Nutraceutical Potential of Astaxanthin in Muscle Metabolism, Exercise Adaptation, and Obesity
Abstract
1. Introduction
2. Mechanistic Insights: Astaxanthin in Muscle Metabolism and Mitochondrial Function
2.1. Antioxidant Action in Skeletal Muscle
2.2. Modulation of Fat and Glucose Metabolism in Skeletal Muscle
2.3. Effects of Astaxanthin on Mitochondrial Biogenesis and AMPK Activation
2.4. Protective Role of Astaxanthin on Mitochondria in Skeletal Muscle
2.5. Astaxanthin as a Modulator of Inflammatory Responses
3. Astaxanthin and Obesity: Multi-Organ Metabolic Effects
3.1. Effects on Adipose Tissue
3.2. Integrated Metabolic Axis
4. Astaxanthin and Exercise Adaptation
| Study (Year) | Model/Subjects | Dose/Duration | AX Formulation and Administration | Main Outcomes | Key Findings | References |
|---|---|---|---|---|---|---|
| Aoi et al., 2008 | Mice | Astaxanthin in diet (~3% extract), 4 weeks | Dietary supplementation; AX mixed into standard rodent chow | β-oxidation, CPT-I oxidation | ↑ fat use, ↑ endurance, ↓ CPT-I oxidation | [34] |
| Polotow et al., 2014 | Wistar rats | 1 mg/kg/day, 45 days | Oral gavage, AstaReal® biomass stock solution prepared in mineral oil | SOD, GPx, redox balance | ↑ SOD/GPx, ↓ oxidative stress, ↑ exhaustion time | [93] |
| Aoi et al., 2003 | Mice | 20 mg/kg/day, 3 weeks | AX mixed into powdered chow (CE-2) (oral via feed) | 4-HNE, 8-OHdG, inflammation | ↓ oxidative injury, ↓ neutrophil infiltration | [94] |
| Wang et al., 2023 | Mice (HIIT) | 10 mg/kg/day, 2 h prior to exercise for 6 weeks | Oral gavage; AX dissolved in olive oil | PGC-1α, NRF1, TFAM, oxidative stress marker | ↑ mitochondrial biogenesis, ↓ exercise-induced oxidative stress, ↑ antioxidant capacity | [42] |
| Nishida et al., 2020 | Obese mice | 0.02% diet, 8 weeks | Dietary supplementation; commercially available astaxanthin powder pre-mixed into normal chow or high-fat diet. | AMPK, PGC-1α | ↑ AMPK activation, ↑ oxidative capacity, improved metabolic and redox homeostasis | [7] |
| Li et al., 2025 | Obese mice | 0.02% diet, 12 weeks | Oral gavage; AX dissolved in hydroxypropyl-β-cyclodextrin | AMPK, ATP | ↑ AMPK, ↑ ATP, ↑ mitochondrial resilience | [32] |
| Zhou et al., 2019 | Swimming mice | 5–30 mg/kg/day, 4 weeks, 2 h prior to swimming training | Oral gavage; AX dissolved in olive oil | Nrf2, antioxidant enzymes | High doses ↓ antioxidant enzymes | [95] |
| Study (Year) | Model/Subjects | Dose/Duration | AX Formulation and Administration | Main Outcomes | Key Findings | References |
|---|---|---|---|---|---|---|
| Performance and Metabolic Adaptation | ||||||
| Res et al., 2013 | Trained cyclists | 20 mg/day, 4 weeks | Oral gelatin capsules; Haematococcus pluvialis extract dissolved in sunflower oil, with added vitamin C (60 mg/capsule) and vitamin E (10 mg/capsule); ingested with breakfast and dinner. | Fat oxidation, TT performance | No ergogenic effect and no reduction in lipid peroxidation (MDA) or antioxidant capacity (TEAC) | [96] |
| Brown et al., 2021 | Recreational cyclists | 12 mg/day, 7 days, (2 capsules/day) | Oral capsules; astaxanthin (AstaReal®) | 40 km TT, fat oxidation | ↑ fat oxidation, ↑ TT performance | [44] |
| Tsao et al., 2025 | Young active adults | 28 mg/day, 4 days | Oral capsules (AstaReal®); administered after standardized breakfast | Time-to-exhaustion, CK, MDA | ↑ TTE, ↓ CK, ↓ MDA, ↓ lipid peroxidation, TEAC unchanged | [60] |
| Imai et al., 2018 | Trained young athletes | 6 mg/day, 4 weeks | Softgel capsules (ASTOTS®) taken once daily after breakfast for 4 weeks | Lactate, CK, VO2max, AT, performance | ↓ Lactate, ↓ CK; no change in VO2max, AT, performance | [101] |
| Saeidi et al., 2023 | Obese men + HIFT | 20 mg/day, 12 weeks | Oral capsules; administered once daily with breakfast; placebo capsules contained corn starch | Adipokines, metabolic health | ↓ CTRP2/9, ↓ GDF8, improved metabolic markers | [10] |
| Nieman et al., 2023 | Endurance athletes | 8 mg/day, 4 weeks | Oral capsules; astaxanthin derived from Haematococcus pluvialis supplied by Lycored; starch beadlet formulation; ingested once daily with the first meal | Immune-related plasma proteins | Prevents ↓ immune proteins post-exercise | [57] |
| Muscle Damage and Recovery | ||||||
| Klinkenberg et al., 2013 | Cyclists | 20 mg/day, 4 weeks | Oral gelatin capsules; AX extract from Haematococcus pluvialis dissolved in sunflower oil, with added vitamin C (60 mg/capsule) and vitamin E (10 mg/capsule); (2 capsules with breakfast and 3 capsules with dinner). | cTnT, MDA, TAC | No effect on troponin or MDA. | [97] |
| Djordjevic et al., 2012 | Elite soccer players | 4 mg/day, 90 days | Oral capsules | CK, AST, TAS | ↓ exercise-induced superoxide (O2•−), ↓ CK, ↓ AST, ↑ TAS | [99] |
| Waldman et al., 2023 | Resistance-trained | 12 mg/day, 4 weeks | Oral supplementation | CK, DOMS, IL-6 | No significant effects | [98] |
| Barker et al., 2023 | Resistance-trained | 12 mg/day, 4 weeks | Oral capsules | DOMS, performance | ↓ DOMS, no performance change | [100] |
| Elderly Studies | ||||||
| Liu et al., 2018 | Elderly 65–82 y | 12 mg/day combined with tocotrienol (10 mg/day) and zinc (6 mg/day), 16 weeks + training | Oral capsules | Strength, CSA, mobility | ↑ strength, ↑ CSA, ↑ mobility | [24] |
| Liu et al., 2021 | Elderly | 12 mg/day tocotrienol (10 mg/day), and zinc (6 mg/day), + aerobic training | Oral capsules | Fat oxidation, endurance | ↑ FATox, ↑ endurance | [52] |
| Meta-Analyses | ||||||
| Liu et al., 2024 | 11 RCTs | 8–28 mg/day | Not available (meta-analysis) | Fatigue, aerobic performance | ↑ FA oxidation, ↑ aerobic performance | [103] |
| Hasani et al., 2024 | 9 RCTs athletes | Variable dose | Not available (meta-analysis) | Performance, TAC | ↑ cycling performance, ↑ TAC | [104] |
