A Review of Major Compounds in Bilberry (Vaccinium myrtillus L.) Fruits and Leaves: Isolation, Purification, and Their Antiaging Effects
Abstract
1. Introduction
2. Methodology
3. Bilberry: Botany, Nutritional Values, and Health Benefits
3.1. Nutritional Components
3.2. Health Benefits of Bioactive Compounds
4. Major Bioactive Compounds in Bilberry
4.1. Structure of Bioactive Compounds Found in Bilberry Fruits and Leaves
4.2. Extraction and Identification of Major Compounds from Bilberry Fruit and Leaves
4.2.1. Extraction of Major Compounds from Bilberry Fruit and Leaves
4.2.2. Identification of Major Compounds from Bilberry Fruit and Leaves
5. Bioactivity of Bilberry
5.1. Antiaging Effect of Bilberry and Possible Mode of Action of Its Bioactive Compounds
| Specific Compounds | Pathways | References |
|---|---|---|
| Anthocyanins | Bilberry anthocyanin consumption has an important function in diminishing aging-induced oxidative stress and reducing the permeability of the intestinal epithelial barrier through induction of protective autophagy. The middle dose of the bilberry anthocyanin was able to induce phosphorylation of AMP-activated protein kinase (AMPK) and Forkhead box O3a (FOXO3a) and inhibited the phosphorylation of Mammalian target of rapamycin (mTOR), which showed that bilberry anthocyanin could induce autophagy through the AMPK–mTOR signaling pathways. | [100] |
| Bilberry anthocyanin has a great effect on enhancing the serum cholesterol in natural aging perimenopausal rats via the estrogen receptor signaling pathway. | [103] | |
| Bilberry could enhance the clearance of beta-amyloid deposits in drusen, a characteristic feature of age-related macular degeneration, and hinder the activation of STAT3 and NF-κB, the pathways related to inflammation and cell survival. | [104,105] | |
| Anthocyanins in bilberry are reported to protect mitochondrial function by significantly reducing the beta-amyloid protein clump load and Amyloid-beta 42 levels, which mostly decline with age. | [106] | |
| Polyphenolic compounds | Fermented bilberry extract can enhance the parameters related to skin complexion, like skin lightness, skin pigmentation, and skin color redness factor, and polyphenolic components in bilberry extract lead to its distribution at the skin level. | [24] |
| Bilberry compounds | The beneficial impact of bilberry lies in decreasing inflammation by means of down-regulating the expression of pro-inflammatory cytokines, enzymes, and modifying the signaling pathways, and decreasing the level of ROS. | [24,99] |
| Bilberry compounds | In LPS-lured RAW 264.7 cells, bilberry extract can suppress the generation of nitric oxide and reverse pro-inflammatory cytokines like COX-2, TNF-α, iNOS, and IL-6. | [107] |
5.2. Other Miscellaneous Properties of Bilberry
6. Clinical Studies/Trials Related to Bilberry
7. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil-Martínez, L.; Aznar-Ramos, M.J.; del Carmen Razola-Diaz, M.; Mut-Salud, N.; Falcón-Piñeiro, A.; Baños, A.; Guillamón, E.; Gómez-Caravaca, A.M.; Verardo, V. Establishment of a Sonotrode Extraction Method and Evaluation of the Antioxidant, Antimicrobial and Anticancer Potential of an Optimized Vaccinium myrtillus L. Leaves Extract as Functional Ingredient. Foods 2023, 12, 1688. [Google Scholar] [CrossRef]
- Vega, E.N.; García-Herrera, P.; Ciudad-Mulero, M.; Dias, M.I.; Matallana-González, M.C.; Cámara, M.; Tardío, J.; Molina, M.; Pinela, J.; Pires, T.C. Wild sweet cherry, strawberry and bilberry as underestimated sources of natural colorants and bioactive compounds with functional properties. Food Chem. 2023, 414, 135669. [Google Scholar] [CrossRef]
- Negrușier, C.; Colișar, A.; Rózsa, S.; Chiș, M.S.; Sîngeorzan, S.-M.; Borsai, O.; Negrean, O.-R. Bilberries vs. Blueberries: A Comprehensive Review. Horticulturae 2024, 10, 1343. [Google Scholar] [CrossRef]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef] [PubMed]
- Gailīte, A.; Gaile, A.; Ruņģis, D.E. Genetic diversity and structure of wild Vaccinium populations-V. myrtillus, V. vitis-idaea and V. uliginosum in the Baltic States. Silva Fenn. 2020, 54, 10396. [Google Scholar] [CrossRef]
- Kopystecka, A.; Kozioł, I.; Radomska, D.; Bielawski, K.; Bielawska, A.; Wujec, M. Vaccinium uliginosum and Vaccinium myrtillus—Two species—One used as a functional food. Nutrients 2023, 15, 4119. [Google Scholar] [CrossRef]
- Brezoiu, A.-M.; Deaconu, M.; Mitran, R.-A.; Sedky, N.K.; Schiets, F.; Marote, P.; Voicu, I.-S.; Matei, C.; Ziko, L.; Berger, D. The Antioxidant and Anti-Inflammatory Properties of Wild Bilberry Fruit Extracts Embedded in Mesoporous Silica-Type Supports: A Stability Study. Antioxidants 2024, 13, 250. [Google Scholar] [CrossRef]
- Martinović, M.; Nešić, I.; Žugić, A.; Tadić, V.M. Preliminary Analysis of Bilberry NaDES Extracts as Versatile Active Ingredients of Natural Dermocosmetic Products: In Vitro Evaluation of Anti-Tyrosinase, Anti-Hyaluronidase, Anti-Collagenase, and UV Protective Properties. Plants 2025, 14, 2374. [Google Scholar] [CrossRef]
- Expert Market Research. Bilberry Extract Market Size and Share Outlook—Forecast Trends and Growth Analysis Report (2025–2034): Bilberry Extract Market: By Source: Organic, Conventional; By Form: Liquid, Powder, Tablets/Capsules, Others; By Sales Channel: Direct Sales, Indirect Sales; By End Use: Food and Beverages, Pharmaceuticals, Others; Regional Analysis; Market Dynamics; Competitive Landscape; 2025–2034. Available online: https://www.expertmarketresearch.com/reports/bilberry-extract-market (accessed on 18 October 2025).
