The Role of FODMAPs in Sports Nutrition: A Narrative Review and Clinical Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Procedure
2.2. Eligibility Criteria and Search Strategy
- (1)
- Epidemiology and characteristics of gastrointestinal disorders in athletes,
- (2)
- Pathophysiology of exercise-induced symptoms and the role of FODMAPs in their modulation,
- (3)
- Nutrition strategies in sports that incorporate FODMAP restriction,
- (4)
- Clinical implications and practical importance of dietary interventions in the care of athletes.
2.3. Quality Assessment and Selection of Publications
3. Gastrointestinal Problems Among Endurance Athletes
3.1. Frequency of Symptoms
3.2. Characteristics of Symptoms
3.3. Mechanisms of Digestive Discomfort During Exercise
4. The Importance of FODMAPs in Sports Nutrition
4.1. FODMAP Consumption in Athletes’ Diets
4.2. The Low FODMAP Diet in the Context of Physical Activity
4.2.1. Strategies for Implementing a Low FODMAP Diet for Athletes
4.2.2. Long-Term Efficiency and Safety
4.2.3. Practical Constraints and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FODMAP | Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols |
| GI | Gastrointestinal |
| IBS | Irritable Bowel Syndrome |
| GM | Gut Microbiota |
| GOS | Galactooligosaccharides |
| g | Gram |
| FOS | Fructooligosaccharides |
| GLUT-2 | Glucose Transporter Type 2 |
| GLUT-5 | Glucose Transporter Type 5 |
| CHO | Carbohydrates |
| SCFAs | Short-Chain Fatty Acids |
| h | Hour |
| km | Kilometer |
References
- Menheere, D.; Janssen, M.; Funk, M.; van der Spek, E.; Lallemand, C.; Vos, S. Runner’s Perceptions of Reasons to Quit Running: Influence of Gender, Age and Running-Related Characteristics. Int. J. Environ. Res. Public Health 2020, 17, 6046. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cui, M.; Pang, Y.; Zhan, B.; Li, X.; Wang, Q.; Chen, F.; Zhou, Z.; Yang, Q. Association of physical activity with socio-economic status and chronic disease in older adults in China: Cross-sectional findings from the survey of CLASS 2020 after the outbreak of COVID-19. BMC Public Health 2024, 24, 37. [Google Scholar] [CrossRef]
- Perez-Gisbert, L.; Torres-Sanchez, I.; Ortiz-Rubio, A.; Calvache-Mateo, A.; López-López, L.; Cabrera-Martos, I.; Valenza, M.C. Effects of the COVID-19 Pandemic on Physical Activity in Chronic Diseases: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 12278. [Google Scholar] [CrossRef]
- Erdman, K.A.; Jones, K.W.; Madden, R.F.; Gammack, N.; Parnell, J.A. Dietary Patterns in Runners with Gastrointestinal Disorders. Nutrients 2021, 13, 448. [Google Scholar] [CrossRef]
- Papantoniu, K.; Michailides, C.; Bali, M.; Papantoniu, P.; Thomopoulos, K. Gastrointestinal bleeding in athletes. Ann. Gastroenterol. 2023, 36, 267–274. [Google Scholar] [CrossRef]
- Kelly, M.R.; Emerson, D.M.; McDermott, B.P.; Atkins, W.C.; Butts, C.L.; Laursen, R.M.; Troyanos, C.; Duckett, A.; Siedlik, J. Gastrointestinal cell injury and perceived symptoms after running the Boston Marathon. Front. Physiol. 2023, 14, 1268306. [Google Scholar] [CrossRef]