5. Formulations and Targeted Delivery Strategies
5.1. Delivery Strategies to Improve Solubility, Stability and Absorption
5.1.1. Nanoemulsions and Microemulsions
5.1.2. Liposomes
5.1.3. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
5.1.4. Protein- or Cyclodextrin-Based Complexes
5.2. Linking Delivery Efficiency to Biological Function
5.3. Astaxanthin-Mitochondria Interactions
6. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 4-HNE | 4-hydroxy-2-nonenal |
| 8-OHdG | 8-hydroxy-2′-deoxyguanosine |
| ACC | Acetyl-CoA carboxylase |
| AMPK | AMP-activated protein kinase |
| aP2 | Adipocyte protein 2 |
| AKT | Protein kinase B |
| ARA | Arachidonic acid |
| AST | Aspartate aminotransferase |
| ATP | Adenosine triphosphate |
| AX | Astaxanthin |
| C/F | Capillary-to-fiber ratio |
| CAF | Capillaries per fiber |
| CD36 | Cluster of differentiation 36 |
| CK | Creatine kinase |
| COX-2 | Cyclooxygenase-2 |
| CPT1 | Carnitine palmitoyltransferase 1 |
| CSA | Cross-sectional area |
| cTnT | Cardiac troponin T |
| CTRP2 | C1q/TNF-related protein 2 |
| CTRP9 | C1q/TNF-related protein 9 |
| CYP27A1 | Cytochrome P450 27A1 |
| CYP7A1 | Cholesterol 7α-hydroxylase |
| DHA | Docosahexaenoic acid |
| DOMS | Delayed onset muscle soreness |
| EPA | Eicosapentaenoic acid |
| FAS | Fatty acid synthase |
| FCSA | Muscle fiber cross-sectional area |
| GDF8 | Growth differentiation factor 8 |
| GDF15 | Growth differentiation factor 15 |
| GLUT4 | Glucose transporter type 4 |
| GPDH | Glycerol-3-phosphate dehydrogenase |
| HFD | High-fat diets |
| Hif-2α | Hypoxia-inducible factor 2α |
| HIIT | High-Intensity Interval Training |
| IL | Interleukin |
| iNOS | Inducible nitric oxide synthase |
| IRS-1 | Insulin receptor substrate-1 |
| JNK | C-jun N-terminal kinase |
| LDH | Lactate dehydrogenase |
| Ldlr−/− | Low-density lipoprotein receptor–deficient |
| LXRα | Liver X receptor alpha |
| MAPK | Mitogen-activated protein kinase |
| MDA | Malondialdehyde |
| MVC | Maximum voluntary contraction |
| NAD+ | Nicotinamide adenine dinucleotide |
| NF-κB | Nuclear factor kappa B |
| NLCs | Nanostructured Lipid Carriers |
| Nrf1 | Nuclear respiratory factor 1 |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
| PI3K | Phosphoinositide 3-kinase |
| PPARα | Peroxisome proliferator-activated receptor alpha |
| PPARγ | Peroxisome proliferator-activated receptor gamma |
| PPARδ | peroxisome proliferator-activated receptor delta |
| PRDM16 | PR/SET domain containing 16 |
| PUFA | Polyunsaturated fatty acid |
| RCTs | Randomized controlled trial |
| RONS | Reactive oxygen and nitrogen species |
| ROS | Reactive oxygen species |
| SCD-1 | Stearoyl-CoA desaturase-1 |
| SIRT1 | Sirtuin 1 |
| SIRT3 | Sirtuin 3 |
| SLNs | Solid lipid nanoparticles |
| SREBP-1c | Sterol regulatory element-binding protein-1c |
| TFAM | Mitochondrial transcription factor A |
| TNF-α | Tumor necrosis factor-alpha |
| TPP+ | Triphenylphosphonium |
| UCP1 | Uncoupling protein 1 |
| WAT | White adipose tissue |
References
- Ambati, R.; Phang, S.-M.; Ravi, S.; Aswathanarayana, R. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef]
- Nair, A.; Ahirwar, A.; Singh, S.; Lodhi, R.; Lodhi, A.; Rai, A.; Jadhav, D.A.; Harish; Varjani, S.; Singh, G.; et al. Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Mar. Drugs 2023, 21, 176. [Google Scholar] [CrossRef]
- Abdelazim, K.; Ghit, A.; Assal, D.; Dorra, N.; Noby, N.; Khattab, S.N.; El Feky, S.E.; Hussein, A. Production and Therapeutic Use of Astaxanthin in the Nanotechnology Era. Pharmacol. Rep. 2023, 75, 771–790. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Nawaz, A.; Hecht, K.; Tobe, K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021, 14, 107. [Google Scholar] [CrossRef]
- Abdol Wahab, N.R.; Meor Mohd Affandi, M.M.R.; Fakurazi, S.; Alias, E.; Hassan, H. Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin. Antioxidants 2022, 11, 1676. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Branchi, F.; Fraquelli, M.; Baccarin, A.; Somalvico, F.; Ferretti, F.; Conte, D.; Elli, L. Effects of a Gluten-Containing Meal on Gastric Emptying and Gallbladder Contraction. Nutrients 2018, 10, 910. [Google Scholar] [CrossRef]
- Nishida, Y.; Nawaz, A.; Kado, T.; Takikawa, A.; Igarashi, Y.; Onogi, Y.; Wada, T.; Sasaoka, T.; Yamamoto, S.; Sasahara, M.; et al. Astaxanthin Stimulates Mitochondrial Biogenesis in Insulin Resistant Muscle via Activation of AMPK Pathway. J. Cachexia Sarcopenia Muscle 2020, 11, 241–258. [Google Scholar] [CrossRef]
- Oliva, M.E.; Degrave, V.; Ingaramo, P.; Collins, P.; D’Alessandro, M.E. Effects of Astaxanthin on the Mechanisms Involved in Skeletal Muscle Lipid Metabolism and Oxidative Stress in an Experimental Model of Metabolic Syndrome. Food Funct. 2025, 16, 4851–4861. [Google Scholar] [CrossRef]
- Chen, Y.; Ling, C.; Chen, M.; Yu, L.; Yang, J.; Fang, Q. Astaxanthin Ameliorates Worsened Muscle Dysfunction of MDX Mice Fed with a High-Fat Diet through Reducing Lipotoxicity and Regulating Gut Microbiota. Nutrients 2023, 16, 33. [Google Scholar] [CrossRef]
- Saeidi, A.; Nouri-Habashi, A.; Razi, O.; Ataeinosrat, A.; Rahmani, H.; Mollabashi, S.S.; Bagherzadeh-Rahmani, B.; Aghdam, S.M.; Khalajzadeh, L.; Al Kiyumi, M.H.; et al. Astaxanthin Supplemented with High-Intensity Functional Training Decreases Adipokines Levels and Cardiovascular Risk Factors in Men with Obesity. Nutrients 2023, 15, 286. [Google Scholar] [CrossRef] [PubMed]
