Thyroid–Microbiome Allostasis and Mitochondrial Performance: An Integrative Perspective in Exercise Physiology
Abstract
1. Introduction
1.1. Exercise as a Model of Endocrine and Metabolic Allostasis
1.2. Exercise as an Endocrine Stressor
1.3. The Gut–Thyroid Axis: Bidirectional Regulation and Dysbiosis-Related Phenotypes
1.4. Knowledge Gaps and Objectives of the Review
2. Mechanistic Foundations of Thyroid Allostasis in Exercise Physiology
2.1. The HPT Axis, Hormonal Thresholds, and Interindividual Variability in Thyroid Allostasis
2.2. Mitochondrial Translation of Thyroid Allostasis: Bioenergetic and Redox Adaptation
2.3. Thyroid Allostasis in Exercise Physiology: Adaptive Recalibration and Energetic Efficiency
2.3.1. Acute Endocrine Responses to Exercise
2.3.2. Chronic Adaptations to Training Load
2.3.3. Type and Intensity of Exercise
2.3.4. Transition from Performance Gain to Energetic Strain
2.4. Allostatic Overload and Maladaptive Suppression: Endocrine Markers of Fatigue
2.4.1. From Adaptive Efficiency to Energy Conservation
2.4.2. Cellular Mechanisms of Overload
2.4.3. Physiological Correlates and Performance Outcomes
2.4.4. Recovery and Reversibility
2.5. Contextual Determinants of Thyroid Response to Training
2.5.1. Sex and Age
2.5.2. Energetic and Nutritional Status
2.5.3. Environmental and Circadian Modifiers
3. The Gut–Thyroid–Mitochondrial Axis: Microbial Modulation of Exercise Metabolism
3.1. Microbial Metabolism and Thyroid–Mitochondrial Bioenergetics
3.1.1. Microbial Metabolites Linking Thyroid Signalling and Mitochondrial Function
3.1.2. Microbial Dynamics and Adaptive Stress
3.1.3. Inflammatory Drift and Redox–Endocrine Imbalance
3.1.4. Recovery and Restoration to Eubiosis
3.1.5. Adaptive–Autoimmune Patterns Within the Thyroid–Microbiota Axis
3.2. Micronutrients as Modulators of the Gut–Thyroid–Mitochondrial Interface
3.2.1. Functional Regulation of the Gut–Thyroid–Micronutrient Axis
3.2.2. Functional Micronutrient Triads in Endocrine–Mitochondrial Regulation
Endocrine–Redox Regulation: Iodine and Selenium
Metabolic–Immune Efficiency: Iron and Zinc
Immuno-Neuromuscular Integration: Vitamin D
3.2.3. Dysbiosis-Driven Deficiencies and Performance Drift
3.3. Integrative Model of the Gut–Thyroid–Mitochondrial Continuum in Athletes
3.3.1. Phases of Adaptation and Overload
3.3.2. Recovery, Resilience, and Endocrine Flexibility
3.3.3. Integrative Synthesis and Physiological Relevance
4. Integrative and Translational Perspectives for Precision Exercise Physiology
4.1. Translating Mechanisms into Strategies
4.2. Nutritional Modulation of the Gut–Thyroid Axis
4.2.1. Prebiotic Fibres and Microbial Resilience
4.2.2. Polyphenols and Anti-Inflammatory Signalling
4.2.3. Omega-3 Fatty Acids and Hormonal Stability
4.2.4. Dietary Patterns and Long-Term Adaptation
4.2.5. Applied Precision Strategies
4.3. Exercise–Microbiota–Thyroid Triad
4.3.1. Microbial Responses to Exercise
4.3.2. Inflammatory and Hormonal Balance
4.3.3. Thyroid-Driven Modulation of Exercise Metabolism
4.3.4. Adaptive Versus Maladaptive Response
4.3.5. Integrative Physiological Outcome
4.4. Environmental and Nutritional Stressors
4.4.1. Thermal and Circadian Stress
4.4.2. Nutritional Restriction and Energy Imbalance
4.4.3. Pollutants and Endocrine Disruptors
4.4.4. Integrated Physiological Impact
4.5. Gene–Microbiota Interactions
4.5.1. Deiodinase and Thyroid Receptor Polymorphisms
4.5.2. Vitamin D and Immunometabolic Regulation
4.5.3. FOXO3A, MTHFR, and Redox Control
4.5.4. Implications for Personalized Performance
4.6. Predictive and Causal Models
4.6.1. Multi-Omic Integration and Model Development
4.6.2. Personalized Prediction and Adaptive Monitoring
4.6.3. Causal Reasoning and Translational Application
4.6.4. Integrative Summary of Translational Strategies
4.7. Integrative Framework for Personalized Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMPK | AMP-activated protein kinase |
| D1/D2/D3 | Deiodinase types 1, 2, and 3 (protein level) |
| DIO1/DIO2/DIO3 | Deiodinase isoforms 1, 2, and 3 (gene level) |
| ΔΨm | Mitochondrial membrane potential |
| FOXO3a | Forkhead box O3a |
| fT3 | Free triiodothyronine |
| fT4 | Free thyroxine |
| FXR | Farnesoid X receptor |
| GPx | Glutathione peroxidase |
| HPT axis | Hypothalamic–pituitary–thyroid axis |
| HRV | Heart rate variability |
| IL-6 | Interleukin-6 |
| LPS | Lipopolysaccharides |
| MCT8 | Monocarboxylate transporter 8 |
| MTHFR | Methylenetetrahydrofolate reductase |
| NAD+/NADH | Nicotinamide adenine dinucleotide (oxidized/reduced forms) |
| NRF1 | Nuclear respiratory factor 1 |
| NRF2 | Nuclear respiratory factor 2 |
| NTIS | Non-thyroidal illness syndrome |
| OXPHOS | Oxidative phosphorylation |
| PGC-1α | Peroxisome proliferator–activated receptor gamma coactivator 1-alpha |
| RED-S | Relative Energy Deficiency in Sport |
| ROS | Reactive oxygen species |
| rT3 | Reverse triiodothyronine |
| rT4 | Reverse thyroxine |
| SCFA | Short-chain fatty acids |
| SIRT1 | Sirtuin-1 |
| SOD2 | Superoxide dismutase 2 |