- Jedlina, K.; Pacek, K.; Makowska, K.; Kamińska, I.; Pikulicka, A.; Szulc, I.; Swacha, W.; Piekarska, M.; Kasperski, R.; Rusin, K. Causes of runner’s diarrhea and dietary recommendations to avoid it—Systematic review. J. Educ. Health Sport 2023, 34, 11–21. [Google Scholar] [CrossRef]
- Naderi, A.; Gobbi, N.; Ali, A.; Berjisian, E.; Hamidvand, A.; Forbes, S.C.; Koozehchian, M.S.; Karayigit, R.; Saunders, B. Carbohydrates and Endurance Exercise: A Narrative Review of a Food First Approach. Nutrients 2023, 15, 1367. [Google Scholar] [CrossRef] [PubMed]
- Podlogar, T.; Wallis, G.A. New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med. 2022, 52, 5–23. [Google Scholar] [CrossRef]
- Cao, W.; He, Y.; Fu, R.; Chen, Y.; Yu, J.; He, Z. A Review of Carbohydrate Supplementation Approaches and Strategies for Optimizing Performance in Elite Long-Distance Endurance. Nutrients 2025, 17, 918. [Google Scholar] [CrossRef] [PubMed]
- Killian, L.A.; Muir, J.G.; Barrett, J.S.; Burd, N.A.; Lee, S.Y. High Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols (FODMAP) Consumption Among Endurance Athletes and Relationship to Gastrointestinal Symptoms. Front. Nutr. 2021, 8, 637160. [Google Scholar] [CrossRef]
- Bellini, M.; Tonarelli, S.; Nagy, A.G.; Pancetti, A.; Costa, F.; Ricchiuti, A.; de Bortoli, N.; Mosca, M.; Marchi, S.; Rossi, A. Low FODMAP Diet: Evidence, Doubts, and Hopes. Nutrients 2020, 12, 148. [Google Scholar] [CrossRef]
- Ispiryan, L.; Zannini, E.; Arendt, E.K. Characterization of the FODMAP-profile in cereal-product ingredients. J. Cereal Sci. 2020, 92, 102916. [Google Scholar] [CrossRef]
- Wang, X.J.; Camilleri, M.; Vanner, S.; Tuck, C. Review article: Biological mechanisms for symptom causationby individual FODMAP subgroups—The case for a morepersonalised approach to dietary restriction. Aliment. Pharmacol. Ther. 2019, 50, 517–529. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Simoes, C.D.; Maganinho, M.; Sousa, A.S. FODMAPs, inflammatory bowel disease and gut microbiota: Updated overview on the current evidence. Eur. J. Nutr. 2022, 61, 1187–1198. [Google Scholar] [CrossRef]
- Ribichini, E.; Scalese, G.; Cesarini, A.; Mocci, C.; Pallotta, N.; Severi, C.; Corazziari, E.S. Exercise-Induced Gastrointestinal Symptoms in Endurance Sports: A Review of Pathophysiology, Symptoms, and Nutritional Management. Dietetics 2023, 2, 289–307. [Google Scholar] [CrossRef]
- Morariu, I.D.; Avasilcai, L.; Vieriu, M.; Lupu, V.V.; Morariu, B.A.; Lupu, A. Effects of a Low-FODMAP Diet on Irritable Bowel Syndrome in Both Children and Adults—A Narrative Review. Nutrients 2023, 15, 2295. [Google Scholar] [CrossRef]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Adv. Nutr. 2021, 13, 492–529. [Google Scholar] [CrossRef] [PubMed]
- Galgano, F.; Mele, M.C.; Tolve, R.; Condelli, N.; Di Cairano, M.; Ianiro, G.; D’Antuono, I.; Favati, F. Strategies for Producing Low FODMAPs Foodstuffs: Challenges and Perspectives. Foods 2023, 12, 856. [Google Scholar] [CrossRef]
- Monash University Department of Gastroenterology. The Monash University Low FODMAP Diet App. Available online: http://www.med.monash.edu.au/cecs/gastro/fodmap/iphone-app.html (accessed on 12 August 2025).