- Hellström, J.; Karhu, S.; Karhu, J.; Järvenpää, E.; Välimaa, A.-L. Phenolic profiles differentiate wild bilberry and cultivated blueberry fruit. LWT 2024, 199, 116080. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J. Sci. Food Agric. 2015, 95, 776–785. [Google Scholar] [CrossRef]
- Altıok, E.; Kacmaz, S.; Altıok, D. Extraction of bioactive compounds in wild bilberry (Vaccinium myrtillus L.) in the Eastern Black Sea region with different techniques. Türk Doğa Fen. Dergisi 2022, 11, 130–136. [Google Scholar] [CrossRef]
- Sadowska, B.; Paszkiewicz, M.; Podsędek, A.; Redzynia, M.; Różalska, B. Vaccinium myrtillus leaves and Frangula alnus bark derived extracts as potential antistaphylococcal agents. Acta Biochim. Pol. 2014, 61, 163–169. [Google Scholar] [CrossRef]
- Tadić, V.M.; Nešić, I.; Martinović, M.; Rój, E.; Brašanac-Vukanović, S.; Maksimović, S.; Žugić, A. Old plant, new possibilities: Wild bilberry (Vaccinium myrtillus L., Ericaceae) in topical skin preparation. Antioxidants 2021, 10, 465. [Google Scholar] [CrossRef]
- Zagayko, A.L.; Kolisnyk, T.Y.; Chumak, O.I.; Ruban, O.A.; Koshovyi, O.M. Evaluation of anti-obesity and lipid-lowering properties of Vaccinium myrtillus leaves powder extract in a hamster model. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Takács, I.; Szekeres, A.; Takács, Á.; Rakk, D.; Mézes, M.; Polyák, Á.; Lakatos, L.; Gyémánt, G.; Csupor, D.; Kovács, K.J. Wild strawberry, blackberry, and blueberry leaf extracts alleviate starch-induced hyperglycemia in prediabetic and diabetic mice. Planta Med. 2020, 86, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Ștefănescu, R.; Laczkó-Zöld, E.; Ősz, B.-E.; Vari, C.-E. An updated systematic review of Vaccinium myrtillus leaves: Phytochemistry and pharmacology. Pharmaceutics 2022, 15, 16. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Gunes, S.; Hekim, G.N.T.; Arslan, M.A.; Asci, R. Effects of aging on the male reproductive system. J. Assist. Reprod. Genet. 2016, 33, 441–454. [Google Scholar] [CrossRef]
- Zhang, G.; Dai, X. Antiaging effect of anthocyanin extracts from bilberry on natural or UV-treated male Drosophila melanogaster. Curr. Res. Food Sci. 2022, 5, 1640–1648. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Nobile, V.; Dudonné, S.; Kern, C.; Roveda, G.; Garcia, C. Antiaging, Brightening, and Antioxidant Efficacy of Fermented Bilberry Extract (Vaccinium myrtillus): A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 2203. [Google Scholar] [CrossRef] [PubMed]
- Roveda, G.; Cestone, E.; De Gennaro, F.; Poggi, A.; Insolia, V.; Zaccaria, V.; Nobile, V. Artichoke Leaf Extract Effectiveness on the Skin Aging Exposome: Efficacy and Safety Results of a Split-Face Study. Cosmetics 2024, 11, 69. [Google Scholar] [CrossRef]
- World Health Organization. Interesting Facts About Ageing; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Shon, M.-S.; Lee, Y.; Song, J.-H.; Park, T.; Lee, J.K.; Kim, M.; Park, E.; Kim, G.-N. Anti-aging potential of extracts prepared from fruits and medicinal herbs cultivated in the Gyeongnam area of Korea. Prev. Nutr. Food Sci. 2014, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Fukui, Y.; Izumi, R.; Numano, K.; Zeida, M. Effects of oligomeric proanthocyanidins (OPCs) of red wine to improve skin whitening and moisturizing in healthy women-a placebo-controlled randomized double-blind parallel group comparative study. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1571–1584. [Google Scholar]
- Rojo, L.E.; Roopchand, D.E.; Graf, B.; Cheng, D.M.; Ribnicky, D.; Fridlender, B.; Raskin, I. Role of anthocyanins in skin aging and UV-induced skin damage. In Anthocyanins in Health and Disease; CRC Press: Boca Raton, FL, USA, 2013; pp. 309–321. [Google Scholar]
- Studzińska-Sroka, E.; Paczkowska-Walendowska, M.; Erdem, C.; Paluszczak, J.; Kleszcz, R.; Hoszman-Kulisz, M.; Cielecka-Piontek, J. Anti-Aging Properties of Chitosan-Based Hydrogels Rich in Bilberry Fruit Extract. Antioxidants 2024, 13, 105. [Google Scholar] [CrossRef]
- Li, C.L. Cosmetic Composition Containing Bilberry Extract and Its Application. Japanese Patent JP2010531816A, 30 September 2008. [Google Scholar]
- Vaneková, Z.; Rollinger, J.M. Bilberries: Curative and miraculous—A review on bioactive constituents and clinical research. Front. Pharmacol. 2022, 13, 909914. [Google Scholar] [CrossRef]
- Zoratti, L.; Klemettilä, H.; Jaakola, L. Bilberry (Vaccinium myrtillus L.) ecotypes. In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 83–99. [Google Scholar]
- Kubov, M.; Janík, R.; Tomes, J.; Schieber, B. Nutrient content in biomass of bilberry (Vaccinium myrtillus L.) in different habitats of protected areas of Inner Western Carpathians. J. For. Sci. 2024, 70, 161–175. [Google Scholar] [CrossRef]