| T2 | 3,5-diiodo-L-thyronine |
| T3 | Triiodothyronine |
| T4 | Thyroxine |
| TGR5 | Takeda G-protein-coupled receptor 5 |
| THs | Thyroid hormones |
| THRs | Thyroid hormone receptors |
| TFAM | Mitochondrial transcription factor A |
| TLR4 | Toll-like receptor 4 |
| TMAO | Trimethylamine-N-oxide |
| TNF-α | Tumour necrosis factor alpha |
| TRH | Thyrotropin-releasing hormone |
| TSH | Thyroid-stimulating hormone |
| UCP2 | Uncoupling protein 2 |
| UCP3 | Uncoupling protein 3 |
| UCPs | Uncoupling proteins |
| VDR | Vitamin D receptor |
References
- Mullur, R.; Liu, Y.-Y.; Brent, G.A. Thyroid Hormone Regulation of Metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef]
- Hackney, A.C.; Saeidi, A. The Thyroid Axis, Prolactin, and Exercise in Humans. Curr. Opin. Endocr. Metab. Res. 2019, 9, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Mennitti, C.; Farina, G.; Imperatore, A.; De Fonzo, G.; Gentile, A.; La Civita, E.; Carbone, G.; De Simone, R.R.; Di Iorio, M.R.; Tinto, N.; et al. How Does Physical Activity Modulate Hormone Responses? Biomolecules 2024, 14, 1418. [Google Scholar] [CrossRef]
- Chatzitomaris, A.; Hoermann, R.; Midgley, J.E.; Hering, S.; Urban, A.; Dietrich, B.; Abood, A.; Klein, H.H.; Dietrich, J.W. Thyroid Allostasis–Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front. Endocrinol. 2017, 8, 163. [Google Scholar] [CrossRef]
- Lombardi, A.; Moreno, M.; de Lange, P.; Iossa, S.; Busiello, R.A.; Goglia, F. Regulation of Skeletal Muscle Mitochondrial Activity by Thyroid Hormones: Focus on the “Old” Triiodothyronine and the “Emerging” 3,5-Diiodothyronine. Front. Physiol. 2015, 6, 237. [Google Scholar] [CrossRef]
- Nicolaisen, T.S.; Klein, A.B.; Dmytriyeva, O.; Lund, J.; Ingerslev, L.R.; Fritzen, A.M.; Carl, C.S.; Lundsgaard, A.-M.; Frost, M.; Ma, T.; et al. Thyroid Hormone Receptor α in Skeletal Muscle Is Essential for T3-Mediated Increase in Energy Expenditure. FASEB J. 2020, 34, 15480–15491. [Google Scholar] [CrossRef]
- Angelidi, A.M.; Stefanakis, K.; Chou, S.H.; Valenzuela-Vallejo, L.; Dipla, K.; Boutari, C.; Ntoskas, K.; Tokmakidis, P.; Kokkinos, A.; Goulis, D.G.; et al. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr. Rev. 2024, 45, 676–708. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Baek, H.-S.; Jo, K.; Kim, M.-H.; Lee, J.M.; Chang, S.A.; Lim, D.-J. The Impact of Physical Activity on Thyroid Health: Insights From Representative Data in Korea. J. Clin. Endocrinol. Metab. 2025, 110, e717–e727. [Google Scholar] [CrossRef]
- McEwen, B.S.; Wingfield, J.C. The Concept of Allostasis in Biology and Biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Berchtold, P.; Berger, M.; Cüppers, H.J.; Herrmann, J.; Nieschlag, E.; Rudorff, K.; Zimmermann, H.; Krüskemper, H.L. Non-Glucoregulatory Hormones (T4, T3, rT3, TSH, Testosterone) during Physical Exercise in Juvenile Type Diabetics. Horm. Metab. Res. 1978, 10, 269–273. [Google Scholar] [CrossRef]
- Hackney, A.C.; Gulledge, T. Thyroid Hormone Responses during an 8-Hour Period Following Aerobic and Anaerobic Exercise. Physiol. Res. 1994, 43, 1–5. [Google Scholar]
- Da Silva, J.M.P.; Silva, G.C.E.; Da Conceição, R.R.; Laureano-Melo, R.; Giannocco, G.; Sato, M.A.; Bentes, C.M.; Simão, R. Influence of Resistance Training Exercise Order on Acute Thyroid Hormone Responses. Int. J. Exerc. Sci. 2022, 15, 760–770. [Google Scholar] [CrossRef]
- Gavriilidou, M.; Chorti, A.; Psomiadou, A.; Koidou, E.; Papaioannou, M.; Papavramidis, T. Thyroid Gland Disorders and Physical Activity: Can They Affect Each Other? Cureus 2025, 17, e81489. [Google Scholar] [CrossRef] [PubMed]
- Ciloglu, F.; Peker, I.; Pehlivan, A.; Karacabey, K.; Ilhan, N.; Saygin, O.; Ozmerdivenli, R. Exercise Intensity and Its Effects on Thyroid Hormones. Neuro Endocrinol. Lett. 2005, 26, 830–834. [Google Scholar]
- Galbo, H. The Hormonal Response to Exercise. Diabetes Metab. Rev. 1986, 1, 385–408. [Google Scholar] [CrossRef]
- Luongo, C.; Dentice, M.; Salvatore, D. Deiodinases and Their Intricate Role in Thyroid Hormone Homeostasis. Nat. Rev. Endocrinol. 2019, 15, 479–488. [Google Scholar] [CrossRef]
- Klasson, C.L.; Sadhir, S.; Pontzer, H. Daily Physical Activity Is Negatively Associated with Thyroid Hormone Levels, Inflammation, and Immune System Markers among Men and Women in the NHANES Dataset. PLoS ONE 2022, 17, e0270221. [Google Scholar] [CrossRef] [PubMed]
- Sundus, H.; Khan, S.A.; Zaidi, S.; Chhabra, C.; Ahmad, I.; Khan, H. Effect of Long-Term Exercise-Based Interventions on Thyroid Function in Hypothyroidism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complement. Ther. Med. 2025, 92, 103196. [Google Scholar] [CrossRef]
- Wu, K.; Zhou, Y.; Ke, S.; Huang, J.; Gao, X.; Li, B.; Lin, X.; Liu, X.; Liu, X.; Ma, L.; et al. Lifestyle Is Associated with Thyroid Function in Subclinical Hypothyroidism: A Cross-Sectional Study. BMC Endocr. Disord. 2021, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Cadegiani, F.A.; Kater, C.E. Basal Hormones and Biochemical Markers as Predictors of Overtraining Syndrome in Male Athletes: The EROS-BASAL Study. J. Athl. Train. 2019, 54, 906–914. [Google Scholar] [CrossRef]