- Supriya, R.; Shishvan, S.R.; Kefayati, M.; Abednatanzi, H.; Razi, O.; Bagheri, R.; Escobar, K.A.; Pashaei, Z.; Saeidi, A.; Shahrbanian, S.; et al. Astaxanthin Supplementation Augments the Benefits of CrossFit Workouts on Semaphorin 3C and Other Adipokines in Males with Obesity. Nutrients 2023, 15, 4803. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ling, C.; Chen, Y.; Wang, H.; Qin, Y.; Xu, J.; Chen, G.; Shi, B.; Qin, L.; Yang, J. Astaxanthin Improves Skeletal Muscle Regeneration in CTX-Induced Injury of HFD-Fed Obese Mice via Mitochondrial Biogenesis. J. Funct. Foods 2024, 115, 106114. [Google Scholar] [CrossRef]
- Brown, D.R.; Gough, L.A.; Deb, S.K.; Sparks, S.A.; McNaughton, L.R. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review. Front. Nutr. 2018, 4, 76. [Google Scholar] [CrossRef]
- Wika, A.A.; Reason, K.W.; Green, J.M.; Killen, L.G.; McAllister, M.J.; Waldman, H.S. Astaxanthin Reduces Heart Rate and Carbohydrate Oxidation Rates During Exercise in Overweight Individuals. Int. J. Exerc. Sci. 2023, 16, 252–266. [Google Scholar] [CrossRef]
- Kawamura, A.; Aoi, W.; Abe, R.; Kobayashi, Y.; Wada, S.; Kuwahata, M.; Higashi, A. Combined Intake of Astaxanthin, β-Carotene, and Resveratrol Elevates Protein Synthesis during Muscle Hypertrophy in Mice. Nutrition 2020, 69, 110561. [Google Scholar] [CrossRef]
- Kanazashi, M.; Okumura, Y.; Al-Nassan, S.; Murakami, S.; Kondo, H.; Nagatomo, F.; Fujita, N.; Ishihara, A.; Roy, R.R.; Fujino, H. Protective Effects of Astaxanthin on Capillary Regression in Atrophied Soleus Muscle of Rats. Acta Physiol. 2013, 207, 405–415. [Google Scholar] [CrossRef]
- Kanazashi, M.; Tanaka, M.; Murakami, S.; Kondo, H.; Nagatomo, F.; Ishihara, A.; Roy, R.R.; Fujino, H. Amelioration of Capillary Regression and Atrophy of the Soleus Muscle in Hindlimb-unloaded Rats by Astaxanthin Supplementation and Intermittent Loading. Exp. Physiol. 2014, 99, 1065–1077. [Google Scholar] [CrossRef]
- Yoshihara, T.; Yamamoto, Y.; Shibaguchi, T.; Miyaji, N.; Kakigi, R.; Naito, H.; Goto, K.; Ohmori, D.; Yoshioka, T.; Sugiura, T. Dietary Astaxanthin Supplementation Attenuates Disuse-Induced Muscle Atrophy and Myonuclear Apoptosis in the Rat Soleus Muscle. J. Physiol. Sci. 2017, 67, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, Q.-B.; Zhou, Y.; Chen, S.; Huang, P.-P.; Liu, Y.; Xu, Y.-H. The Mechanisms and Treatments of Muscular Pathological Changes in Immobilization-Induced Joint Contracture: A Literature Review. Chin. J. Traumatol. 2019, 22, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Frimel, T.N.; Kapadia, F.; Gaidosh, G.S.; Li, Y.; Walter, G.A.; Vandenborne, K. A Model of Muscle Atrophy Using Cast Immobilization in Mice. Muscle Nerve 2005, 32, 672–674. [Google Scholar] [CrossRef]
- Morey-Holton, E.R.; Globus, R.K. Hindlimb Unloading Rodent Model: Technical Aspects. J. Appl. Physiol. 2002, 92, 1367–1377. [Google Scholar] [CrossRef]
- Shibaguchi, T.; Yamaguchi, Y.; Miyaji, N.; Yoshihara, T.; Naito, H.; Goto, K.; Ohmori, D.; Yoshioka, T.; Sugiura, T. Astaxanthin Intake Attenuates Muscle Atrophy Caused by Immobilization in Rats. Physiol. Rep. 2016, 4, e12885. [Google Scholar] [CrossRef]
- Maezawa, T.; Tanaka, M.; Kanazashi, M.; Maeshige, N.; Kondo, H.; Ishihara, A.; Fujino, H. Astaxanthin Supplementation Attenuates Immobilization-Induced Skeletal Muscle Fibrosis via Suppression of Oxidative Stress. J. Physiol. Sci. 2017, 67, 603–611. [Google Scholar] [CrossRef]
- Liu, S.Z.; Ali, A.S.; Campbell, M.D.; Kilroy, K.; Shankland, E.G.; Roshanravan, B.; Marcinek, D.J.; Conley, K.E. Building Strength, Endurance, and Mobility Using an Astaxanthin Formulation with Functional Training in Elderly. J. Cachexia Sarcopenia Muscle 2018, 9, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Ma, W.; Gu, Y.; Wu, H.; Bian, Z.; Liu, N.; Yang, D.; Chen, X. High-Fat Diet Causes Mitochondrial Damage and Downregulation of Mitofusin-2 and Optic Atrophy-1 in Multiple Organs. J. Clin. Biochem. Nutr. 2023, 73, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Mengeste, A.M.; Rustan, A.C.; Lund, J. Skeletal Muscle Energy Metabolism in Obesity. Obesity 2021, 29, 1582–1595. [Google Scholar] [CrossRef]
- Pinti, M.V.; Fink, G.K.; Hathaway, Q.A.; Durr, A.J.; Kunovac, A.; Hollander, J.M. Mitochondrial Dysfunction in Type 2 Diabetes Mellitus: An Organ-Based Analysis. Am. J. Physiol.-Endocrinol. Metab. 2019, 316, E268–E285. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; No, M.; Cho, J.; Choi, Y.; Cho, E.; Park, D.; Kim, T.; Kim, C.; Seo, D.Y.; Han, J.; et al. Moderate Aerobic Exercise Training Ameliorates Impairment of Mitochondrial Function and Dynamics in Skeletal Muscle of High-fat Diet-induced Obese Mice. FASEB J. 2021, 35, e21340. [Google Scholar] [CrossRef]
- Koh, J.-H.; Johnson, M.L.; Dasari, S.; LeBrasseur, N.K.; Vuckovic, I.; Henderson, G.C.; Cooper, S.A.; Manjunatha, S.; Ruegsegger, G.N.; Shulman, G.I.; et al. TFAM Enhances Fat Oxidation and Attenuates High-Fat Diet–Induced Insulin Resistance in Skeletal Muscle. Diabetes 2019, 68, 1552–1564. [Google Scholar] [CrossRef]
- Jana, B.A.; Chintamaneni, P.K.; Krishnamurthy, P.T.; Wadhwani, A.; Mohankumar, S.K. Cytosolic Lipid Excess-Induced Mitochondrial Dysfunction Is the Cause or Effect of High Fat Diet-Induced Skeletal Muscle Insulin Resistance: A Molecular Insight. Mol. Biol. Rep. 2019, 46, 957–963. [Google Scholar] [CrossRef]
- Dan Dunn, J.; Alvarez, L.A.; Zhang, X.; Soldati, T. Reactive Oxygen Species and Mitochondria: A Nexus of Cellular Homeostasis. Redox Biol. 2015, 6, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yan, Y.; Wang, K.; Jiang, T. Astaxanthin Alleviates Oxidative Stress and Skeletal Muscle Damage by Promoting Mitochondrial Biogenesis. Front. Vet. Sci. 2025, 12, 1577408. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.H.; Aoi, W.; Takami, M.; Terajima, H.; Tanimura, Y.; Naito, Y.; Itoh, Y.; Yoshikawa, T. The Astaxanthin-Induced Improvement in Lipid Metabolism during Exercise Is Mediated by a PGC-1α Increase in Skeletal Muscle. J. Clin. Biochem. Nutr. 2014, 54, 86–89. [Google Scholar] [CrossRef]