- Banerjee, S.; Nayik, G.A.; Kour, J.; Nazir, N. Blueberries. In Antioxidants in Fruits: Properties and Health Benefits; Nayik, G.A., Gull, A., Eds.; Springer: Singapore, 2020; pp. 593–614. [Google Scholar]
- Dabbou, S.; Ferrocino, I.; Kovitvadhi, A.; Bergagna, S.; Dezzuto, D.; Schiavone, A.; Cocolin, L.; Gai, F.; Santoro, V.; Gasco, L. Bilberry pomace in rabbit nutrition: Effects on growth performance, apparent digestibility, caecal traits, bacterial community and antioxidant status. Animal 2019, 13, 53–63. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Păcularu-Burada, B.; Popescu, S.M. Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Popović, D.; Đukić, D.; Katić, V.; Jović, Z.; Jović, M.; Lalić, J.; Golubović, I.; Stojanović, S.; Ulrih, N.P.; Stanković, M.; et al. Antioxidant and proapoptotic effects of anthocyanins from bilberry extract in rats exposed to hepatotoxic effects of carbon tetrachloride. Life Sci. 2016, 157, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, J.; Stevenson, D.; Hedderley, D. Polyphenol compounds and other quality traits in blueberry cultivars. J. Berry Res. 2015, 5, 117–130. [Google Scholar] [CrossRef]
- Ciulca, S.; Roma, G.; Alexa, E.; Radulov, I.; Cocan, I.; Madosa, E.; Ciulca, A. Variation of Polyphenol Content and Antioxidant Activity in Some Bilberry (Vaccinium myrtillus L.) Populations from Romania. Agronomy 2021, 11, 2557. [Google Scholar] [CrossRef]
- Pappalardo, I.; Convertini, P.; Infantino, V. Chapter 48—Anthocyanins. In Natural Molecules in Neuroprotection and Neurotoxicity; Oliveira, M.R.d., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 1221–1239. [Google Scholar]
- Smeriglio, A.; Davide, B.; Laganà, G.; Bellocco, E.; Trombetta, D. Chapter 3.6—Bilberry (Vaccinium myrtyllus L.). In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 159–163. [Google Scholar]
- Miyake, S.; Takahashi, N.; Sasaki, M.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: Cellular and molecular mechanism. Lab. Investig. 2012, 92, 102–109. [Google Scholar] [CrossRef]
- Osada, H.; Okamoto, T.; Kawashima, H.; Toda, E.; Miyake, S.; Nagai, N.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina. PLoS ONE 2017, 12, e0178627. [Google Scholar] [CrossRef]
- Ozawa, Y.; Kawashima, M.; Inoue, S.; Inagaki, E.; Suzuki, A.; Ooe, E.; Kobayashi, S.; Tsubota, K. Bilberry extract supplementation for preventing eye fatigue in video display terminal workers. J. Nutr. Health Aging 2015, 19, 548–554. [Google Scholar] [CrossRef]
- Hoggard, N.; Cruickshank, M.; Moar, K.-M.; Bestwick, C.; Holst, J.J.; Russell, W.; Horgan, G. A single supplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36% wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. J. Nutr. Sci. 2013, 2, e22. [Google Scholar] [CrossRef]
- Bornsek, S.M.; Ziberna, L.; Polak, T.; Vanzo, A.; Ulrih, N.P.; Abram, V.; Tramer, F.; Passamonti, S. Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chem. 2012, 134, 1878–1884. [Google Scholar] [CrossRef]
- Müller, D.; Schantz, M.; Richling, E. High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. J. Food Sci. 2012, 77, C340–C345. [Google Scholar] [CrossRef]
- Ștefănescu, B.-E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. Chemical Composition and Biological Activities of the Nord-West Romanian Wild Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.) Leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Čanadanović-Brunet, J.; Tumbas Šaponjac, V.; Stajčić, S.; Ćetković, G.; Čanadanović, V.; Ćebović, T.; Vulić, J. Polyphenolic composition, antiradical and hepatoprotective activities of bilberry and blackberry pomace extracts. J. Berry Res. 2019, 9, 349–362. [Google Scholar] [CrossRef]
- Bujor, O.C.; Le Bourvellec, C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Brader, L.; Overgaard, A.; Christensen, L.P.; Jeppesen, P.B.; Hermansen, K. Polyphenol-rich bilberry ameliorates total cholesterol and LDL-cholesterol when implemented in the diet of Zucker diabetic fatty rats. Rev. Diabet. Stud. RDS 2014, 10, 270. [Google Scholar] [CrossRef]
- Martz, F.; Jaakola, L.; Julkunen-Tiitto, R.; Stark, S. Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in Northern Europe following foliar development and along environmental gradients. J. Chem. Ecol. 2010, 36, 1017–1028. [Google Scholar] [CrossRef]
- Dare, A.P.; Günther, C.S.; Grey, A.C.; Guo, G.; Demarais, N.J.; Cordiner, S.; McGhie, T.K.; Boldingh, H.; Hunt, M.; Deng, C. Resolving the developmental distribution patterns of polyphenols and related primary metabolites in bilberry (Vaccinium myrtillus) fruit. Food Chem. 2022, 374, 131703. [Google Scholar] [CrossRef]