- Hackney, A.C.; Kallman, A.; Hosick, K.P.; Rubin, D.A.; Battaglini, C.L. Thyroid Hormonal Responses to Intensive Interval versus Steady-State Endurance Exercise Sessions. Hormones 2012, 11, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Opstad, K. Circadian Rhythm of Hormones Is Extinguished during Prolonged Physical Stress, Sleep and Energy Deficiency in Young Men. Eur. J. Endocrinol. 1994, 131, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Byeon, H.; Moon, Y.; Lee, S.; Son, G.-I.; Lee, E. Effect of the Marine Exercise Retreat Program on Thyroid-Related Hormones in Middle-Aged Euthyroid Women. Int. J. Environ. Res. Public Health 2023, 20, 1542. [Google Scholar] [CrossRef]
- Silva, J.E. Thermogenic Mechanisms and Their Hormonal Regulation. Physiol. Rev. 2006, 86, 435–464. [Google Scholar] [CrossRef]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Mackay, C.R. Diet, Gut Microbiota and Immune Responses. Nat. Immunol. 2011, 12, 5–9. [Google Scholar] [CrossRef]
- Virili, C.; Stramazzo, I.; Bagaglini, M.F.; Carretti, A.L.; Capriello, S.; Romanelli, F.; Trimboli, P.; Centanni, M. The Relationship between Thyroid and Human-Associated Microbiota: A Systematic Review of Reviews. Rev. Endocr. Metab. Disord. 2024, 25, 215–237. [Google Scholar] [CrossRef]
- Drutel, A.; Archambeaud, F.; Caron, P. Selenium and the Thyroid Gland: More Good News for Clinicians. Clin. Endocrinol. 2013, 78, 155–164. [Google Scholar] [CrossRef]
- Hrdina, J.; Banning, A.; Kipp, A.; Loh, G.; Blaut, M.; Brigelius-Flohé, R. The Gastrointestinal Microbiota Affects the Selenium Status and Selenoprotein Expression in Mice. J. Nutr. Biochem. 2009, 20, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, J.; Starchl, C.; Tmava Berisha, A.; Amrein, K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020, 12, 1769. [Google Scholar] [CrossRef]
- Hazenberg, M.P.; de Herder, W.W.; Visser, T.J. Hydrolysis of Iodothyronine Conjugates by Intestinal Bacteria. FEMS Microbiol. Rev. 1988, 4, 9–16. [Google Scholar] [CrossRef]
- Mendoza-León, M.J.; Mangalam, A.K.; Regaldiz, A.; González-Madrid, E.; Rangel-Ramírez, M.A.; Álvarez-Mardonez, O.; Vallejos, O.P.; Méndez, C.; Bueno, S.M.; Melo-González, F.; et al. Gut Microbiota Short-Chain Fatty Acids and Their Impact on the Host Thyroid Function and Diseases. Front. Endocrinol. 2023, 14, 1192216. [Google Scholar] [CrossRef]
- Sabatino, L.; Iervasi, G.; Ferrazzi, P.; Francesconi, D.; Chopra, I.J. A Study of Iodothyronine 5’-Monodeiodinase Activities in Normal and Pathological Tissues in Man and Their Comparison with Activities in Rat Tissues. Life Sci. 2000, 68, 191–202. [Google Scholar] [CrossRef]
- Bargiel, P.; Szczuko, M.; Stachowska, L.; Prowans, P.; Czapla, N.; Markowska, M.; Petriczko, J.; Kledzik, J.; Jędrzejczyk-Kledzik, A.; Palma, J.; et al. Microbiome Metabolites and Thyroid Dysfunction. J. Clin. Med. 2021, 10, 3609. [Google Scholar] [CrossRef]
- Pols, T.W.H.; Noriega, L.G.; Nomura, M.; Auwerx, J.; Schoonjans, K. The Bile Acid Membrane Receptor TGR5 as an Emerging Target in Metabolism and Inflammation. J. Hepatol. 2011, 54, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R.A.; Melnik, A.V.; Vrbanac, A.; Fu, T.; Patras, K.A.; Christy, M.P.; Bodai, Z.; Belda-Ferre, P.; Tripathi, A.; Chung, L.K.; et al. Global Chemical Effects of the Microbiome Include New Bile-Acid Conjugations. Nature 2020, 579, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhao, J.; Yang, H.; Ouyang, Z.; Lv, C.; Geng, Z.; Zhao, J. The Bile Acid-Gut Microbiota Axis: A Central Hub for Physiological Regulation and a Novel Therapeutic Target for Metabolic Diseases. Biomed. Pharmacother. 2025, 188, 118182. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Hiramoto, T.; Nishino, R.; Aiba, Y.; Kimura, T.; Yoshihara, K.; Koga, Y.; Sudo, N. Critical Role of Gut Microbiota in the Production of Biologically Active, Free Catecholamines in the Gut Lumen of Mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G1288–G1295. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Gut Bacteria and Neurotransmitters. Microorganisms 2022, 10, 1838. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Heijnen, S.; Hommel, B.; Kibele, A.; Colzato, L.S. Neuromodulation of Aerobic Exercise—A Review. Front. Psychol. 2016, 6, 1890. [Google Scholar] [CrossRef]
- Meeusen, R.; Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F. Central Fatigue: The Serotonin Hypothesis and Beyond. Sports Med. 2006, 36, 881–909. [Google Scholar] [CrossRef]
- Yan, K.; Sun, X.; Fan, C.; Wang, X.; Yu, H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int. J. Mol. Sci. 2024, 25, 10918. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.; Hu, B.; Huang, W.; Yuan, C.; Zou, L. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Front. Microbiol. 2018, 9, 765. [Google Scholar] [CrossRef]