- Zanzer, Y.C.; Theis, S. Systematic review and meta-analysis of habitual intake of fermentable oligo-, di-, mono- saccharides and polyols in the general population and revisiting the low FODMAP diet concept. J. Funct. Foods 2024, 112, 105914. [Google Scholar] [CrossRef]
- Mudannayake, D.C.; Jayasena, D.D.; Wimalasiri, K.M.S.; Ranadheera, C.S.; Ajlouni, S. Inulin fructans—Food applications and alternative plant sources: A review. Int. J. Food Sci. Technol. 2022, 57, 5764–5780. [Google Scholar] [CrossRef]
- Viswanathan, L.; Rao, S.S. Intestinal Disaccharidase Deficiency in Adults: Evaluation and Treatment. Curr. Gastroenterol. Rep. 2023, 25, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.R. History of the low FODMAP diet. J. Gastroenterol. Hepatol. 2017, 32, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Holma, R.; Laatikainen, R.; Orell, H.; Joensuu, H.; Peuhkuri, K.; Poussa, T.; Korpela, R.; Osterlund, P. Consumption of Lactose, Other FODMAPs and Diarrhoea during Adjuvant 5-Fluorouracil Chemotherapy for Colorectal Cancer. Nutrients 2020, 12, 407. [Google Scholar] [CrossRef]
- Rollo, I.; Gonzalez, J.T.; Fuchs, C.J.; van Loon, L.J.C.; Williams, C. Primary, Secondary, and Tertiary Effects of Carbohydrate Ingestion During Exercise. Sports Med. 2020, 50, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.J.; Hulton, A.T.; MacLaren, D.P.M. Exogenous carbohydrate and regulation of muscle carbohydrate utilisation during exercise. Eur. J. Appl. Physiol. 2021, 121, 1255–1269. [Google Scholar] [CrossRef]
- Lomer, M.C.E. The low FODMAP diet in clinical practice: Where are we and what are the long-term considerations? Proc. Nutr. Soc. 2024, 83, 17–27. [Google Scholar] [CrossRef]
- Fernandez-Banares, F. Carbohydrate Maldigestion and Intolerance. Nutrients 2022, 14, 1923. [Google Scholar] [CrossRef]
- Loomer, M.C.E. Review article: The aetiology, diagnosis, mechanisms andclinical evidence for food intolerance. Aliment. Pharmacol. Ther. 2015, 41, 262–275. [Google Scholar] [CrossRef]
- Lenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Am. Soc. Nutr. 2017, 8, 587–596. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, W.; Wu, H.; Guang, C.; Mu, W. Mannitol: Physiological functionalities, determination methods, biotechnological production, and applications. Appl. Microbiol. Biotechnol. 2020, 104, 6941–6951. [Google Scholar] [CrossRef]
- Convit, L.; Rahman, S.S.; Jardine, W.T.; Urwin, C.S.; Roberts, S.S.H.; Condo, D.; Main, L.C.; Carr, A.J.; Young, C.; Snipe, R.M.J. Total fermentable oligo-, di-, monosaccharides and polyols intake, carbohydrate malabsorption and gastrointestinal symptoms during a 56 km trail ultramarathon event. Nutr. Diet. 2024, 81, 335–346. [Google Scholar] [CrossRef]
- Mlinaric, J.; Mohorko, N. Nutritional strategies for minimizing gastrointestinal symptoms duringendurance exercise: Systematic review of the literature. J. Int. Soc. Sports Nutr. 2025, 22, 2529910. [Google Scholar] [CrossRef]
- Montero-Carrasco, K.; Arias-Tellez, M.J.; Soto-Sanchez, J. Use of Carbohydrate (CHO), Gluten-Free, and FODMAP-Free Diets to Prevent Gastrointestinal Symptoms in Endurance Athletes: A Systematic Review. Nutrients 2024, 16, 3852. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.; Daly, E.; Ryan, L. Exploring the Nutrition Strategies Employed by Ultra-Endurance Athletes to Alleviate Exercise-Induced Gastrointestinal Symptoms—A Systematic Review. Nutrients 2023, 15, 4330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, Y.; Li, X.; Wen, W.; Zhang, J.; Qiu, J. Gastrointestinal symptoms among recreational long distance runners in China: Prevalence, severity, and contributing factors. Front. Nutr. 2025, 12, 1589344. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Alfageme, R.; Álvarez, J.; Garbisu-Hualde, A.; Romero-García, D.; Giménez-Monzó, D.; Sospedra, I.; Ausó, E.; Martínez-Sanz, J.M. Are the Dietary-Nutritional Recommendations Met? Analysis of Intake in Endurance Competitions. Nutrients 2024, 16, 189. [Google Scholar] [CrossRef]
