.; Da Cunha, A.S. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn's disease in remission. Scand. J. Gastroenterol. 2008, 43, 842–848. [Google Scholar]
- Lopez, H.W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and phytic acid interactions: is it a real problem for human nutrition? Int. J. Food Sci. Technol. 2002, 37, 727–739. [Google Scholar] [CrossRef]
- Maga, J.A. Phytate - Its Chemistry, Occurrence, Food Interactions, Nutritional Significance, and Methods of Analy. J. Agric. Food Chem. 1982, 30, 1–9. [Google Scholar]
- Vohra, A.; Satyanarayana, T. Phytases: Microbial sources, production, purification, and potential biotechnological application. Crit. Rev. Biotechnol. 2003, 23, 29–60. [Google Scholar]
- Reddy, N.R.; Pierson, M.D. Reduction in antinutritional and toxic components in plant foods (A) by fermentation. Food Res. Int. 1994, 27, 281–290. [Google Scholar]
- Vucenik, I.; Shamsuddin, A.M. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: From laboratory to clinic. J. Nutr. 2003, 133, 3778S–3784S. [Google Scholar]
- Vucenik, I.; Shamsuddin, A.M. Protection against cancer by dietary IP6 and inositol. Nutr. Cancer 2006, 55, 109–125. [Google Scholar]
- Konietzny, U.; Greiner, R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Technol. 2002, 37, 791–812. [Google Scholar]
- Türk, M.; Carlsson, N.G.; Sandberg, A.S. eduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. J. Cereal Sci. 1996, 23, 257–264. [Google Scholar]
- Sandberg, A.S. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Adv. Exp. Med. Biol. 1991, 289, 499–508. [Google Scholar]
- Navert, B.; Sandstrom, B.; Cederblad, A. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. Br. J. Nutr. 1985, 53, 47–53. [Google Scholar]
- Sandberg, A.S.; Hasselblad, C.; Hasselblad, K.; Hulten, L. The effect of wheat bran on the absorption of minerals in the small intestine. Br. J. Nutr. 1982, 48, 185–191. [Google Scholar]
- Haefner, S.; Knietsch, A.; Scholten, E.; Braun, J.; Lohscheidt, M.; Zelder, O. Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol. 2005, 68, 588–597. [Google Scholar]
- Quan, C.S.; Fan, S.D.; Zhang, L.H.; Wang, Y.J.; Ohta, Y. Purification and properties of a phytase from Candida krusei WZ-001. J. Biosci. Bioeng. 2002, 94, 419–425. [Google Scholar]
- Segueilha, L.; Lambrechts, C.; Boze, H.; Moulin, G.; Galzy, P. Purification and properties of the phytase from Schwanniomyces castellii. J. Ferment. Bioeng. 1992, 74, 7–11. [Google Scholar]
- Ragon, M.; Aumelas, A.; Chemardin, P.; Galvez, S.; Moulin, G.; Boze, H. Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Appl. Microbiol. Biotechnol. 2008, 78, 47–53. [Google Scholar]
- Sano, K.; Fukuhara, H.; Nakamura, Y. Phytase of the yeast Arxula adeninivorans. Biotechnol. Lett. 1999, 21, 33–38. [Google Scholar]
- Olstorpe, M.; Schnurer, J.; Passoth, V. Screening of yeast strains for phytase activity. FEMS Yeast Res. 2009, 9, 478–488. [Google Scholar]
- Vohra, A.; Satyanarayana, T. Phytase production by the yeast, Pichia anomala. Biotechnol. Lett. 2001, 23, 551–554. [Google Scholar]
- Nakamura, Y.; Fukuhara, H.; Sano, K. Secreted phytase activities of yeasts. Biosci. Biotechnol. Biochem. 2000, 64, 841–844. [Google Scholar]
- van Staden, J.; den Haan, R.; van Zyl, W. H.; Botha, A.; Viljoen-Bloom, M. Phytase activity in Cryptococcus laurentii ABO 510. FEMS Yeast Res. 2007, 7, 442–448. [Google Scholar]
- Bindu, S.; Somashekar, D.; Joseph, R. A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Lett. Appl. Microbiol. 1998, 27, 336–340. [Google Scholar]
- Lim, M.H.; Lee, O.H.; Chin, J.E.; Ko, H.M.; Kim, I.C.; Lee, H.B.; Im, S.Y.; Bai, S. Simultaneous degradation of phytic acid and starch by an industrial strain of Saccharomyces cerevisiae producing phytase and alpha-amylase. Biotechnol. Lett. 2008, 30, 2125–2130. [Google Scholar]