- Aoi, W.; Naito, Y.; Takanami, Y.; Ishii, T.; Kawai, Y.; Akagiri, S.; Kato, Y.; Osawa, T.; Yoshikawa, T. Astaxanthin Improves Muscle Lipid Metabolism in Exercise via Inhibitory Effect of Oxidative CPT I Modification. Biochem. Biophys. Res. Commun. 2008, 366, 892–897. [Google Scholar] [CrossRef]
- Friedman, J.M. Obesity in the New Millennium. Nature 2000, 404, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Yamamoto, J.; Iwasaki, S.; Asaba, H.; Hamura, H.; Ikeda, Y.; Watanabe, M.; Magoori, K.; Ioka, R.X.; Tachibana, K.; et al. Activation of Peroxisome Proliferator-Activated Receptor δ Induces Fatty Acid β-Oxidation in Skeletal Muscle and Attenuates Metabolic Syndrome. Proc. Natl. Acad. Sci. USA 2003, 100, 15924–15929. [Google Scholar] [CrossRef]
- He, W.; Barak, Y.; Hevener, A.; Olson, P.; Liao, D.; Le, J.; Nelson, M.; Ong, E.; Olefsky, J.M.; Evans, R.M. Adipose-Specific Peroxisome Proliferator-Activated Receptor γ Knockout Causes Insulin Resistance in Fat and Liver but Not in Muscle. Proc. Natl. Acad. Sci. USA 2003, 100, 15712–15717. [Google Scholar] [CrossRef]
- Wang, Y.-X. PPARs: Diverse Regulators in Energy Metabolism and Metabolic Diseases. Cell Res. 2010, 20, 124–137. [Google Scholar] [CrossRef]
- Bonnard, C.; Durand, A.; Peyrol, S.; Chanseaume, E.; Chauvin, M.-A.; Morio, B.; Vidal, H.; Rieusset, J. Mitochondrial Dysfunction Results from Oxidative Stress in the Skeletal Muscle of Diet-Induced Insulin-Resistant Mice. J. Clin. Investig. 2008, 118, 789–800. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT Pathway in Obesity and Type 2 Diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef]
- Arunkumar, E.; Bhuvaneswari, S.; Anuradha, C.V. An Intervention Study in Obese Mice with Astaxanthin, a Marine Carotenoid—Effects on Insulin Signaling and pro-Inflammatory Cytokines. Food Funct. 2012, 3, 120–126. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Baker, J.S.; Davison, G.W.; Xu, S.; Zhou, Y.; Bao, X. Astaxanthin Promotes Mitochondrial Biogenesis and Antioxidant Capacity in Chronic High-Intensity Interval Training. Eur. J. Nutr. 2023, 62, 1453–1466. [Google Scholar] [CrossRef]
- Earnest, C.P.; Lupo, M.; White, K.M.; Church, T.S. Effect of Astaxanthin on Cycling Time Trial Performance. Int. J. Sports Med. 2011, 32, 882–888. [Google Scholar] [CrossRef]
- Brown, D.R.; Warner, A.R.; Deb, S.K.; Gough, L.A.; Sparks, S.A.; McNaughton, L.R. The Effect of Astaxanthin Supplementation on Performance and Fat Oxidation during a 40 Km Cycling Time Trial. J. Sci. Med. Sport. 2021, 24, 92–97. [Google Scholar] [CrossRef]
- McAllister, M.J.; Mettler, J.A.; Patek, K.; Butawan, M.; Bloomer, R.J. Astaxanthin Supplementation Increases Glutathione Concentrations but Does Not Impact Fat Oxidation During Exercise in Active Young Men. Int. J. Sport. Nutr. Exerc. Metab. 2022, 32, 8–15. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H. Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction-A Mini-Review. Nutrients 2018, 10, 1137. [Google Scholar] [CrossRef]
- Kurashige, M.; Okimasu, E.; Inoue, M.; Utsumi, K. Inhibition of Oxidative Injury of Biological Membranes by Astaxanthin. Physiol. Chem. Phys. Med. NMR 1990, 22, 27–38. [Google Scholar] [PubMed]
- Waldman, H. Astaxanthin Supplementation as a Potential Strategy for Enhancing Mitochondrial Adaptations in the Endurance Athlete: An Invited Review. Nutrients 2024, 16, 1750. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Berg, P.; Shakersain, B.; Hecht, K.; Takikawa, A.; Tao, R.; Kakuta, Y.; Uragami, C.; Hashimoto, H.; Misawa, N.; et al. Astaxanthin: Past, Present, and Future. Mar. Drugs 2023, 21, 514. [Google Scholar] [CrossRef]
- Bjørklund, G.; Gasmi, A.; Lenchyk, L.; Shanaida, M.; Zafar, S.; Mujawdiya, P.K.; Lysiuk, R.; Antonyak, H.; Noor, S.; Akram, M.; et al. The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules 2022, 27, 7167. [Google Scholar] [CrossRef]
- Castelli, S.; Desideri, E.; Laureti, L.; Felice, F.; De Cristofaro, A.; Scaricamazza, S.; Lazzarino, G.; Ciriolo, M.R.; Ciccarone, F. N-Acetylaspartate Promotes Glycolytic-to-Oxidative Fiber-Type Switch and Resistance to Atrophic Stimuli in Myotubes. Cell Death Dis. 2024, 15, 686. [Google Scholar] [CrossRef]
- Liu, S.Z.; Valencia, A.P.; VanDoren, M.P.; Shankland, E.G.; Roshanravan, B.; Conley, K.E.; Marcinek, D.J. Astaxanthin Supplementation Enhances Metabolic Adaptation with Aerobic Training in the Elderly. Physiol. Rep. 2021, 9, e14887. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Li, J.; Rajabi, S. Molecular Mechanisms, Endurance Athlete, and Synergistic Therapeutic Effects of Marine-Derived Antioxidant Astaxanthin Supplementation and Exercise in Cancer, Metabolic Diseases, and Healthy Individuals. Food Sci. Nutr. 2025, 13, e70470. [Google Scholar] [CrossRef]
- Medoro, A.; Intrieri, M.; Passarella, D.; Willcox, D.C.; Davinelli, S.; Scapagnini, G. Astaxanthin as a Metabolic Regulator of Glucose and Lipid Homeostasis. J. Funct. Foods 2024, 112, 105937. [Google Scholar] [CrossRef]
- Choi, S.-K.; Park, Y.-S.; Choi, D.-K.; Chang, H.-I. Effects of Astaxanthin on the Production of NO and the Expression of COX-2 and iNOS in LPS-Stimulated BV2 Microglial Cells. J. Microbiol. Biotechnol. 2008, 18, 1990–1996. [Google Scholar] [CrossRef]
- Baralic, I.; Andjelkovic, M.; Djordjevic, B.; Dikic, N.; Radivojevic, N.; Suzin-Zivkovic, V.; Radojevic-Skodric, S.; Pejic, S. Effect of Astaxanthin Supplementation on Salivary IgA, Oxidative Stress, and Inflammation in Young Soccer Players. Evid.-Based Complement. Altern. Med. 2015, 2015, 783761. [Google Scholar] [CrossRef]