- Malo, M.S.; Zhang, W.; Alkhoury, F.; Pushpakaran, P.; Abedrapo, M.A.; Mozumder, M.; Fleming, E.; Siddique, A.; Henderson, J.W.; Hodin, R.A. Thyroid Hormone Positively Regulates the Enterocyte Differentiation Marker Intestinal Alkaline Phosphatase Gene via an Atypical Response Element. Mol. Endocrinol. 2004, 18, 1941–1962. [Google Scholar] [CrossRef]
- Malo, M.S.; Moaven, O.; Muhammad, N.; Biswas, B.; Alam, S.N.; Economopoulos, K.P.; Gul, S.S.; Hamarneh, S.R.; Malo, N.S.; Teshager, A.; et al. Intestinal Alkaline Phosphatase Promotes Gut Bacterial Growth by Reducing the Concentration of Luminal Nucleotide Triphosphates. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G826–G838. [Google Scholar] [CrossRef]
- Xu, G.-M.; Hu, M.-X.; Li, S.-Y.; Ran, X.; Zhang, H.; Ding, X.-F. Thyroid Disorders and Gastrointestinal Dysmotility: An Old Association. Front. Physiol. 2024, 15, 1389113. [Google Scholar] [CrossRef]
- Cullen, J.M.A.; Shahzad, S.; Dhillon, J. A Systematic Review on the Effects of Exercise on Gut Microbial Diversity, Taxonomic Composition, and Microbial Metabolites: Identifying Research Gaps and Future Directions. Front. Physiol. 2023, 14, 1292673. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Rao, S.; Khattak, A.; Zamir, F.; Chaari, A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024, 16, 3663. [Google Scholar] [CrossRef] [PubMed]
- Beltrão, D.C.d.A.; Beltrão, F.E.d.L.; Carvalhal, G.; Beltrão, F.L.d.L.; Brito, A.d.S.; Silva, H.d.S.; Teixeira, H.M.P.; Rodrigues, J.L.; de Figueiredo, C.A.V.; Costa, R.d.S.; et al. The Thr92Ala Polymorphism in the Type 2 Deiodinase Gene Is Linked to Depression in Patients with COVID-19 after Hospital Discharge. Front. Endocrinol. 2024, 15, 1366500. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.C.; Kim, B.S. Pathophysiological Relevance of Deiodinase Polymorphism. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 341–346. [Google Scholar] [CrossRef]
- Kazukauskiene, N.; Skiriute, D.; Gustiene, O.; Burkauskas, J.; Zaliunaite, V.; Mickuviene, N.; Brozaitiene, J. Importance of Thyroid Hormone Level and Genetic Variations in Deiodinases for Patients after Acute Myocardial Infarction: A Longitudinal Observational Study. Sci. Rep. 2020, 10, 9169. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Ning, J. Recent Advances in Gut Microbiota and Thyroid Disease: Pathogenesis and Therapeutics in Autoimmune, Neoplastic, and Nodular Conditions. Front. Cell. Infect. Microbiol. 2024, 14, 1465928. [Google Scholar] [CrossRef]
- Galton, V.A. The Ups and Downs of the Thyroxine Pro-Hormone Hypothesis. Mol. Cell. Endocrinol. 2017, 458, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Martins, S.; Sterenborg, R.B.T.M.; Borisov, O.; Scherer, N.; Cheng, Y.; Medici, M.; Köttgen, A.; Teumer, A. New Insights into the Hypothalamic-Pituitary-Thyroid Axis: A Transcriptome- and Proteome-Wide Association Study. Eur. Thyroid. J. 2024, 13, e240067. [Google Scholar] [CrossRef] [PubMed]
- Danforth, E.; Burger, A. The Role of Thyroid Hormones in the Control of Energy Expenditure. Clin. Endocrinol. Metab. 1984, 13, 581–595. [Google Scholar] [CrossRef]
- Bianco, A.C.; da Conceição, R.R. The Deiodinase Trio and Thyroid Hormone Signaling. Methods Mol. Biol. 2018, 1801, 67–83. [Google Scholar] [CrossRef]
- Gereben, B.; Goncalves, C.; Harney, J.W.; Larsen, P.R.; Bianco, A.C. Selective Proteolysis of Human Type 2 Deiodinase: A Novel Ubiquitin-Proteasomal Mediated Mechanism for Regulation of Hormone Activation. Mol. Endocrinol. 2000, 14, 1697–1708. [Google Scholar] [CrossRef]
- Hall, J.A.; Ribich, S.; Christoffolete, M.A.; Simovic, G.; Correa-Medina, M.; Patti, M.E.; Bianco, A.C. Absence of Thyroid Hormone Activation during Development Underlies a Permanent Defect in Adaptive Thermogenesis. Endocrinology 2010, 151, 4573–4582. [Google Scholar] [CrossRef]
- Ignacio, D.L.; Silvestre, D.H.S.; Anne-Palmer, E.; Bocco, B.M.L.C.; Fonseca, T.L.; Ribeiro, M.O.; Gereben, B.; Bianco, A.C.; Werneck-de-Castro, J.P. Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function. Thyroid 2017, 27, 577–586. [Google Scholar] [CrossRef]
- Larsen, P.R.; Silva, J.E.; Kaplan, M.M. Relationships between Circulating and Intracellular Thyroid Hormones: Physiological and Clinical Implications. Endocr. Rev. 1981, 2, 87–102. [Google Scholar] [CrossRef]
- Klubo-Gwiezdzinska, J.; Bernet, V.J.; Wartofsky, L. Exercise and Thyroid Function. In Endocrinology of Physical Activity and Sport, 2nd ed.; Constantini, N., Hackney, A.C., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 85–119. ISBN 978-1-62703-314-5. [Google Scholar]
- Gabriel de Almeida, G.; Bolin, A.P.; Batistuzzo, A.; Fonseca, T.L.; Ribeiro, M.O.; Bianco, A.C. Genetic Background Strongly Influences the Impact of Carrying the Thr92Ala-DIO2 Polymorphism in the Male Mouse. Endocrinology 2024, 165, bqae064. [Google Scholar] [CrossRef]
- Mentuccia, D.; Proietti-Pannunzi, L.; Tanner, K.; Bacci, V.; Pollin, T.I.; Poehlman, E.T.; Shuldiner, A.R.; Celi, F.S. Association Between a Novel Variant of the Human Type 2 Deiodinase Gene Thr92Ala and Insulin Resistance: Evidence of Interaction With the Trp64Arg Variant of the β-3-Adrenergic Receptor. Diabetes 2002, 51, 880–883. [Google Scholar] [CrossRef]