- Martínez, P.; Martínez, S.; Mingorance, J.A.; Riera-Sampol, A.; Aguiló, A.; Tauler, P. Gastrointestinal symptoms and nutritional intake among participants in a non-professional cycling event. Eur. J. Appl. Physiol. 2025, 125, 37–48. [Google Scholar] [CrossRef]
- ten Haaf, D.S.M.; van der Worp, M.P.; Groenewoud, H.M.M.; Leij-Halfwerk, S.; Nijhuis-van der Sanden, M.W.G.; Verbeek, A.L.M.; Staal, J.B. Nutritional indicators for gastrointestinal symptoms in female runners: The ‘Marikenloop study’. BMJ Open 2014, 4, e005780. [Google Scholar] [CrossRef]
- Hoogervorst, D.; van der Burg, N.; Versteegen, J.J.; Lambrechtse, K.J.; Redegeld, M.I.; Cornelissen, L.A.J.; Wardenaar, F.C. Gastrointestinal Complaints and Correlations with Self-Reported Macronutrient Intake in Independent Groups of (Ultra)Marathon Runners Competing at Different Distances. Sports 2019, 7, 140. [Google Scholar] [CrossRef]
- ter Steege, R.W.; Van der Palen, J.; Kolkman, J.J. Prevalence of gastrointestinal complaints in runners competing in a long-distance run: An internet-based observational study in 1281 subjects. Scand. J. Gastroenterol. 2008, 43, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Baart, A.M.; Mensink, M.; Witteman, B.J.M. The impact of running on gastrointestinal symptoms in patientswith irritable bowel syndrome. Neurogastroenterol. Mobil. 2024, 36, e14707. [Google Scholar] [CrossRef] [PubMed]
- Baart, A.M.; Terink, R.; Zwerver, J.; Witteman, B.J.M.; Mensink, M. Exerciserelated abdominal complaints in a large cohort of runners: A survey with a particular focus on nutrition. BMJ Open Sport Exerc. Med. 2023, 9, e001571. [Google Scholar] [CrossRef]
- Ryan, T.; Daly, E.; Ryan, L. Carbohydrate beliefs and practices of ultra-endurance runners in Ireland for gastrointestinal symptom management. Front. Nutr. 2024, 11, 1408101. [Google Scholar] [CrossRef]
- Jamieson, J.A.; Olynyk, C.; Harvie, R.; O’Brien, S. ‘Uncomfortable and Embarrassed’: The Stigma of Gastrointestinal Symptoms as a Barrier to Accessing Care and Support for Collegiate Athletes. Dietetics 2025, 4, 11. [Google Scholar] [CrossRef]
- Wardenaar, F.C.; Schott, K.D.; Mohr, A.E.; Ortega-Santos, C.P.; Connolly, J.E. An Exploratory Study Investigating the Prevalence of Gastrointestinal Symptoms in Collegiate Division I American Football Athletes. Int. J. Environ. Res. Public Health 2023, 20, 6453. [Google Scholar] [CrossRef]
- Kearns, R.; Dooley, J.S.G.; Matthews, M.; McNeilly, A. Dietary Information for Gut Endurance Sport Testing (DIGEST): Exploring the relationship between gut health, sports nutrition knowledge and nutritional practices in elite sport. Sport. Sci. Health 2025, 21, 2921–2935. [Google Scholar] [CrossRef]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S.; El-Sawaf, Y.; Elbatarny, A.; Elbeltagi, R. Exploring the gut-exercise link: A systematic review of gastrointestinal disorders in physical activity. World J. Gastroenterol. 2025, 31, 106835. [Google Scholar] [CrossRef]
- Smith, K.A.; Pugh, J.N.; Duca, F.A.; Close, G.L.; Ormsbee, M.J. Gastrointestinal pathophysiology during endurance exercise: Endocrine, microbiome, and nutritional influences. Eur. J. Appl. Physiol. 2021, 121, 2657–2674. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Young, P.; Gill, S.K.; Snipe, R.M.J.; Gaskell, S.; Russo, I.; Burke, L.M. Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 387–418. [Google Scholar] [CrossRef]
- Chantler, S.; Griffiths, A.; Matu, J.; Davison, G.; Jones, B.; Deighton, K. The Effects of Exercise on Indirect Markers of Gut Damage and Permeability: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, S.K.; Burgell, R.; Wiklendt, L.; Dinning, P.G.; Costa, R.J.S. Impact of exercise duration on gastrointestinal function and symptoms. J. Appl. Physiol. 2023, 134, 160–171. [Google Scholar] [CrossRef]