- Nieman, D.C.; Woo, J.; Sakaguchi, C.A.; Omar, A.M.; Tang, Y.; Davis, K.; Pecorelli, A.; Valacchi, G.; Zhang, Q. Astaxanthin Supplementation Counters Exercise-Induced Decreases in Immune-Related Plasma Proteins. Front. Nutr. 2023, 10, 1143385. [Google Scholar] [CrossRef]
- Gonzalez, D.E.; Dickerson, B.L.; Johnson, S.E.; Woodruff, K.E.; Leonard, M.; Yoo, C.; Ko, J.; Xing, D.; Martinez, V.; Kendra, J.; et al. Impact of Astaxanthin Supplementation on Markers of Cardiometabolic Health and Tactical Performance among Firefighters. J. Int. Soc. Sports Nutr. 2024, 21, 2427751. [Google Scholar] [CrossRef]
- Wang, J.; Wu, L.; Dai, Z.; Bai, R. Effects of Different Doses of Astaxanthin on Indicators of Muscle Damage after Acute Exhaustive Exercise: A Randomized Controlled Study. Sci. Sports 2025, 40, 630–638. [Google Scholar] [CrossRef]
- Tsao, J.-P.; Wu, P.-Y.; Kuo, H.-T.; Hong, W.-H.; Chen, C.-C.; Wang, M.-Y.; Korivi, M.; Cheng, I.-S. Effect of Astaxanthin Supplementation on Cycling Performance, Muscle Damage Biomarkers and Oxidative Stress in Young Adults: A Randomized Controlled Trial. BMC Sports Sci. Med. Rehabil. 2025, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Gakidou, E.; Lo, J.; Abate, Y.H.; Abbafati, C.; Abbas, N.; Abbasian, M.; Abd ElHafeez, S.; Abdel-Rahman, W.M.; Abd-Elsalam, S.; et al. Global, Regional, and National Prevalence of Adult Overweight and Obesity, 1990–2021, with Forecasts to 2050: A Forecasting Study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef]
- On behalf of the IARC working group on Energy Balance and Obesity; Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; et al. Energy Balance and Obesity: What Are the Main Drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Chen, S.-Y.; Sheng, L.; Jena, P.K.; Kalanetra, K.M.; Mills, D.A.; Wan, Y.-J.Y.; Slupsky, C.M. Long-Term Effects of Western Diet Consumption in Male and Female Mice. Sci. Rep. 2020, 10, 14686. [Google Scholar] [CrossRef]
- Turner, L.; Wanasinghe, A.I.; Brunori, P.; Santosa, S. Is Adipose Tissue Inflammation the Culprit of Obesity-Associated Comorbidities? Obes. Rev. 2025, 26, e13956. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef] [PubMed]
- Palacio, T.L.N.; Siqueira, J.S.; De Paula, B.H.; Rego, R.M.P.; Vieira, T.A.; Baron, G.; Altomare, A.; Ferron, A.J.T.; Aldini, G.; Kano, H.T.; et al. Bergamot (Citrus bergamia) Leaf Extract Improves Metabolic, Antioxidant and Anti-Inflammatory Activity in Skeletal Muscles in a Metabolic Syndrome Experimental Model. Int. J. Food Sci. Nutr. 2023, 74, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.G.; Feizi, A.; Bagherniya, M.; Shafie, D.; Ahmadi, A.-R.; Kafeshani, M. The Effect of Astaxanthin Supplementation on Inflammatory Markers, Oxidative Stress Indices, Lipid Profile, Uric Acid Level, Blood Pressure, Endothelial Function, Quality of Life, and Disease Symptoms in Heart Failure Subjects. Trials 2024, 25, 518. [Google Scholar] [CrossRef]
- Okada, Y.; Ishikura, M.; Maoka, T. Bioavailability of Astaxanthin in Haematococcus Algal Extract: The Effects of Timing of Diet and Smoking Habits. Biosci. Biotechnol. Biochem. 2009, 73, 1928–1932. [Google Scholar] [CrossRef]
- Anto-Michel, N.; Diwoky, C.; Pfeil, K.; Mächler, H.; Zirlik, A. Astaxanthin Limits Atherosclerosis and Dysmetabolism in Mice by Attenuating Inflammatory Cell Recruitment and Signaling. PLoS ONE 2025, 20, e0334410. [Google Scholar] [CrossRef]
- Tsai, M.-C.; Huang, S.-C.; Chang, W.-T.; Chen, S.-C.; Hsu, C.-L. Effect of Astaxanthin on the Inhibition of Lipid Accumulation in 3T3-L1 Adipocytes via Modulation of Lipogenesis and Fatty Acid Transport Pathways. Molecules 2020, 25, 3598. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Nishida, Y.; Takikawa, A.; Fujisaka, S.; Kado, T.; Aminuddin, A.; Bilal, M.; Jeelani, I.; Aslam, M.R.; Nishimura, A.; et al. Astaxanthin, a Marine Carotenoid, Maintains the Tolerance and Integrity of Adipose Tissue and Contributes to Its Healthy Functions. Nutrients 2021, 13, 4374. [Google Scholar] [CrossRef]
- Wang, T.; Xie, J.; Liu, H.; Tang, Q.; Huang, J.; Chen, J.; Xiao, J.; Cao, Y.; Xiao, H.; Liu, X. Astaxanthin Alleviates High-Fat Diet-Induced Obesity by Promoting Adipose Thermogenesis: Insights from Microbiome-Metabolomics. Food BioSci. 2025, 65, 106097. [Google Scholar] [CrossRef]
- Wang, M.; Xu, W.; Yu, J.; Liu, Y.; Ma, H.; Ji, C.; Zhang, C.; Xue, J.; Li, R.; Cui, H. Astaxanthin From Haematococcus Pluvialis Prevents High-Fat Diet-Induced Hepatic Steatosis and Oxidative Stress in Mice by Gut-Liver Axis Modulating Properties. Front. Nutr. 2022, 9, 840648. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, F.; Li, R.W.; Li, C.; Xue, C.; Tang, Q. Microbial Composition and Co-Occurrence Patterns in the Gut Microbial Community of Normal and Obese Mice in Response to Astaxanthin. Front. Microbiol. 2021, 12, 671271. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Jian, X.; Ye, L.; Yang, K.; Zhang, L.; Xie, Y.; Deng, J.; Yin, Y.; Deng, B. Gallic Acid Prevents Obesity in Mice on a High-Fat Diet via the Gut Microbiota-Adipose Tissue Axis. Curr. Res. Food Sci. 2025, 10, 101084. [Google Scholar] [CrossRef]
- Zhai, Z.; Liu, J.; Niu, K.-M.; Lin, C.; Tu, Y.; Liu, Y.; Cai, L.; Liu, H.; Ouyang, K. Integrated Metagenomics and Metabolomics to Reveal the Effects of Policosanol on Modulating the Gut Microbiota and Lipid Metabolism in Hyperlipidemic C57BL/6 Mice. Front. Endocrinol. 2021, 12, 722055. [Google Scholar] [CrossRef]
- Marjot, T.; Armstrong, M.J.; Stine, J.G. Skeletal Muscle and MASLD: Mechanistic and Clinical Insights. Hepatol. Commun. 2025, 9, e0711. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, C.; Wu, J. Astaxanthin in Liver Health and Disease: A Potential Therapeutic Agent. Drug Des. Dev. Ther. 2020, 14, 2275–2285. [Google Scholar] [CrossRef]