- Nisca, A.; Ștefănescu, R.; Stegăruș, D.I.; Mare, A.D.; Farczadi, L.; Tanase, C. Phytochemical profile and biological effects of spruce (Picea abies) bark subjected to ultrasound assisted and microwave-assisted extractions. Plants 2021, 10, 870. [Google Scholar] [CrossRef]
- Değirmencioğlu, N.; Gürbüz, O.; Karatepe, G.E.; Irkin, R. Influence of hot air drying on phenolic compounds and antioxidant capacity of blueberry (Vaccinium myrtillus) fruit and leaf. J. Appl. Bot. Food Qual. 2017, 90, 115–125. [Google Scholar] [CrossRef]
- Brasanac-Vukanovic, S.; Mutic, J.; Stankovic, D.M.; Arsic, I.; Blagojevic, N.; Vukasinovic-Pesic, V.; Tadic, V.M. Wild Bilberry (Vaccinium myrtillus L., Ericaceae) from Montenegro as a Source of Antioxidants for Use in the Production of Nutraceuticals. Molecules 2018, 23, 1864. [Google Scholar] [CrossRef]
- Bano, A.; Qadri, T.A.; Mahnoor; Khan, N. Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress. S. Afr. J. Bot. 2023, 159, 98–109. [Google Scholar] [CrossRef]
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Mohammed, D.D.M.; Alkafaas, S.S.; Abd El Mageed, T.A.; Fahmy, M.A.; Ezzat Ahmed, A.; Algopishi, U.B.; Abu-Elsaoud, A.M.; Mosa, W.F.; et al. Plant bioactive compounds: Extraction, biological activities, immunological, nutritional aspects, food application, and human health benefits—A comprehensive review. Front. Nutr. 2025, 12, 1659743. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef]
- Vyas, P.; Kalidindi, S.; Chibrikova, L.; Igamberdiev, A.U.; Weber, J.T. Chemical analysis and effect of blueberry and lingonberry fruits and leaves against glutamate-mediated excitotoxicity. J. Agric. Food Chem. 2013, 61, 7769–7776. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Čanadanović-Brunet, J.; Ćetković, G.; Djilas, S.; Četojević-Simin, D. Dried bilberry (Vaccinium myrtillus L.) extract fractions as antioxidants and cancer cell growth inhibitors. LWT Food Sci. Technol. 2015, 61, 615–621. [Google Scholar] [CrossRef]
- Zorenc, Z.; Veberic, R.; Mikulic-Petkovsek, M. Are processed bilberry products a good source of phenolics? J. Food Sci. 2018, 83, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Michalska, A.; Łysiak, G. Bioactive compounds of blueberries: Post-harvest factors influencing the nutritional value of products. Int. J. Mol. Sci. 2015, 16, 18642–18663. [Google Scholar] [CrossRef] [PubMed]
- Ferlemi, A.-V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Socaci, S.A.; Fărcaș, A.C.; Nemeș, S.A.; Teleky, B.E.; Martău, G.A.; Călinoiu, L.F.; Mitrea, L.; Ranga, F.; Grigoroaea, D. Characterization of the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaf extracts obtained via various extraction techniques. Foods 2024, 13, 258. [Google Scholar] [CrossRef]
- Mujanović, I.; Balijagić, J.; Bajagić, M.; Poštić, D.; Đurović, S. Variations in polyphenol content and anthocyanin composition in bilberry populations (Vaccinium myrtillus L.) due to environmental factors. J. Food Compos. Anal. 2024, 136, 106732. [Google Scholar] [CrossRef]
- Ancillotti, C.; Ciofi, L.; Pucci, D.; Sagona, E.; Giordani, E.; Biricolti, S.; Gori, M.; Petrucci, W.A.; Giardi, F.; Bartoletti, R. Polyphenolic profiles and antioxidant and antiradical activity of Italian berries from Vaccinium myrtillus L. and Vaccinium uliginosum L. subsp. gaultherioides (Bigelow) SB Young. Food Chem. 2016, 204, 176–184. [Google Scholar] [CrossRef]
- Thornthwaite, J.T.; Thibado, S.P.; Thornthwaite, K.A. Bilberry anthocyanins as agents to address oxidative stress. In Pathology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 179–187. [Google Scholar]
- Riihinen, K.; Jaakola, L.; Kärenlampi, S.; Hohtola, A. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem. 2008, 110, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.P.; Yang, B. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Vrancheva, R.; Ivanov, I.; Badjakov, I.; Dincheva, I.; Georgiev, V.; Pavlov, A. Intrapopulation variation of polyphenolic compounds with antioxidant potential in Bulgarian bilberry (Vaccinium myrtillus L.). Comptes Rendus Acad. Bulg. Sci. 2021, 74, 1853–1861. [Google Scholar] [CrossRef]
- Oszmianski, J.; Wojdyl̷o, A.; Gorzelany, J.; Kapusta, I. Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS . J. Agric. Food Chem. 2011, 59, 12830–12835. [Google Scholar] [CrossRef]
- Hokkanen, J.; Mattila, S.; Jaakola, L.; Pirttilä, A.M.; Tolonen, A. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J. Agric. Food Chem. 2009, 57, 9437–9447. [Google Scholar] [CrossRef]
- Szakiel, A.; Paczkowski, C.; Huttunen, S. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J. Agric. Food Chem. 2012, 60, 11839–11849. [Google Scholar] [CrossRef]
- Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022, 14, 623. [Google Scholar] [CrossRef]