- Lis, D.M.; Kings, D.; Larson-Meyer, D.E. Dietary Practices Adopted by Track-and-Field Athletes: Gluten-Free, Low FODMAP, Vegetarian, and Fasting. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Hoshino, F.; Edama, M.; Omori, G. Snack and Nutrient Intake Status of Top-Level Female University Athletes: A Cross-Sectional Study. Healthcare 2024, 12, 468. [Google Scholar] [CrossRef]
- Podlogar, T.; Cirnski, S.; Bokal, S.; Verdel, N.; Gonzalez, J.T. Addition of Fructose to a Carbohydrate-Rich Breakfast Improves Cycling Endurance Capacity in Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Coffey, A.B.; Alai, N.L.; Gray, V.B.; Cotter, J.A.; Barrack, M.T. Nutrition Education Curriculum Promotes Adolescent Runners’ Self-Efficacy, Knowledge, and Intake of Nutrient-Rich Carbohydrate Foods. J. Am. Coll. Nutr. 2023, 42, 178–186. [Google Scholar] [CrossRef]
- Pomportes, L.; Brisswalter, J. Carbohydrate mouth rinse effects on physical and cognitive performance: Benefits and limitations in sports. Sci. Sports 2020, 35, 200–206. [Google Scholar] [CrossRef]
- Bourdas, D.I.; Souglis, A.; Zacharakis, E.D.; Geladas, N.D.; Travlos, A.K. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years’ Perspective. Nutrients 2021, 13, 4223. [Google Scholar] [CrossRef]
- Gaskell, S.K.; Henningsen, K.; Young, P.; Gill, P.; Muir, J.; Henry, R.; Costa, R.J.S. The Impact of a 24-h Low and High Fermentable Oligo- Di- Mono-Saccharides and Polyol (FODMAP) Diet on Plasma Bacterial Profile in Response to Exertional-Heat Stress. Nutrients 2023, 15, 3376. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Whelan, K. The low FODMAP diet: Recent advances in understanding its mechanisms and efficacy in IBS. Gut 2017, 66, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.; Muir, J.G.; Gibson, P.R. Controversies and Recent Developments of the Low-FODMAP Diet. Gastroenterol. Hepatol. 2017, 13, 36–45. [Google Scholar]
- Devrim-Lanpir, A.; Hill, L.; Knechtle, B. Efficacy of Popular Diets Applied by Endurance Athletes on Sports Performance: Beneficial or Detrimental? A Narrative Review. Nutrients 2021, 13, 491. [Google Scholar] [CrossRef]
- Scrivin, R.; Costa, R.J.S.; Pelly, F.; Lis, D.; Slater, G. An exploratory study of the management strategies reported by endurance athletes with exercise-associated gastrointestinal symptoms. Front. Nutr. 2022, 9, 1003445. [Google Scholar] [CrossRef] [PubMed]
- Scrivin, R.; Slater, G.; Mika, A.; Rauch, C.; Young, P.; Martinez, I.; Costa, R.J.S. The impact of 48 h high carbohydrate diets with high and low FODMAP content on gastrointestinal status and symptoms in response to endurance exercise, and subsequent endurance performance. Appl. Physiol. Nutr. Metab. 2024, 49, 773–791. [Google Scholar] [CrossRef]
- Gaskell, S.K.; Taylor, B.; Muir, J.; Costa, R.J.S. Impact of 24-h high and low fermentable oligo-, di-, monosaccharide, and polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional heat stress. Appl. Physiol. Nutr. Metab. 2020, 45, 569–580. [Google Scholar] [CrossRef]
- Lis, D.M. Exit Gluten-Free and Enter Low FODMAPs: A Novel Dietary Strategy to Reduce Gastrointestinal Symptoms in Athletes. Sports Med. 2019, 49, 87–97. [Google Scholar] [CrossRef]
- Wiffin, M.; Smith, L.; Antonio, J.; Johnstone, J.; Beasley, L.; Roberts, J. Effect of a short-term low fermentable oligiosaccharide, disaccharide, monosaccharide and polyol (FODMAP) diet on exercise-related gastrointestinal symptoms. J. Int. Soc. Sports Nutr. 2019, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Lis, D.M.; Stellingwerff, T.; Kitic, C.M.; Fell, J.W.; Ahuja, K.D.K. Low FODMAP: A Preliminary Strategy to Reduce Gastrointestinal Distress in Athletes. Med. Sci. Sports Exerc. 2018, 50, 116–123. [Google Scholar] [CrossRef]
- Murtaza, N.; Collins, L.; Yao, C.K.; Thwaites, P.A.; Veitch, P.; Varney, J.E.; Gill, P.A.; Gibson, P.R.; Morrison, M.; Muir, J.G. Effects of dietary FODMAP content on the faecal microbiome and gastrointestinal physiology in healthy adults: A randomised, controlled cross-over feeding study. Br. J. Nutr. 2025, 134, 712–726. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, M.; Zha, Y.; Yang, K.; Tong, Y.; Wang, S.; Lu, Q.; Ning, K. Gut microbiota and inflammation patterns for specialized athletes: A multi-cohort study across different types of sports. mSystems 2023, 8, e0025923. [Google Scholar] [CrossRef] [PubMed]