- Ciaraldi, T.P.; Boeder, S.C.; Mudaliar, S.R.; Giovannetti, E.R.; Henry, R.R.; Pettus, J.H. Astaxanthin, a Natural Antioxidant, Lowers Cholesterol and Markers of Cardiovascular Risk in Individuals with Prediabetes and Dyslipidaemia. Diabetes Obes. Metab. 2023, 25, 1985–1994. [Google Scholar] [CrossRef]
- Wang, M.; Ma, H.; Guan, S.; Luo, T.; Zhao, C.; Cai, G.; Zheng, Y.; Jia, X.; Di, J.; Li, R.; et al. Astaxanthin from Haematococcus pluvialis Alleviates Obesity by Modulating Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Food Funct. 2021, 12, 9719–9738. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Xu, H.; Li, X.; Dong, F.; Chen, Q.; Han, T.; Wang, J.; Wu, C. Effects of Dietary Astaxanthin on Growth Performance, Immunity, and Tissue Composition in Largemouth Bass, Micropterus Salmoides. Front. Mar. Sci. 2024, 11, 1404661. [Google Scholar] [CrossRef]
- Lee, M.-J. Interactions of Astaxanthin and Omega-3 Fat in Health and Disease. Dietetics 2025, 4, 39. [Google Scholar] [CrossRef]
- McNulty, H.; Jacob, R.F.; Mason, R.P. Biologic Activity of Carotenoids Related to Distinct Membrane Physicochemical Interactions. Am. J. Cardiol. 2008, 101, S20–S29. [Google Scholar] [CrossRef]
- Jin, M.; Chen, X.; Zheng, L.; Peng, Y.; Lin, M.; Liang, K.; Liu, X.; Xu, Z.; Yang, Y.; Wei, B.; et al. Astaxanthin-Loaded Polylactic Acid-Glycolic Acid Nanoparticles Alleviates Atherosclerosis by Suppressing Macrophage Ferroptosis via the NRF2/SLC7A11/GPX4 Pathway. Arch. Biochem. Biophys. 2025, 765, 110316. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Ren, J.; Liu, X.; Zhang, Y.; Zuo, J.; Wen, R.; Pei, H.; Lu, M.; Zhu, S.; Zhang, Z.; et al. Astaxanthin Mitigates Doxorubicin-Induced Cardiotoxicity via Inhibiting Ferroptosis and Autophagy: A Study Based on Bioinformatic Analysis and in Vivo/Vitro Experiments. Front. Pharmacol. 2025, 16, 1524448. [Google Scholar] [CrossRef]
- Gao, C.; Gong, N.; Chen, F.; Hu, S.; Zhou, Q.; Gao, X. The Effects of Astaxanthin on Metabolic Syndrome: A Comprehensive Review. Mar. Drugs 2024, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Manabe, Y.; Komatsu, T.; Seki, S.; Sugawara, T. Dietary Astaxanthin Can Accumulate in the Brain of Rats. Biosci. Biotechnol. Biochem. 2018, 82, 1433–1436. [Google Scholar] [CrossRef]
- Babalola, J.A.; Stracke, A.; Loeffler, T.; Schilcher, I.; Sideromenos, S.; Flunkert, S.; Neddens, J.; Lignell, A.; Prokesch, M.; Pazenboeck, U.; et al. Effect of Astaxanthin in Type-2 Diabetes -Induced APPxhQC Transgenic and NTG Mice. Mol. Metab. 2024, 85, 101959. [Google Scholar] [CrossRef]
- Saleh, S.A.; Hanna, G.S.; El-Naby, S.H.; Ewida, S.F.; Elseadawy, R.S.A.; Ghoneim, B.S.; Motawea, S.M. Astaxanthin Attenuates DNA Fragmentation and Cognitive Decline in Type 2 Diabetic Rats. Sci. Rep. 2025, 15, 20122. [Google Scholar] [CrossRef]
- Galasso, C.; Orefice, I.; Pellone, P.; Cirino, P.; Miele, R.; Ianora, A.; Brunet, C.; Sansone, C. On the Neuroprotective Role of Astaxanthin: New Perspectives? Mar. Drugs 2018, 16, 247. [Google Scholar] [CrossRef]
- Wang, S.; Qi, X. The Putative Role of Astaxanthin in Neuroinflammation Modulation: Mechanisms and Therapeutic Potential. Front. Pharmacol. 2022, 13, 916653. [Google Scholar] [CrossRef]
- Kindlund, P.J. Astaxanthin: Boosts Muscle Performance. Nutrafoods 2011, 10, 49–53. [Google Scholar] [CrossRef]
- Polotow, T.; Vardaris, C.; Mihaliuc, A.; Gonçalves, M.; Pereira, B.; Ganini, D.; Barros, M. Astaxanthin Supplementation Delays Physical Exhaustion and Prevents Redox Imbalances in Plasma and Soleus Muscles of Wistar Rats. Nutrients 2014, 6, 5819–5838. [Google Scholar] [CrossRef] [PubMed]
- Aoi, W.; Naito, Y.; Sakuma, K.; Kuchide, M.; Tokuda, H.; Maoka, T.; Toyokuni, S.; Oka, S.; Yasuhara, M.; Yoshikawa, T. Astaxanthin Limits Exercise-Induced Skeletal and Cardiac Muscle Damage in Mice. Antioxid. Redox Signal. 2003, 5, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Baker, J.S.; Chen, X.; Wang, Y.; Chen, H.; Davison, G.W.; Yan, X. High-Dose Astaxanthin Supplementation Suppresses Antioxidant Enzyme Activity during Moderate-Intensity Swimming Training in Mice. Nutrients 2019, 11, 1244. [Google Scholar] [CrossRef]
- Res, P.T.; Cermak, N.M.; Stinkens, R.; Tollakson, T.J.; Haenen, G.R.; Bast, A.; Van Loon, L.J.C. Astaxanthin Supplementation Does Not Augment Fat Use or Improve Endurance Performance. Med. Sci. Sports Exerc. 2013, 45, 1158–1165. [Google Scholar] [CrossRef]
- Klinkenberg, L.J.J.; Res, P.T.; Haenen, G.R.; Bast, A.; Van Loon, L.J.C.; Van Dieijen-Visser, M.P.; Meex, S.J.R. Effect of Antioxidant Supplementation on Exercise-Induced Cardiac Troponin Release in Cyclists: A Randomized Trial. PLoS ONE 2013, 8, e79280. [Google Scholar] [CrossRef]
- Waldman, H.S.; Bryant, A.R.; Parten, A.L.; Grozier, C.D.; McAllister, M.J. Astaxanthin Supplementation Does Not Affect Markers of Muscle Damage or Inflammation After an Exercise-Induced Muscle Damage Protocol in Resistance-Trained Males. J. Strength. Cond. Res. 2023, 37, e413–e421. [Google Scholar] [CrossRef]
- Djordjevic, B.; Baralic, I.; Kotur-Stevuljevic, J.; Stefanovic, A.; Ivanisevic, J.; Radivojevic, N.; Andjelkovic, M.; Dikic, N. Effect of Astaxanthin Supplementation on Muscle Damage and Oxidative Stress Markers in Elite Young Soccer Players. J. Sports Med. Phys. Fit. 2012, 52, 382–392. [Google Scholar]
- Barker, G.A.; Parten, A.L.; Lara, D.A.; Hannon, K.E.; McAllister, M.J.; Waldman, H.S. Astaxanthin Supplementation Reduces Subjective Markers of Muscle Soreness Following Eccentric Exercise in Resistance-Trained Men. Muscles 2023, 2, 228–237. [Google Scholar] [CrossRef]