- González-Alonso, J. Human Thermoregulation and the Cardiovascular System. Exp. Physiol. 2012, 97, 340–346. [Google Scholar] [CrossRef]
- Weitzel, J.M.; Iwen, K.A. Coordination of Mitochondrial Biogenesis by Thyroid Hormone. Mol. Cell. Endocrinol. 2011, 342, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Sinha, R.A.; Tripathi, M.; Mendoza, A.; Ohba, K.; Sy, J.A.C.; Xie, S.Y.; Zhou, J.; Ho, J.P.; Chang, C.-Y.; et al. Thyroid Hormone Receptor and ERRα Coordinately Regulate Mitochondrial Fission, Mitophagy, Biogenesis, and Function. Sci. Signal. 2018, 11, eaam5855. [Google Scholar] [CrossRef] [PubMed]
- Lanni, A.; Moreno, M.; Goglia, F. Mitochondrial Actions of Thyroid Hormone. Compr. Physiol. 2016, 6, 1591–1607. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Patwa, S.A.; Ali, A.H.; Ibdah, J.A. Thyroid Hormone and Mitochondrial Dysfunction: Therapeutic Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells 2023, 12, 2806. [Google Scholar] [CrossRef]
- Cantó, C.; Auwerx, J. AMP-Activated Protein Kinase and Its Downstream Transcriptional Pathways. Cell. Mol. Life Sci. 2010, 67, 3407–3423. [Google Scholar] [CrossRef]
- López-Lluch, G.; Navas, P. Calorie Restriction as an Intervention in Ageing. J. Physiol. 2016, 594, 2043–2060. [Google Scholar] [CrossRef]
- Spaulding, H.R.; Yan, Z. AMPK and the Adaptation to Exercise. Annu. Rev. Physiol. 2022, 84, 209–227. [Google Scholar] [CrossRef]
- Venditti, P.; Di Meo, S. The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion. Int. J. Mol. Sci. 2020, 21, 2173. [Google Scholar] [CrossRef]
- Zhang, C.; Han, Y.; Gao, X.; Teng, W.; Shan, Z. Thyroid Function, Physical Activity and Sedentary Behaviour: A Bidirectional Two-Sample Mendelian Randomisation Study. J. Glob. Health 2024, 14, 04154. [Google Scholar] [CrossRef] [PubMed]
- Cantó, C.; Auwerx, J. PGC-1alpha, SIRT1 and AMPK, an Energy Sensing Network That Controls Energy Expenditure. Curr. Opin. Lipidol. 2009, 20, 98–105. [Google Scholar] [CrossRef]
- Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-Activated Protein Kinase (AMPK) Action in Skeletal Muscle via Direct Phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 2007, 104, 12017–12022. [Google Scholar] [CrossRef]
- Sabatino, L.; Vassalle, C. Thyroid Hormones and Metabolism Regulation: Which Role on Brown Adipose Tissue and Browning Process? Biomolecules 2025, 15, 361. [Google Scholar] [CrossRef]
- Sinha, R.A.; Yen, P.M. Metabolic Messengers: Thyroid Hormones. Nat. Metab. 2024, 6, 639–650. [Google Scholar] [CrossRef]
- Athanasiou, N.; Bogdanis, G.C.; Mastorakos, G. Endocrine Responses of the Stress System to Different Types of Exercise. Rev. Endocr. Metab. Disord. 2023, 24, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C.; Hodgdon, J.A.; Hesslink, R.; Trygg, K. Thyroid Hormone Responses to Military Winter Exercises in the Arctic Region. Arct. Med. Res. 1995, 54, 82–90. [Google Scholar]
- Kessler, L.; Nedeltcheva, A.; Imperial, J.; Penev, P.D. Changes in Serum TSH and Free T4 during Human Sleep Restriction. Sleep 2010, 33, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Nazem, M.R.; Bastanhagh, E.; Emami, A.; Hedayati, M.; Samimi, S.; Karami, M. The Relationship between Thyroid Function Tests and Sleep Quality: Cross-Sectional Study. Sleep Sci. 2021, 14, 196–200. [Google Scholar] [CrossRef]
- Petrov, M.E.; Zuraikat, F.M.; Cheng, B.; Aggarwal, B.; Jelic, S.; Laferrère, B.; St-Onge, M.-P. Impact of Sleep Restriction on Biomarkers of Thyroid Function: Two Pooled Randomized Trials. Sleep Med. 2024, 124, 606–612. [Google Scholar] [CrossRef]
- Meyer, A.; Haigis, D.; Klos, B.; Zipfel, S.; Resmark, G.; Rall, K.; Dreser, K.; Hagmann, D.; Nieß, A.; Kopp, C.; et al. Relative Energy Deficiency in Sport—Multidisciplinary Treatment in Clinical Practice. Nutrients 2025, 17, 228. [Google Scholar] [CrossRef]
- Larson-Meyer, D.E.; Gostas, D.E. Thyroid Function and Nutrient Status in the Athlete. Curr. Sports Med. Rep. 2020, 19, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Winther, K.H.; Rayman, M.P.; Bonnema, S.J.; Hegedüs, L. Selenium in Thyroid Disorders—Essential Knowledge for Clinicians. Nat. Rev. Endocrinol. 2020, 16, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, A.D.; Marouli, E.; Papadopoulou, A.; Deloukas, P.; Kuś, A.; Sterenborg, R.; Teumer, A.; Burgess, S.; Åsvold, B.O.; Chasman, D.I.; et al. Thyroid Function, Sex Hormones and Sexual Function: A Mendelian Randomization Study. Eur. J. Epidemiol. 2021, 36, 335–344. [Google Scholar] [CrossRef]
- Xing, Y.; Xuan, F.; Wang, K.; Zhang, H. Aging under Endocrine Hormone Regulation. Front. Endocrinol. 2023, 14, 1223529. [Google Scholar] [CrossRef]
- Taylor, P.N.; Lansdown, A.; Witczak, J.; Khan, R.; Rees, A.; Dayan, C.M.; Okosieme, O. Age-Related Variation in Thyroid Function—A Narrative Review Highlighting Important Implications for Research and Clinical Practice. Thyroid. Res. 2023, 16, 7. [Google Scholar] [CrossRef]