- Veide, J.; Andlid, T. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. Int. J. Food Microbiol. 2006, 108, 60–67. [Google Scholar]
- Andlid, T.A.; Veide, J.; Sandberg, A.S. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. Int. J. Food Microbiol. 2004, 97, 157–169. [Google Scholar]
- Türk, M.; Sandberg, A. S.; Carlsson, N. G.; Andlid, T. Inositol hexaphosphate hydrolysis by Baker's yeast. Capacity, kinetics, and degradation products. J. Agric. Food Chem. 2000, 48, 100–104. [Google Scholar] [PubMed]
- Harland, B. F.; Frolich, W. Effects of phytase from 3 yeasts on phytate reduction in Norwegian whole wheat-flour. Cereal Chem. 1989, 66, 357–358. [Google Scholar]
- Türk, M.; Sandberg, A.S. Phytate Degradation During Breadmaking-Effect of Phytase Addition. J. Cereal Sci. 1992, 15, 281–294. [Google Scholar]
- Haraldsson, A.K.; Veide, J.; Andlid, T.; Alminger, M.L.; Sandberg, A.S. Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion. J. Agric. Food Chem. 2005, 53, 5438–5444. [Google Scholar]
- Reale, A.; Mannina, L.; Tremonte, P.; Sobolev, A.P.; Succi, M.; Sorrentino, E.; Coppola, R. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a P-31 NMR study. J. Agric. Food Chem. 2004, 52, 6300–6305. [Google Scholar]
- Lopez, H.W.; Duclos, V.; Coudray, C.; Krespine, V.; Feillet-Coudray, C.; Messager, A.; Demigne, C.; Remesy, C. Making bread with sourdough improves mineral bioavailability from reconstituted whole wheat flour in rats. Nutrition 2003, 19, 524–530. [Google Scholar]
- Chaoui, A.; Faid, M.; Belhcen, R. Effect of natural starters used for sourdough bread in Morocco on phytate biodegradation. East Mediterr. Health J. 2003, 9, 141–147. [Google Scholar]
- Antai, S.P.; Nkwelang, G. Reduction of some toxicants in Icacina mannii by fermentation with Saccharomyces cerevisiae. Plant Foods Hum. Nutr. 1999, 53, 103–111. [Google Scholar]
- Bilgicli, N.; Elgun, A.; Turker, S. Effects of various phytase sources on phytic acid content, mineral extractability and protein digestibility of tarhana. Food Chem. 2006, 98, 329–337. [Google Scholar]
- Gregory, J.F. Chemical and nutritional aspects of folate research: analytical procedures, methods of folate synthesis, stability, and bioavailability of dietary folates. Adv. Food Nutr. Res. 1989, 33, 1–101. [Google Scholar]
- Hanson, A.D.; Roje, S. One-carbon metabolism in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 119–137. [Google Scholar]
- Scott, J.; Rebeille, F.; Fletcher, J. Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J. Sci. Food Agric. 2000, 80, 795–824. [Google Scholar]
- Bailey, L.B.; Rampersaud, G.C.; Kauwell, G.P. A. Folic acid supplements and fortification affect the risk for neural tube defects, vascular disease and cancer: Evolving science. J. Nutr. 2003, 133, 1961S–1968S. [Google Scholar]
- Cordero, J.F.; Do, A.; Berry, R.J. Review of interventions for the prevention and control of folate and vitamin B-12 deficiencies. Food Nutr. Bull. 2008, 29, S188–S195. [Google Scholar]
- Ward, M. Homocysteine, folate, and cardiovascular disease. Int. J. Vitam. Nutr. Res. 2001, 71, 173–178. [Google Scholar]
- Duthie, S.J. Folic acid deficiency and cancer: mechanisms of DNA instability. Br. Med. Bull. 1999, 55, 578–592. [Google Scholar]
- Wang, H.X. Vitamin B-12, folate, and Alzheimer's disease. Drug Dev. Res. 2002, 56, 111–122. [Google Scholar]
- de Bree, A.; van, D.M.; Brouwer, I.A.; van het Hof, K.H.; Steegers-Theunissen, R.P. Folate intake in Europe: recommended, actual and desired intake. Eur. J. Clin. Nutr. 1997, 51, 643–660. [Google Scholar]
- Letsky, E.A. Erythropoiesis in Pregnancy. J. Perinat. Med. 1995, 23, 39–45. [Google Scholar]