- Imai, A.; Oda, Y.; Ito, N.; Seki, S.; Nakagawa, K.; Miyazawa, T.; Ueda, F. Effects of Dietary Supplementation of Astaxanthin and Sesamin on Daily Fatigue: A Randomized, Double-Blind, Placebo-Controlled, Two-Way Crossover Study. Nutrients 2018, 10, 281. [Google Scholar] [CrossRef]
- Kawaida, M.Y.; Kwon, O.S.; Ahn, A.; Reiter, A.S.; Tillquist, N.M.; Noh, S.G.; Lee, J.W.; Moore, T.E.; Reed, S.A. Effects of an Astaxanthin-containing Supplement on Oxidative Status in Skeletal Muscle and Circulation during Deconditioning and Reconditioning Periods in Polo Ponies. Physiol. Rep. 2025, 13, e70346. [Google Scholar] [CrossRef]
- Liu, C.; Dong, X.; Jia, J.; Ha, M. Effects of Astaxanthin Supplementation on Fatigue, Motor Function and Cognition: A Meta-Analysis of Randomized Controlled Trials. Biol. Res. Nurs. 2024, 26, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Hasani, M.; Arabpour, Z.; Hasani, M.; Saeedi, A.; Khodabakhshi, A. Effect of Astaxanthin on Physical Activity Factors, Lipid Profile, Inflammatory Markers, and Antioxidants Indices in Athletic Men: A Systematic Review and Meta-Analysis. J. Funct. Foods 2024, 122, 106477. [Google Scholar] [CrossRef]
- Polamraju, S.M.; Manochkumar, J.; Ganeshbabu, M.; Ramamoorthy, S. Unveiling Astaxanthin: Biotechnological Advances, Delivery Systems and Versatile Applications in Nutraceuticals and Cosmetics. Arch. Microbiol. 2025, 207, 45. [Google Scholar] [CrossRef]
- Ghosh, A.; Banik, S.; Yamada, K.; Misaka, S.; Prud’homme, R.K.; Sato, H.; Onoue, S. Stabilized Astaxanthin Nanoparticles Developed Using Flash Nanoprecipitation to Improve Oral Bioavailability and Hepatoprotective Effects. Pharmaceutics 2023, 15, 2562. [Google Scholar] [CrossRef]
- Hu, F.; Liu, W.; Yan, L.; Kong, F.; Wei, K. Optimization and Characterization of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Astaxanthin and Evaluation of Anti-Photodamage Effect in Vitro. R. Soc. Open Sci. 2019, 6, 191184. [Google Scholar] [CrossRef]
- Kim, E.S.; Baek, Y.; Yoo, H.-J.; Lee, J.-S.; Lee, H.G. Chitosan-Tripolyphosphate Nanoparticles Prepared by Ionic Gelation Improve the Antioxidant Activities of Astaxanthin in the In Vitro and In Vivo Model. Antioxidants 2022, 11, 479. [Google Scholar] [CrossRef]
- Yu, F.; Chen, J.; Wei, Z.; Zhu, P.; Qing, Q.; Li, B.; Chen, H.; Lin, W.; Yang, H.; Qi, Z.; et al. Preparation of Carrier-Free Astaxanthin Nanoparticles with Improved Antioxidant Capacity. Front. Nutr. 2022, 9, 1022323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qi, X.; Yang, L.; Xia, P.; Ling, J.; Zheng, X.; Liang, J.; Yang, P.; Chen, Y.; Liu, X.; et al. Advances in Anthocyanin Nanoparticle Delivery Systems in Anti-Inflammatory Therapies. Pharmacol. Res. 2025, 222, 108038. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Miyaji, N.; Yang, M.; Mills, E.M.; Taniyama, S.; Uchida, T.; Nikawa, T.; Li, J.; Shi, J.; Tachibana, K.; et al. Astaxanthin Prevents Atrophy in Slow Muscle Fibers by Inhibiting Mitochondrial Reactive Oxygen Species via a Mitochondria-Mediated Apoptosis Pathway. Nutrients 2021, 13, 379. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, Y.; Zhao, J.; Mao, L. Characterization and Stability Evaluation of β-Carotene Nanoemulsions Prepared by High Pressure Homogenization under Various Emulsifying Conditions. Food Res. Int. 2008, 41, 61–68. [Google Scholar] [CrossRef]
- Marhamati, M.; Ranjbar, G.; Rezaie, M. Effects of Emulsifiers on the Physicochemical Stability of Oil-in-Water Nanoemulsions: A Critical Review. J. Mol. Liq. 2021, 340, 117218. [Google Scholar] [CrossRef]
- Martínez-Álvarez, Ó.; Calvo, M.M.; Gómez-Estaca, J. Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Mar. Drugs 2020, 18, 406. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Barrow, C.J. Critical Review of Encapsulation Methods for Stabilization and Delivery of Astaxanthin. J. Food Bioact. 2018, 1, 104–115. [Google Scholar] [CrossRef]
- Tan, C.; Xue, J.; Lou, X.; Abbas, S.; Guan, Y.; Feng, B.; Zhang, X.; Xia, S. Liposomes as Delivery Systems for Carotenoids: Comparative Studies of Loading Ability, Storage Stability and in Vitro Release. Food Funct. 2014, 5, 1232. [Google Scholar] [CrossRef] [PubMed]
- Mattos, M.V.C.D.V.D.; Michelon, M.; Burkert, J.F.D.M. Production and Stability of Food-Grade Liposomes Containing Microbial Carotenoids from Rhodotorula Mucilaginosa. Food Struct. 2022, 33, 100282. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, S.; McClements, D.J.; Wang, D.; Xu, Y. Design of Astaxanthin-Loaded Core–Shell Nanoparticles Consisting of Chitosan Oligosaccharides and Poly(lactic-co-glycolic acid): Enhancement of Water Solubility, Stability, and Bioavailability. J. Agric. Food Chem. 2019, 67, 5113–5121. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, S.; Gu, K.; Zhang, N. Preparation of Astaxanthin-Loaded Liposomes: Characterization, Storage Stability and Antioxidant Activity. CYTA-J. Food 2018, 16, 607–618. [Google Scholar] [CrossRef]
- Pan, L.; Wang, H.; Gu, K. Nanoliposomes as Vehicles for Astaxanthin: Characterization, In Vitro Release Evaluation and Structure. Molecules 2018, 23, 2822. [Google Scholar] [CrossRef]
- Sánchez, C.A.O.; Zavaleta, E.B.; García, G.R.U.; Solano, G.L.; Díaz, M.P.R. Krill Oil Microencapsulation: Antioxidant Activity, Astaxanthin Retention, Encapsulation Efficiency, Fatty Acids Profile, In Vitro Bioaccessibility and Storage Stability. LWT 2021, 147, 111476. [Google Scholar] [CrossRef]
- Kraboun, K. Antioxidant Properties and Encapsulation Methods of Astaxanthin: A Review. FAB J. 2021, 9, 22–39. [Google Scholar]
- Geng, Q.; Zhao, Y.; Wang, L.; Xu, L.; Chen, X.; Han, J. Development and Evaluation of Astaxanthin as Nanostructure Lipid Carriers in Topical Delivery. AAPS Pharm. Sci. Tech. 2020, 21, 318. [Google Scholar] [CrossRef]