- Savych, A.; Basaraba, R.; Muzyka, N.; Ilashchuk, P. Analysis of fatty acid composition content in the plant components of antidiabetic herbal mixture by GC-MS. Pharmacia 2021, 68, 433–439. [Google Scholar] [CrossRef]
- Gondo, T.F.; Huang, F.; Marungruang, N.; Heyman-Lindén, L.; Turner, C. Investigating the quality of extraction and quantification of bioactive compounds in berries through liquid chromatography and multivariate curve resolution. Anal. Bioanal. Chem. 2024, 416, 5387–5400. [Google Scholar] [CrossRef] [PubMed]
- Babova, O.; Occhipinti, A.; Capuzzo, A.; Maffei, M.E. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J. Supercrit. Fluids 2016, 107, 358–363. [Google Scholar] [CrossRef]
- Tripodo, G.; Ibáñez, E.; Cifuentes, A.; Gilbert-López, B.; Fanali, C. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds. Electrophoresis 2018, 39, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Medic, A.; Smrke, T.; Hudina, M.; Veberic, R.; Zamljen, T. HPLC-Mass spectrometry analysis of phenolics comparing traditional bilberry and blueberry liqueurs. Food Res. Int. 2023, 173, 113373. [Google Scholar] [CrossRef]
- Moze, S.; Polak, T.; Gasperlin, L.; Koron, D.; Vanzo, A.; Poklar Ulrih, N.a.; Abram, V. Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef]
- Starast, M.; Karp, K.; Vool, E.; Moor, U.; Tonutare, T.; Paal, T. Chemical composition and quality of cultivated and natural blueberry fruit in Estonia. Veg. Crops Res. Bull. 2007, 66, 143. [Google Scholar] [CrossRef]
- Giovanelli, G.; Buratti, S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009, 112, 903–908. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Nemes, S.-A.; Teleky, B.-E.; Călinoiu, L.F.; Mitrea, L.; Martău, G.A.; Szabo, K.; Mihai, M.; Vodnar, D.C.; Crișan, G. Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants 2022, 11, 674. [Google Scholar] [CrossRef]
- Stefkov, G.; Hristovski, S.; Stanoeva, J.P.; Stefova, M.; Melovski, L.; Kulevanova, S. Resource assessment and economic potential of bilberries (Vaccinium myrtillus and Vaccinium uliginosum) on Osogovo Mtn., R. Macedonia. Ind. Crops Prod. 2014, 61, 145–150. [Google Scholar] [CrossRef]
- Vrancheva, R.; Ivanov, I.; Dincheva, I.; Badjakov, I.; Pavlov, A. Triterpenoids and Other Non-Polar Compounds in Leaves of Wild and Cultivated Vaccinium Species. Plants 2021, 10, 94. [Google Scholar] [CrossRef]
- Bārzdiņa, A.; Prudņikova, D.P.; Žogota, M.; Mauriņa, B.; Bandere, D.; Brangule, A. Combining chromatographic and spectroscopic fingerprinting with chemometrics and data fusion to characterize the phytochemical composition of anthocyanin-rich fruit extracts. Eur. J. Pharm. Sci. 2025, 212, 107177. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.; du Toit, W. The Role of UV–Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking. In Frontiers and New Trends in the Science of Fermented Food and Beverages; IntechOpen: London, UK, 2019. [Google Scholar]
- Sun, M.-F.; Jiang, C.-L.; Kong, Y.-S.; Luo, J.-L.; Yin, P.; Guo, G.-Y. Recent advances in analytical methods for determination of polyphenols in tea: A comprehensive review. Foods 2022, 11, 1425. [Google Scholar] [CrossRef] [PubMed]
- Åhlberg, M.K. A profound explanation of why eating green (wild) edible plants promote health and longevity. Food Front. 2021, 2, 240–267. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Y.; Chen, Y.; Cheng, J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J. Endocrinol. 2015, 225, R83–R99. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.-C.; Hung, C.-T.; Cheng, K.-C.; Wu, C.-Y.; Chen, Y.-C.; Wu, Y.-J.; Liu, W.; Chiu, C.-C. Protective effects of Lycium barbarum extracts on UVB-induced damage in human retinal pigment epithelial cells accompanied by attenuating ROS and DNA damage. Oxidative Med. Cell. Longev. 2018, 2018, 4814928. [Google Scholar] [CrossRef]
- Leopoldini, M.; Rondinelli, F.; Russo, N.; Toscano, M. Pyranoanthocyanins: A theoretical investigation on their antioxidant activity. J. Agric. Food Chem. 2010, 58, 8862–8871. [Google Scholar] [CrossRef]
- Bártíková, H.; Skálová, L.; Drsata, J.; Bousova, I. Interaction of anthocyanins with drug-metabolizing and antioxidant enzymes. Curr. Med. Chem. 2013, 20, 4665–4679. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, G.; Zhang, X.; Xu, D.; Gao, J.; Fan, J. Anthocyanins delay ageing-related degenerative changes in the liver. Plant Foods Hum. Nutr. 2017, 72, 425–431. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, H.-J. Anti-inflammatory activity of bilberry (Vaccinium myrtillus L.). Curr. Issues Mol. Biol. 2022, 44, 4570–4583. [Google Scholar] [CrossRef]