- Brown, E.D.L.; Obeng-Gyasi, B.; Hall, J.E.; Shekhar, S. The Thyroid Hormone Axis and Female Reproduction. Int. J. Mol. Sci. 2023, 24, 9815. [Google Scholar] [CrossRef]
- Walsh, J.P. Thyroid Function across the Lifespan: Do Age-Related Changes Matter? Endocrinol. Metab. 2022, 37, 208–219. [Google Scholar] [CrossRef] [PubMed]
- van der Spoel, E.; Roelfsema, F.; van Heemst, D. Within-Person Variation in Serum Thyrotropin Concentrations: Main Sources, Potential Underlying Biological Mechanisms, and Clinical Implications. Front. Endocrinol. 2021, 12, 619568. [Google Scholar] [CrossRef]
- Yau, W.W.; Yen, P.M. Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. Int. J. Mol. Sci. 2020, 21, 3020. [Google Scholar] [CrossRef]
- Richalet, J.-P.; Letournel, M.; Souberbielle, J.-C. Effects of High-Altitude Hypoxia on the Hormonal Response to Hypothalamic Factors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1685–R1692. [Google Scholar] [CrossRef]
- Sawhney, R.C.; Malhotra, A.S. Thyroid Function in Sojourners and Acclimatised Low Landers at High Altitude in Man. Horm. Metab. Res. 1991, 23, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, K.; Refetoff, S.; Van Cauter, E.; Yoshimura, T. Interconnection between Circadian Clocks and Thyroid Function. Nat. Rev. Endocrinol. 2019, 15, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Hall, J.E.; Klubo-Gwiezdzinska, J. The Hypothalamic Pituitary Thyroid Axis and Sleep. Curr. Opin. Endocr. Metab. Res. 2021, 17, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Dowden, R.A.; Wisniewski, P.J.; Longoria, C.R.; Oydanich, M.; McNulty, T.; Rodriguez, E.; Zhang, J.; Cavallo, M.; Guers, J.J.; Vatner, D.E.; et al. Microbiota Mediate Enhanced Exercise Capacity Induced by Exercise Training. Med. Sci. Sports Exerc. 2023, 55, 1392–1400. [Google Scholar] [CrossRef]
- Qian, L.; Zhu, Y.; Deng, C.; Liang, Z.; Chen, J.; Chen, Y.; Wang, X.; Liu, Y.; Tian, Y.; Yang, Y. Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 (PGC-1) Family in Physiological and Pathophysiological Process and Diseases. Signal Transduct. Target. Ther. 2024, 9, 50. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 97. [Google Scholar] [CrossRef]
- Jiang, W.; Lu, G.; Gao, D.; Lv, Z.; Li, D. The Relationships between the Gut Microbiota and Its Metabolites with Thyroid Diseases. Front. Endocrinol. 2022, 13, 943408. [Google Scholar] [CrossRef]
- Facchin, S.; Bertin, L.; Bonazzi, E.; Lorenzon, G.; De Barba, C.; Barberio, B.; Zingone, F.; Maniero, D.; Scarpa, M.; Ruffolo, C.; et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life 2024, 14, 559. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Arribalzaga, S.; Gutiérrez-Abejón, E.; Azarbayjani, M.A.; Mielgo-Ayuso, J.; Roche, E. Omega-3 Fatty Acid Supplementation on Post-Exercise Inflammation, Muscle Damage, Oxidative Response, and Sports Performance in Physically Healthy Adults—A Systematic Review of Randomized Controlled Trials. Nutrients 2024, 16, 2044. [Google Scholar] [CrossRef] [PubMed]
- Kasaikina, M.V.; Kravtsova, M.A.; Lee, B.C.; Seravalli, J.; Peterson, D.A.; Walter, J.; Legge, R.; Benson, A.K.; Hatfield, D.L.; Gladyshev, V.N. Dietary Selenium Affects Host Selenoproteome Expression by Influencing the Gut Microbiota. FASEB J. 2011, 25, 2492–2499. [Google Scholar] [CrossRef] [PubMed]
- Cayres, L.C.d.F.; de Salis, L.V.V.; Rodrigues, G.S.P.; Lengert, A.v.H.; Biondi, A.P.C.; Sargentini, L.D.B.; Brisotti, J.L.; Gomes, E.; de Oliveira, G.L.V. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients With Hashimoto Thyroiditis. Front. Immunol. 2021, 12, 579140. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-C.; Lin, S.-F.; Chen, S.-T.; Chang, P.-Y.; Yeh, Y.-M.; Lo, F.-S.; Lu, J.-J. Alterations of Gut Microbiota in Patients With Graves’ Disease. Front. Cell. Infect. Microbiol. 2021, 11, 663131. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front. Physiol. 2017, 8, 319. [Google Scholar] [CrossRef]
- Kopczyńska, J.; Kowalczyk, M. The Potential of Short-Chain Fatty Acid Epigenetic Regulation in Chronic Low-Grade Inflammation and Obesity. Front. Immunol. 2024, 15, 1380476. [Google Scholar] [CrossRef]
- Varvara, R.-A.; Vodnar, D.C. Probiotic-Driven Advancement: Exploring the Intricacies of Mineral Absorption in the Human Body. Food Chem. X 2024, 21, 101067. [Google Scholar] [CrossRef]
- Shulhai, A.-M.; Rotondo, R.; Petraroli, M.; Patianna, V.; Predieri, B.; Iughetti, L.; Esposito, S.; Street, M.E. The Role of Nutrition on Thyroid Function. Nutrients 2024, 16, 2496. [Google Scholar] [CrossRef]
- Bano, I.; Hassan, M.F.; Kieliszek, M. A Comprehensive Review of Selenium as a Key Regulator in Thyroid Health. Biol. Trace Elem. Res. 2025, 203, 6466–6480. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Köhrle, J. The Impact of Iron and Selenium Deficiencies on Iodine and Thyroid Metabolism: Biochemistry and Relevance to Public Health. Thyroid. 2002, 12, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Heintz-Buschart, A.; Wilmes, P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018, 26, 563–574. [Google Scholar] [CrossRef]