- Jia, L.; Wang, W.; Zhao, H.; Ding, X.; Zheng, M.; Cai, D.; Wang, Y.; Wang, Z.; Liu, H. Innovative Nano Delivery Systems for Astaxanthin: Enhancing Stability, Bioavailability, and Targeted Therapeutic Applications. J. Agric. Food Chem. 2025, 73, 3286–3304. [Google Scholar] [CrossRef]
- Sridhar, K.; Inbaraj, B.S.; Chen, B.-H. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants 2021, 10, 713. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lin, L.; Wang, X.; Zhang, L.; Tao, N. Astaxanthin Complexes of Five Plant Protein Fibrils: Aggregation Behavior, Interaction, and Delivery Properties. Food Hydrocoll. 2025, 162, 110995. [Google Scholar] [CrossRef]
- Liu, R.; Li, Y.; Zhou, C.; Tan, M. Pickering Emulsions Stabilized with a Spirulina Protein–Chitosan Complex for Astaxanthin Delivery. Food Funct. 2023, 14, 4254–4266. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cui, Y.; Liu, Y.; Zhang, M.; Wang, Y.; Shi, J.; Wang, X.; Xu, N.; Chen, Q. Mechanism of Interaction between Astaxanthin and Soy Protein Fibrils: Effects on Complexes Structure, Rheological Properties and Bioaccessibility. Food Hydrocoll. 2024, 146, 109227. [Google Scholar] [CrossRef]
- Fuenmayor, C.A.; Baron-Cangrejo, O.G.; Salgado-Rivera, P.A. Encapsulation of Carotenoids as Food Colorants via Formation of Cyclodextrin Inclusion Complexes: A Review. Polysaccharides 2021, 2, 454–476. [Google Scholar] [CrossRef]
- Clercq, S.; Temelli, F.; Badens, E. In-Depth Study of Cyclodextrin Complexation with Carotenoids toward the Formation of Enhanced Delivery Systems. Mol. Pharm. 2021, 18, 1720–1729. [Google Scholar] [CrossRef]
- Yazdani, M.; Tavakoli, O.; Khoobi, M.; Wu, Y.S.; Faramarzi, M.A.; Gholibegloo, E.; Farkhondeh, S. Beta-Carotene/Cyclodextrin-Based Inclusion Complex: Improved Loading, Solubility, Stability, and Cytotoxicity. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 55–64. [Google Scholar] [CrossRef]
- Fang, Q.; Guo, S.; Zhou, H.; Han, R.; Wu, P.; Han, C. Astaxanthin Protects against Early Burn-Wound Progression in Rats by Attenuating Oxidative Stress-Induced Inflammation and Mitochondria-Related Apoptosis. Sci. Rep. 2017, 7, 41440. [Google Scholar] [CrossRef] [PubMed]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Design and Characterization of Astaxanthin-Loaded Nanostructured Lipid Carriers. Innov. Food Sci. Emerg. Technol. 2014, 26, 366–374. [Google Scholar] [CrossRef]
- Deng, Y.; Zhan, W.; Xie, S.; Peng, H.; Cao, H.; Tang, Z.; Tian, Y.; Zhu, T.; Sun, P.; Jin, M.; et al. Multi-Omics Analysis Revealed the Effects of Different Astaxanthin Sources on the Antioxidant Properties of Scylla Paramamosain. Food Chem. 2025, 478, 143470. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, H.; Zhan, J.; Yuan, L.; Yang, M.; Ge, F. Proteomic Analysis Reveals Novel Insights into Astaxanthin Synthesis in Haematococcus Pluvialis. Algal Res. 2025, 91, 104222. [Google Scholar] [CrossRef]



| Delivery System | Advantages | Food Applications | Nutraceutical Applications | References |
|---|---|---|---|---|
| Nanoemulsions | Increased solubility and bioavailability; improved oxidative protection; good dispersion in aqueous matrices | Functional drinks, yogurt, juices | Softgels, liquid sachets | [112,113] |
| Microemulsions | Spontaneous formation; high thermodynamic stability; excellent solubilisation | Concentrated sports drinks, liquid emulsions | High solubility liquid formulations | [114,115] |
| Liposomes | Protection against photo-oxidative degradation; good affinity with cell membranes; controlled release | Limited food applications (high cost) | Softgels, fast-absorbing capsules | [116,117] |
| SLNs | High stability; good carotenoid protection; improved absorption | Experimental functional snacks, enriched powders | Capsules, extended-release tablets | [121,122] |
| NLCs | Higher loading capacity than SLNs; superior bioavailability; better stability during digestion | Fortified dry foods, sports mixes | Powders and tablets for lipid metabolism | [123,124,125] |
| Protein complexes | Greater solubility and digestive resistance; gradual release; use of safe food matrices | Protein yogurt drinks | Protein powder supplements | [126,127,128] |
| Cyclodextrin complexes | Increase apparent solubility; strong protection against oxidation; better thermal stability | Instant drinks, soluble powders | Orodispersible tablets, single-dose sachets | [129,130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Siqueira, J.S.; Castelli, S.; Palacio, T.L.N.; Aiello, G.; Baldelli, S.; D’Amato, A.; De Bruno, A.; Lombardo, M.; Tripodi, G. Nutraceutical Potential of Astaxanthin in Muscle Metabolism, Exercise Adaptation, and Obesity. Nutrients 2026, 18, 80. https://doi.org/10.3390/nu18010080
Siqueira JS, Castelli S, Palacio TLN, Aiello G, Baldelli S, D’Amato A, De Bruno A, Lombardo M, Tripodi G. Nutraceutical Potential of Astaxanthin in Muscle Metabolism, Exercise Adaptation, and Obesity. Nutrients. 2026; 18(1):80. https://doi.org/10.3390/nu18010080
Chicago/Turabian StyleSiqueira, Juliana Silva, Serena Castelli, Thiago Luiz Novaga Palacio, Gilda Aiello, Sara Baldelli, Alfonsina D’Amato, Alessandra De Bruno, Mauro Lombardo, and Gianluca Tripodi. 2026. "Nutraceutical Potential of Astaxanthin in Muscle Metabolism, Exercise Adaptation, and Obesity" Nutrients 18, no. 1: 80. https://doi.org/10.3390/nu18010080
APA StyleSiqueira, J. S., Castelli, S., Palacio, T. L. N., Aiello, G., Baldelli, S., D’Amato, A., De Bruno, A., Lombardo, M., & Tripodi, G. (2026). Nutraceutical Potential of Astaxanthin in Muscle Metabolism, Exercise Adaptation, and Obesity. Nutrients, 18(1), 80. https://doi.org/10.3390/nu18010080