- Li, J.; Zhao, R.; Zhao, H.; Chen, G.; Jiang, Y.; Lyu, X.; Wu, T. Reduction of aging-induced oxidative stress and activation of autophagy by bilberry anthocyanin supplementation via the AMPK–mTOR signaling pathway in aged female rats. J. Agric. Food Chem. 2019, 67, 7832–7843. [Google Scholar] [CrossRef]
- Rahnasto-Rilla, M.; Tyni, J.; Huovinen, M.; Jarho, E.; Kulikowicz, T.; Ravichandran, S.; Bohr, V.A.; Ferrucci, L.; Lahtela-Kakkonen, M.; Moaddel, R. Natural polyphenols as sirtuin 6 modulators. Sci. Rep. 2018, 8, 4163. [Google Scholar] [CrossRef] [PubMed]
- Bøhn, S.K.; Myhrstad, M.C.; Thoresen, M.; Erlund, I.; Vasstrand, A.K.; Marciuch, A.; Carlsen, M.H.; Bastani, N.E.; Engedal, K.; Flekkøy, K.M. Bilberry/red grape juice decreases plasma biomarkers of inflammation and tissue damage in aged men with subjective memory impairment–a randomized clinical trial. BMC Nutr. 2021, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, J.; Hao, J.; Zhang, M.; Yin, J.; Geng, J.; Wu, T.; Lyv, X. Bilberry anthocyanin improves the serum cholesterol in aging perimenopausal rats via the estrogen receptor signaling pathway. Food Funct. 2019, 10, 3430–3438. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, R.; Ferrucci, M.; Biagioni, F.; Berti, C.; Bumah, V.V.; Busceti, C.L.; Puglisi-Allegra, S.; Lazzeri, G.; Frati, A.; Fornai, F. Autophagy activation promoted by pulses of light and phytochemicals counteracting oxidative stress during age-related macular degeneration. Antioxidants 2023, 12, 1183. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Zhang, B.; Wang, S. Berries and Their Active Compounds in Prevention of Age-Related Macular Degeneration. Antioxidants 2024, 13, 1558. [Google Scholar] [CrossRef]
- Li, J.; Lyu, X.; Wang, P.; Ting Zhu, B. Bilberry anthocyanins attenuate mitochondrial dysfunction via β-catenin/TCF pathway in Alzheimer’s disease. J. Funct. Foods 2023, 110, 105827. [Google Scholar] [CrossRef]
- Bayazid, A.B.; Chun, E.M.; Al Mijan, M.; Park, S.H.; Moon, S.-K.; Lim, B.O. Anthocyanins profiling of bilberry (Vaccinium myrtillus L.) extract that elucidates antioxidant and anti-inflammatory effects. Food Agric. Immunol. 2021, 32, 713–726. [Google Scholar] [CrossRef]
- Thibado, S.P.; Thornthwaite, J.T.; Ballard, T.K.; Goodman, B.T. Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Mol. Clin. Oncol. 2018, 8, 330–335. [Google Scholar] [CrossRef]
- Satoh, Y.; Ishihara, K. Investigation of the antimicrobial activity of Bilberry (Vaccinium myrtillus L.) extract against periodontopathic bacteria. J. Oral Biosci. 2020, 62, 169–174. [Google Scholar] [CrossRef]
- Luo, H.; Lv, X.-D.; Wang, G.-E.; Li, Y.-F.; Kurihara, H.; He, R.-R. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice. Int. J. Food Sci. Nutr. 2014, 65, 594–601. [Google Scholar] [CrossRef]
- Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Mazur, A.; Lamaison, J.L.; Rémésy, C. Bioavailability of a bilberry anthocyanin extract and its impact on plasma antioxidant capacity in rats. J. Sci. Food Agric. 2006, 86, 90–97. [Google Scholar] [CrossRef]
- Sakakibara, H.; Ogawa, T.; Koyanagi, A.; Kobayashi, S.; Goda, T.; Kumazawa, S.; Kobayashi, H.; Shimoi, K. Distribution and excretion of bilberry anthocyanins in mice. J. Agric. Food Chem. 2009, 57, 7681–7686. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Veljković, M.; Pavlović, D.; Dragićević, A.; Zlatković, D.; Sokolović, D. Bilberry (Vaccinium myrtillus L.) Extract Antiinflammatory Activity in Rat Macrophage Cell Culture. Nat. Prod. Commun. 2025, 20, 1934578X251363719. [Google Scholar] [CrossRef]
- Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [Google Scholar] [CrossRef]
- Karlsen, A.; Paur, I.; Bøhn, S.K.; Sakhi, A.K.; Borge, G.I.; Serafini, M.; Erlund, I.; Laake, P.; Tonstad, S.; Blomhoff, R. Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. Eur. J. Nutr. 2010, 49, 345–355. [Google Scholar] [CrossRef]


| Secondary Metabolites | Health Beneficial Effects | References |
|---|---|---|
| Anthocyanins | Enhances neuroprotection; decreases cardiovascular disease risk; promotes weight management; lowers type 2 diabetes risk; acts as a prebiotic; improves gut microbiota; reduces chronic inflammation; enhances vision and brain function; anti-inflammatory and antioxidant properties. | [43,44,45,46,47,48,49] |
| Phenolics | Robust antioxidant effects; anti-inflammatory, anti-allergic, anti-thrombotic, and anticancer properties. They help protect the skin from oxidative stress and UV damage; support cognitive function; decrease the risk of chronic diseases such as cardiovascular and neurodegenerative conditions. Bilberry pomace is a good source of polyphenolic compounds with potential antiradical and hepato-protective activities. Leaves, stems, fruits, seed oil exhibited antioxidant and antidiabetic properties. | [14,16,47,50,51,52] |