- Rozmiarek, M. Nutritional Challenges of Active Sports Tourists: A Qualitative Study from the Runners’ Perspective. Nutrients 2025, 17, 2339. [Google Scholar] [CrossRef] [PubMed]
| Study Location | Sport Discipline | Sample Size (n) | Prevalence of GI Symptoms (%) | References |
|---|---|---|---|---|
| China | Running | 805 | 26.1 | Zhao et al., 2025 [38] |
| Spain | Triathlon, Running | 42 | 61.9 | Jimenex-Alfageme et al., 2024 [39] |
| Spain | Cycling | 138 | 48.6 | Martinez et al., 2025 [40] |
| Netherlands | Running | 433 | 40 | ten Haaf et al., 2014 [41] |
| Netherlands | Running | 252 | 89.3 | Hoogervorst et al., 2019 [42] |
| Netherlands | Running | 1281 | 45.2 | Ter Steege et al., 2008 [43] |
| Netherlands and Belgium | Running | 306 (153 IBS +153 without IBS) | 94 (IBS); 54 (without IBS) | Baart et al., 2024 [44] |
| Netherlands and Belgium | Running | 1993 | 57 | Baart et al., 2023 [45] |
| Ireland | Ultramarathon | 68 | 61.8 | Ryan et al., 2024 [46] |
| Canada | Individual and team sports | 96 | 66 | Jamieson et al., 2025 [47] |
| USA (Phoenix, Arizona) | American football | 44 | 52 | Wardenaar et al., 2023 [48] |
| Great Britain and Ireland | Endurance sports (elite athletes) | 400 | 53.3 | Kearns et al., 2025 [49] |
| Exercise Type | Sample Size (n) | Intervention | Intervention Duration | Main Results | References |
|---|---|---|---|---|---|
| Continuous running for 2 h under heat stress conditions (35.6 °C) | 13 | Low FODMAP diet compared to high FODMAP diet | 24 h | No significant differences in plasma microbiome after exercise; significant differences in the relative number of bacteria and the concentration of short-chain fatty acids in feces | Gaskell et al., 2023 [61] |
| Continuous running for 2 h under heat stress conditions (35.6 °C) | 18 | Low FODMAP diet compared to high FODMAP diet before 2 h of running at 35 °C | 24 h | Stronger gastrointestinal symptoms and increased intestinal fermentation after a high FODMAP diet | Gaskell et al., 2020 [67] |
| Continuous 2 h running | 12 | High carbohydrate diet: low FODMAP compared to high FODMAP | 48 h | Lower severity of gastrointestinal symptoms before and during exercise following the low FODMAP diet | Scrivin et al., 2024 [66] |
| 56 km ultramarathon | 44 | Assessment of FODMAP intake and carbohydrate malabsorption | 3 days | No association between FODMAP intake or carbohydrate malabsorption and gastrointestinal symptoms | Convit et al., 2024 [34] |
| Running training at varying intensities | 11 | Low FODMAP diet compared to high FODMAP diet | 6 days | Reduced bloating, diarrhea, loose stools, and urge to defecate after the low FODMAP diet | Lis et al., 2018 [70] |
| Running training | 16 | Low FODMAP diet compared to high FODMAP diet | 7 days | Significant reduction in gastrointestinal symptoms following the low FODMAP diet | Wiffin et al., 2019 [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kołodziejczyk, A.; Staśkiewicz-Bartecka, W.; Kardas, M. The Role of FODMAPs in Sports Nutrition: A Narrative Review and Clinical Implications. Nutrients 2026, 18, 239. https://doi.org/10.3390/nu18020239
Kołodziejczyk A, Staśkiewicz-Bartecka W, Kardas M. The Role of FODMAPs in Sports Nutrition: A Narrative Review and Clinical Implications. Nutrients. 2026; 18(2):239. https://doi.org/10.3390/nu18020239
Chicago/Turabian StyleKołodziejczyk, Aleksandra, Wiktoria Staśkiewicz-Bartecka, and Marek Kardas. 2026. "The Role of FODMAPs in Sports Nutrition: A Narrative Review and Clinical Implications" Nutrients 18, no. 2: 239. https://doi.org/10.3390/nu18020239
APA StyleKołodziejczyk, A., Staśkiewicz-Bartecka, W., & Kardas, M. (2026). The Role of FODMAPs in Sports Nutrition: A Narrative Review and Clinical Implications. Nutrients, 18(2), 239. https://doi.org/10.3390/nu18020239