- Hewison, M. Vitamin D and Immune Function: An Overview. Proc. Nutr. Soc. 2012, 71, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Sim, M.; Badenhorst, C.E.; Dawson, B.; Govus, A.D.; Abbiss, C.R.; Swinkels, D.W.; Trinder, D. Iron Status and the Acute Post-Exercise Hepcidin Response in Athletes. PLoS ONE 2014, 9, e93002. [Google Scholar] [CrossRef]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of Inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Most, A.; Dörr, O.; Nef, H.; Hamm, C.; Bauer, T.; Bauer, P. Influence of 25-Hydroxy-Vitamin D Insufficiency on Maximal Aerobic Power in Elite Indoor Athletes: A Cross-Sectional Study. Sports Med. Open 2021, 7, 74. [Google Scholar] [CrossRef]
- Wajner, S.M.; Goemann, I.M.; Bueno, A.L.; Larsen, P.R.; Maia, A.L. IL-6 Promotes Nonthyroidal Illness Syndrome by Blocking Thyroxine Activation While Promoting Thyroid Hormone Inactivation in Human Cells. J. Clin. Invest 2011, 121, 1834–1845. [Google Scholar] [CrossRef]
- Axling, U.; Önning, G.; Combs, M.A.; Bogale, A.; Högström, M.; Svensson, M. The Effect of Lactobacillus Plantarum 299v on Iron Status and Physical Performance in Female Iron-Deficient Athletes: A Randomized Controlled Trial. Nutrients 2020, 12, 1279. [Google Scholar] [CrossRef]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-Induced Oxidative Stress: Friend or Foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Xu, M.; Zhang, Y.; Weng, X.; Luo, J.; Li, Y.; Mao, Y.-H. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024, 16, 1634. [Google Scholar] [CrossRef]
- Xia, W.; Li, X.; Han, R.; Liu, X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J. Sports Med. 2024, 15, 209–228. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Feng, S.; He, R.; Zhang, S. Intestinal Microbiota Regulates the Gut-Thyroid Axis: The New Dawn of Improving Hashimoto Thyroiditis. Clin. Exp. Med. 2024, 24, 39. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef] [PubMed]
- Benvenga, S.; Famà, F.; Perdichizzi, L.G.; Antonelli, A.; Brenta, G.; Vermiglio, F.; Moleti, M. Fish and the Thyroid: A Janus Bifrons Relationship Caused by Pollutants and the Omega-3 Polyunsaturated Fatty Acids. Front. Endocrinol. 2022, 13, 891233. [Google Scholar] [CrossRef] [PubMed]
- Szczuko, M.; Kacprzak, J.; Przybylska, A.; Szczuko, U.; Pobłocki, J.; Syrenicz, A.; Drozd, A. The Influence of an Anti-Inflammatory Gluten-Free Diet with EPA and DHA on the Involvement of Maresin and Resolvins in Hashimoto’s Disease. Int. J. Mol. Sci. 2024, 25, 11692. [Google Scholar] [CrossRef] [PubMed]
- Zinkow, A.; Grodzicki, W.; Czerwińska, M.; Dziendzikowska, K. Molecular Mechanisms Linking Omega-3 Fatty Acids and the Gut–Brain Axis. Molecules 2025, 30, 71. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Song, Z.; Liu, Y.; Zhang, X. Dietary Strategies to Improve Exercise Performance by Modulating the Gut Microbiota. Foods 2024, 13, 1680. [Google Scholar] [CrossRef]
- Castro-Quezada, I.; Román-Viñas, B.; Serra-Majem, L. The Mediterranean Diet and Nutritional Adequacy: A Review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef]
- Odriozola, A.; González, A.; Odriozola, I.; Álvarez-Herms, J.; Corbi, F. Microbiome-Based Precision Nutrition: Prebiotics, Probiotics and Postbiotics. Adv. Genet. 2024, 111, 237–310. [Google Scholar] [CrossRef]
- Ghazzawi, H.A.; Hussain, M.A.; Raziq, K.M.; Alsendi, K.K.; Alaamer, R.O.; Jaradat, M.; Alobaidi, S.; Al Aqili, R.; Trabelsi, K.; Jahrami, H. Exploring the Relationship between Micronutrients and Athletic Performance: A Comprehensive Scientific Systematic Review of the Literature in Sports Medicine. Sports 2023, 11, 109. [Google Scholar] [CrossRef]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.G.; Holmes, E.; Shanahan, F.; Cotter, P.D.; O’Sullivan, O. The Microbiome of Professional Athletes Differs from That of More Sedentary Subjects in Composition and Particularly at the Functional Metabolic Level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef]
- Sim, M.; Dawson, B.; Landers, G.; Trinder, D.; Peeling, P. Iron Regulation in Athletes: Exploring the Menstrual Cycle and Effects of Different Exercise Modalities on Hepcidin Production. Int. J. Sport. Nutr. Exerc. Metab. 2014, 24, 177–187. [Google Scholar] [CrossRef]
- Loucks, A.B.; Callister, R. Induction and Prevention of Low-T3 Syndrome in Exercising Women. Am. J. Physiol. 1993, 264, R924–R930. [Google Scholar] [CrossRef]
- Loucks, A.B.; Heath, E.M. Induction of Low-T3 Syndrome in Exercising Women Occurs at a Threshold of Energy Availability. Am. J. Physiol. 1994, 266, R817–R823. [Google Scholar] [CrossRef]