| Hydroxycinnamic acids | Strong antioxidants that decrease oxidative stress, dropping the risk of cardiovascular and neurodegenerative diseases, and cancer. Display anti-inflammatory and antimicrobial effects. | [3,53,54,55] |
| Flavonols | It has antioxidants, anti-inflammatory, anticancer, antidiabetic, antimalarial, antimicrobial, neuroprotective, cardio-protective, hepato-protective, antiviral, and antihypertensive properties. | [49,55,56,57] |
| Flavanols | Have antioxidant and antimicrobial properties. | [49,56,57] |
| Bioactive Compounds | Quantity | Technique Used for Extraction | Technique Used for Identification | Reference |
|---|---|---|---|---|
| Total Anthocyanins | 6102–7465 mg/100 g dry weight | Classical solvent extraction, microwave-assisted extraction, solvent maceration, ultrasound-assisted extraction. | HPLC with a UV/VIS detector; spectrophotometric pH differential method; HPLC Analysis | [12,48] |
| 405 mg/100 g fresh weight | Solvent maceration | Modified pH differential photometric method | [85] | |
| 1682.37 ± 75.92 mg/L (in liqueur, from whole fruit); 1788.01 ± 42.25 mg/L (in juice) | Bilberry liqueur preparation and used after 3 months | HPLC–mass spectrometry analysis | [83] | |
| 20,256 μg/g (peels) 1040 μg/g (pulp) | Frozen and macerated | HPLC with diode array detection and UV–vis spectral analysis | [71] | |
| 50.00 ± 1.22 μg/L (crude extract) | Crude extraction method with deoxygenated methanol (flushed by nitrogen for 5 min) | Liquid Chromatography Tandem Mass Spectrometry (LC–MS/MS) | [47] | |
| 1210.3 ± 111.5 mg cyanidin 3-glucoside equivalents/100 g fw | Crude extraction method with deoxygenated methanol (flushed by nitrogen for 5 min) | Liquid Chromatography Tandem Mass Spectrometry (LC–MS/MS) | [84] | |
| 330 Cyanidin-3-O-glucoside mg/100 g (Lot 1) and 344 Cyanidin-3-O-glucoside mg/100 g (Lot 2) | homogenization | HPLC analysis | [86] | |
| Trans-resveratrol | 0. 2 mg/100 g fresh weight | Crude extraction method with deoxygenated methanol (flushed by nitrogen for 5 min) | Liquid Chromatography Tandem Mass Spectrometry (LC–MS/MS) | [84] |
| Total hydroxycinnamic acids | 207.00 μg/g (peels), 163.00 μg/g (pulp), 10,797.00 μg/g (green leaves), 22,256.00 μg/g (red leaves) [71]; 117.04 ± 6.20 mg/L (in liqueur, from whole fruit) [83] | Frozen and macerated in acidified methanol [71]; bilberry liqueur preparation and used after 3 months [83] | HPLC with diode array detection and UV–vis spectral analysis [71]; ultra-HPLC system with tandem mass spectrometry, using heated electrospray ionization [83] | [71,83] |
| Total Flavonols | 206 μg/g (peels), 15 μg/g (pulp), 3540 μg/g (green leaves), 10,613 μg/g (red leaves) [71]; 9.91 ± 1.24 mg/L (in liqueur, from whole fruit), 7.32 ± 1.30 mg/L (in liqueur, from juice) [83]; 1.4 mg/100 g fresh weight [84] | Frozen and macerated in acidified methanol and hydrolysed with acid for the analysis of flavonols as aglycones [71]; Bilberry liqueur preparation and used after 3 months [83]; crude extraction method with deoxygenated methanol (flushed by nitrogen for 5 min) [84] | HPLC with diode array detection and UV–vis spectral analysis [71]; ultra-HPLC system with tandem mass spectrometry, using heated electrospray ionization [83]; liquid chromatography–mass spectrometry (LC–MS) [84] | [71,83,84] |
| Total Phenolics | 35.3 mg/100 g fresh weight [84]; 1903.45 ± 85.95 mg/L (in liqueur, from whole fruit), 2061.77 ± 55.96 mg/L (in liqueur, from juice) [83]; 577 gallic ac. mg/100 g (Lot 1) and 614 gallic ac. mg/100 g (Lot 2) [86]; 18.18 ± 0.59 μg/L (crude extract) [47] | Crude extraction method with deoxygenated methanol (flushed by nitrogen for 5 min) [84]; bilberry liqueur preparation and used after 3 months [83]; homogenization [86]; crude extraction method with deoxygenated methanol (flushed by nitrogen for 5 min) [47] | Liquid chromatography–mass spectrometry (LC–MS) [84]; ultra-HPLC system with tandem mass spectrometry, using heated electrospray ionization [83]; Folin–Ciocalteu method (spectrophotometric) [86]; Folin–Ciocalteu reagent spectrophotometric method [47] | [47,83,84,86] |
| Group | Compound | Concentration Range | Technique Used for Extraction | Technique Used for Identification | References |
|---|---|---|---|---|---|
| Hydroxycinnamic Acids (mg/g dry weight) | Chlorogenic acid | 0.07–104.7 | Maceration and infusion; ultrasound-assisted extraction | HPLC analysis; HPLC-coupled with a diode-array detector analysis; HPLC-coupled with a diode-array detector and MS-detector; HPLC-coupled with a diode-array detector and electrospray ionization mass spectrometer | [49,57,74,87] |
| Ferulic acid | 0.11–0.28 | Infusion, maceration, Soxhlet extraction | HPLC analysis | [57] | |