- Patring, J.D.; Jastrebova, J.A.; Hjortmo, S.B.; Andlid, T.A.; Jagerstad, I.M. Development of a simplified method for the determination of folates in baker's yeast by HPLC with ultraviolet and fluorescence detection. J. Agric. Food Chem. 2005, 53, 2406–2411. [Google Scholar]
- Hjortmo, S.; Patring, J.; Andlid, T. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. Int. J. Food Microbiol. 2008, 123, 93–100. [Google Scholar]
- Hjortmo, S.; Patring, J.; Jastrebova, J.; Andlid, T. Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci. Technol. 2005, 16, 311–316. [Google Scholar]
- Hjortmo, S.; Patring, J.; Jastrebova, J.; Andlid, T. Biofortification of folates in white wheat bread by selection of yeast strain and process. Int. J. Food Microbiol. 2008, 127, 32–36. [Google Scholar]
- Kariluoto, S.; Vahteristo, L.; Salovaara, H.; Katina, K.; Liukkonen, K.H.; Piironen, V. Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem. 2004, 81, 134–139. [Google Scholar]
- Osseyi, E.S.; Wehling, R.L.; Albrecht, J.A. HPLC determination of stability and distribution of added folic acid and some endogenous folates during breadmaking. Cereal Chem. 2001, 78, 375–378. [Google Scholar]
- Jägerstad, M.; Piironen, V.; Walker, C.; Ros, G.; Carnovale, E.; Holasova, M.; Nau, H. Increasing natural-food folates through bioprocessing and biotechnology. Trends Food Sci. Technol. 2005, 16, 298–306. [Google Scholar]
- Kariluoto, S.; Aittamaa, M.; Korhola, M.; Salovaara, H.; Vahteristo, L.; Piironen, V. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int. J. Food Microbiol. 2006, 106, 137–143. [Google Scholar]
- Zubillaga, M.; Weill, R.; Postaire, E.; Goldman, C.; Caro, R.; Boccio, J. Effect of probiotics and functional foods and their use in different diseases. Nutr. Res. 2001, 21, 569–579. [Google Scholar]
- Witthuhn, R.C.; Schoeman, T.; Britz, T.J. Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. Int. Dairy J. 2005, 15, 383–389. [Google Scholar]
- Patring, J.D.M.; Hjortmo, S.B.; Jastrebova, J.A.; Svensson, U.K.; Andlid, T.A.; Jägerstad, I.M. Characterization and quantification of folates produced by yeast strains isolated from kefir granules. Eur. Food Res. Technol. 2006, 223, 633–637. [Google Scholar]
- Hjortmo, S.B.; Hellstrom, A.M.; Andlid, T.A. Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res. 2008, 8, 781–787. [Google Scholar]
- Sweeney, M.J.; Dobson, A.D. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar]
- Bhat, R.V. Mould deterioration of agricultural commodities during transit: problems faced by developing countries. Int. J. Food Microbiol. 1988, 7, 219–225. [Google Scholar]
- Schatzmayr, G.; Zehner, F.; Taubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E. M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar]
- Galvano, F.; Piva, A.; Ritieni, A.; Galvano, G. Dietary strategies to counteract the effects of mycotoxins: a review. J. Food Prot. 2001, 64, 120–131. [Google Scholar]
- Kabak, B.; Dobson, A.D.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar]
- Shephard, G.S. Impact of mycotoxins on human health in developing countries. Food Addit. Contam. 2008, 25, 146–151. [Google Scholar]
- Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009, 41, 1–7. [Google Scholar]
- Moss, M.O.; Long, M.T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam. 2002, 19, 387–399. [Google Scholar]
- Böswald, C.; Engelhardt, G.; Vogel, H.; Wallnofer, P.R. Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. Nat. Toxins. 1995, 3, 138–144. [Google Scholar]
- Scott, P.M.; Kanhere, S.R.; Lawrence, G.A.; Daley, E.F.; Farber, J.M. Fermentation of wort containing added ochratoxin A and fumonisins B1 and B2. Food Addit. Contam. 1995, 12, 31–40. [Google Scholar]