| Feruloylquinic acid | 47.66–59.65 | Ultrasound-assisted extraction | HPLC-coupled with a diode-array detector and MS-detector | [49] | |
| Sinapic acid | 0.18–0.63 | Maceration and Soxhlet extraction | HPLC analysis | [57] | |
| Hydroxybenzoic acids | Gallic acid | 0.54–0.80 mg/g dry weight [57]; 6.53–352.3 mg/kg [56] | Soxhlet extraction | HPLC analysis | [56,57] |
| Syringic acid | 24.09–960.56 mg/kg | Soxhlet extraction | HPLC analysis | [56] | |
| Protocatechuic acid | 1.4–1.74 mg/g | Maceration, infusion, and Soxhlet extraction | HPLC analysis | [57] | |
| Vanillic acid | 18.00–1156.80 mg/kg | Soxhlet extraction | HPLC analysis | [56] | |
| Other polyphenols | Pyrogallol | 2.45–3.46 mg/g | Soxhlet extraction | HPLC analysis | [57] |
| Resveratrol | 4.60–5.15 mg/g dry weight [57]; 1.5–8.89 mg/kg [56] | Maceration, infusion, and Soxhlet extraction | HPLC analysis | [56,57] | |
| Flavanols | Gallocatechin | 4.84–15.37 mg/g | Ultrasound-assisted extraction | HPLC-coupled with a diode-array detector and MS detector | [49] |
| Epigallocatechin | 7.23–197.8 mg/kg | Soxhlet extraction | HPLC analysis | [56] | |
| Catechin | 7.31–95.59 mg/kg [56]; 4.79–21.57 mg/g [49] | Ultrasound-assisted extraction, Soxhlet extraction | HPLC analysis; HPLC-coupled with a diode-array detector and MS-detector; HPLC-coupled with a diode-array detector and Electrospray Ionization Mass Spectrometer | [49,56,72,87] | |
| Epicatechin | 2.55–84.06 mg/kg [56]; 4.31–9.66 mg/g [49]; 4.38–5.57 mg/g [57] | Maceration, infusion, Soxhlet extraction, ultrasound-assisted extraction | HPLC analysis; HPLC-coupled with a diode-array detector and MS-detector; HPLC-coupled with a diode-array detector and electrospray ionization mass spectrometer | [49,56,57,87] | |
| Flavonols | Myricetin | 49.4–237.6 mg/kg | Soxhlet extraction | HPLC Analysis | [56] |
| Quercetin 3-O-rutinoside | 42.34–49.83 mg/g [49] | Ultrasound-assisted extraction | HPLC-coupled with a diode-array detector and MS-detector; HPLC-coupled with a diode-array detector and electrospray ionization mass spectrometer | [49,88] | |
| Quercetin 3-O-glucoside | 1.29–2.37 mg/g [49] | Ultrasound-assisted extraction | HPLC-coupled with a diode-array detector and MS-detector; HPLC-coupled with a diode-array detector and electrospray ionization mass spectrometer | [49,87] | |
| Quercetin 3-O-rhamnoside | 0.11–1.65 mg/g | Maceration, ultrasound-assisted Extraction | HPLC-coupled with a diode-array detector and an electrospray ionization mass spectrometer | [87,88] | |
| Quercetin 3-O-galactoside (Hyperozide) | 2.45 mg/g | Ultrasound-assisted extraction | HPLC-coupled with a diode-array detector and an Electrospray Ionization Mass Spectrometer | [88] | |
| Quercetin | 0.99–11.83 mg/kg [56]; 1.16–3.69 mg/g [49]; 1.16–7.27 mg/g [57] | Maceration, infusion, Soxhlet extraction, ultrasound-assisted extraction | HPLC analysis, HPLC-coupled with a diode-array detector and MS-detector | [49,56,57] | |
| Anthocyanins | Cyanidin-glucoside | 0.00–23.61 mg/kg [56]; 0.28–0.29 mg/g [49] | Ultrasound-assisted extraction, Soxhlet extraction | HPLC analysis; HPLC-coupled with a diode-array detector and MS-detector | [49,56] |
| Cyanidin-arabinoside | 0–0.30 mg/g | Ultrasound-Assisted Extraction | HPLC-coupled with a diode-array detector and MS-detector | [49] | |
| Malvidin 3-O-glucoside | 0–1.20 mg/kg | Soxhlet extraction | HPLC analysis | [56] | |
| Triterpenes (µg/g dry weight) | Oleanolic acid | 335.20–655.80 | Solvent extraction with alkaline hydrolysis | HPLC-coupled with a diode-array detector | [89] |
| Ursolic acid | 377.00–815.00 | Solvent extraction with alkaline hydrolysis | HPLC-coupled with a diode-array detector | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Patra, J.K.; Shin, H.-S.; Das, G. A Review of Major Compounds in Bilberry (Vaccinium myrtillus L.) Fruits and Leaves: Isolation, Purification, and Their Antiaging Effects. Nutrients 2026, 18, 350. https://doi.org/10.3390/nu18020350
Patra JK, Shin H-S, Das G. A Review of Major Compounds in Bilberry (Vaccinium myrtillus L.) Fruits and Leaves: Isolation, Purification, and Their Antiaging Effects. Nutrients. 2026; 18(2):350. https://doi.org/10.3390/nu18020350
Chicago/Turabian StylePatra, Jayanta Kumar, Han-Seung Shin, and Gitishree Das. 2026. "A Review of Major Compounds in Bilberry (Vaccinium myrtillus L.) Fruits and Leaves: Isolation, Purification, and Their Antiaging Effects" Nutrients 18, no. 2: 350. https://doi.org/10.3390/nu18020350
APA StylePatra, J. K., Shin, H.-S., & Das, G. (2026). A Review of Major Compounds in Bilberry (Vaccinium myrtillus L.) Fruits and Leaves: Isolation, Purification, and Their Antiaging Effects. Nutrients, 18(2), 350. https://doi.org/10.3390/nu18020350