- Garda, J.; Macedo, R.M.; Faria, R.; Bernd, L.; Dors, G.C.; Badiale-Furlong, E. Alcoholic fermentation effects on malt spiked with trichothecenes. Food Control. 2005, 16, 423–428. [Google Scholar]
- Péteri, Z.; Teren, J.; Vagvolgyi, C.; Varga, J. Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiol. 2007, 24, 205–210. [Google Scholar]
- Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol. 2006, 17, 48–55. [Google Scholar]
- Girish, C.K.; Devegowda, C. Efficacy of glucomannan-containing yeast product (Mycosorb (R)) and hydrated sodium calcium aluminosilicate in preventing the individual and combined toxicity of aflatoxin and T-2 toxin in commercial broilers. Asian-australas. J. Anim. Sci. 2006, 19, 877–883. [Google Scholar]
- Raju, M.V.L.N.; Devegowda, G. Esterified-glucomannan in broiler chicken diets-contaminated with aflatoxin, ochratoxin and T-2 toxin: Evaluation of its binding ability (in vitro) and efficacy as immunomodulator. Asian-australas. J. Anim. Sci. 2002, 15, 1051–1056. [Google Scholar]
- Aravind, K.L.; Patil, V.S.; Devegowda, G.; Umakantha, B.; Ganpule, S.P. Efficacy of esterified glucomannan to counteract mycotoxicosis in naturally contaminated feed on performance and serum biochemical and hematological parameters in broilers. Poult. Sci. 2003, 82, 571–576. [Google Scholar]
- Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J. Appl. Microbiol. 2004, 97, 1038–1044. [Google Scholar]
- Yiannikouris, A.; Francois, J.; Poughon, L.; Dussap, C.G.; Bertin, G.; Jeminet, G.; Jouany, J.P. Adsorption of Zearalenone by beta-D-glucans in the Saccharomyces cerevisiae cell wall. J. Food Prot. 2004, 67, 1195–1200. [Google Scholar]
- Raju, M.V.; Devegowda, G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin. Br. Poult. Sci. 2000, 41, 640–650. [Google Scholar]
- Sabater-Vilar, M.; Malekinejad, H.; Selman, M.H.; van der Doelen, M.A.; Fink-Gremmels, J. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 2007, 163, 81–90. [Google Scholar]
- Baptista, A.S.; Horii, J.; Calori-Domingues, M.A.; da Gloria, E.M.; Salgado, J.M.; Vizioli, M.R. The capacity of manno-oligosaccharides, thermolysed yeast and active yeast to attenuate aflatoxicosis. World J. Microbiol. Biotechnol. 2004, 20, 475–481. [Google Scholar]
- Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Márquez-Márquez, R.; Reyes, A. Antigenotoxic effect of Saccharomyces cerevisiae on the damage produced in mice fed with aflatoxin B1 contaminated corn. Food Chem. Toxicol. 2006, 44, 2058–2063. [Google Scholar]
- Caridi, A.; Galvano, F.; Tafur, A.; Ritieni, A. In-vitro screening of Saccharomyces strains for ochratoxin A removal from liquid medium. Ann. Microbiol. 2006, 56, 135–137. [Google Scholar]
- Caridi, A. New perspectives in safety and quality enhancement of wine through selection of yeasts based on the parietal adsorption activity. Int. J. Food Microbiol. 2007, 120, 167–172. [Google Scholar]
- Shetty, P.H.; Hald, B.; Jespersen, L. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int. J. Food Microbiol. 2007, 113, 41–46. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Moslehi-Jenabian, S.; Lindegaard, L.; Jespersen, L. Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients 2010, 2, 449-473. https://doi.org/10.3390/nu2040449
Moslehi-Jenabian S, Lindegaard L, Jespersen L. Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients. 2010; 2(4):449-473. https://doi.org/10.3390/nu2040449
Chicago/Turabian StyleMoslehi-Jenabian, Saloomeh, Line Lindegaard, and Lene Jespersen. 2010. "Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health" Nutrients 2, no. 4: 449-473. https://doi.org/10.3390/nu2040449
APA StyleMoslehi-Jenabian, S., Lindegaard, L., & Jespersen, L. (2010). Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients, 2(4), 449-473. https://doi.org/10.3390/nu2040449