- Burke, L.M.; Ackerman, K.E.; Heikura, I.A.; Hackney, A.C.; Stellingwerff, T. Mapping the Complexities of Relative Energy Deficiency in Sport (REDs): Development of a Physiological Model by a Subgroup of the International Olympic Committee (IOC) Consensus on REDs. Br. J. Sports Med. 2023, 57, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Ackerman, K.E.; Bailey, D.M.; Burke, L.M.; Constantini, N.; Hackney, A.C.; Heikura, I.A.; Melin, A.; Pensgaard, A.M.; Stellingwerff, T.; et al. 2023 International Olympic Committee’s (IOC) Consensus Statement on Relative Energy Deficiency in Sport (REDs). Br. J. Sports Med. 2023, 57, 1073–1097. [Google Scholar] [CrossRef]
- Levy, S.B.; Bribiescas, R.G. Hierarchies in the Energy Budget: Thyroid Hormones and the Evolution of Human Life History Patterns. Evol. Anthropol. Issues News Rev. 2023, 32, 275–292. [Google Scholar] [CrossRef]
- Snipe, R.M.J.; Khoo, A.; Kitic, C.M.; Gibson, P.R.; Costa, R.J.S. The Impact of Mild Heat Stress During Prolonged Running On Gastrointestinal Integrity, Gastrointestinal Symptoms, Systemic Endotoxin and Cytokine Profiles. Int. J. Sports Med. 2018, 39, 255–263. [Google Scholar] [CrossRef]
- O’Brien, M.T.; O’Sullivan, O.; Claesson, M.J.; Cotter, P.D. The Athlete Gut Microbiome and Its Relevance to Health and Performance: A Review. Sports Med. 2022, 52, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Mutlu, E.; Engen, P.; Vitaterna, M.H.; Turek, F.W.; Keshavarzian, A. Circadian Disorganization Alters Intestinal Microbiota. PLoS ONE 2014, 9, e97500. [Google Scholar] [CrossRef] [PubMed]
- Badenhorst, C.E.; Dawson, B.; Cox, G.R.; Laarakkers, C.M.; Swinkels, D.W.; Peeling, P. Timing of Post-Exercise Carbohydrate Ingestion: Influence on IL-6 and Hepcidin Responses. Eur. J. Appl. Physiol. 2015, 115, 2215–2222. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Peeling, P.; Pyne, D.B.; Tee, N.; Whitfield, J.; Sharma, A.P.; Heikura, I.A.; Burke, L.M. Six Days of Low Carbohydrate, Not Energy Availability, Alters the Iron and Immune Response to Exercise in Elite Athletes. Med. Sci. Sports Exerc. 2022, 54, 377–387. [Google Scholar] [CrossRef]
- Garofalo, V.; Condorelli, R.A.; Cannarella, R.; Aversa, A.; Calogero, A.E.; La Vignera, S. Relationship between Iron Deficiency and Thyroid Function: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4790. [Google Scholar] [CrossRef]
- Ahn, C.; Jeung, E.-B. Endocrine-Disrupting Chemicals and Disease Endpoints. Int. J. Mol. Sci. 2023, 24, 5342. [Google Scholar] [CrossRef]
- HAMPL, R.; STÁRKA, L. Endocrine Disruptors and Gut Microbiome Interactions. Physiol. Res. 2020, 69, S211–S223. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhang, X.; Huang, R.; Liu, J.; Li, Z. Gut Microbiota and Autoimmune Thyroid Disease: A Bidirectional Mendelian Randomization Study and Mediation Analysis. Front. Microbiol. 2024, 15, 1443643. [Google Scholar] [CrossRef]
- Fröhlich, E.; Wahl, R. Microbiota and Thyroid Interaction in Health and Disease. Trends Endocrinol. Metab. 2019, 30, 479–490. [Google Scholar] [CrossRef]
- Fasano, C.; Disciglio, V.; Bertora, S.; Lepore Signorile, M.; Simone, C. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells 2019, 8, 1110. [Google Scholar] [CrossRef]
- Liu, W.; Meng, P.; Li, Z.; Shen, Y.; Meng, X.; Jin, S.; Hu, M. The Multifaceted Impact of Physical Exercise on FoxO Signaling Pathways. Front. Cell Dev. Biol. 2025, 13, 1614732. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, M.M.; Schoenmakers, S.; Gribnau, J.; Steegers-Theunissen, R.P.M. The One-Carbon Metabolism as an Underlying Pathway for Placental DNA Methylation—A Systematic Review. Epigenetics 2024, 19, 2318516. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Pu, D.; Tan, R.; Wu, J. Association of Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphisms (C677T and A1298C) with Thyroid Dysfunction: A Meta-Analysis and Trial Sequential Analysis. Arch. Endocrinol. Metab. 2022, 66, 551–581. [Google Scholar] [CrossRef]
- S.LAB (SOLOWAYS). A Pilot Study of Selenomethionine and Myo-Inositol(SOLOWAYS_TM) in Patients with Autoimmune Thyroiditis Carrying the DIO2 Thr92Ala Polymorphism. 2025. Available online: https://clinicaltrials.gov/ (accessed on 29 October 2025).
- Arabi, A.; Zahed, L.; Mahfoud, Z.; El-Onsi, L.; Nabulsi, M.; Maalouf, J.; Fuleihan, G.E.-H. Vitamin D Receptor Gene Polymorphisms Modulate the Skeletal Response to Vitamin D Supplementation in Healthy Girls. Bone 2009, 45, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Barry, E.L.; Peacock, J.L.; Rees, J.R.; Bostick, R.M.; Robertson, D.J.; Bresalier, R.S.; Baron, J.A. Vitamin D Receptor Genotype, Vitamin D3 Supplementation, and Risk of Colorectal Adenomas. JAMA Oncol. 2017, 3, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, J.F.P.; de Oliveira Borges, M.V.; Soares, A.A.; dos Santos, J.C.; de Oliveira, A.B.B.; da Costa, C.H.B.; Cruz, M.S.; Bortolin, R.H.; de Freitas, R.C.C.; Dantas, P.M.S.; et al. The Impact of Vitamin D Supplementation on VDR Gene Expression and Body Composition in Monozygotic Twins: Randomized Controlled Trial. Sci. Rep. 2020, 10, 11943. [Google Scholar] [CrossRef]
- Humińska-Lisowska, K.; Zielińska, K.; Mieszkowski, J.; Michałowska-Sawczyn, M.; Cięszczyk, P.; Łabaj, P.P.; Wasąg, B.; Frączek, B.; Grzywacz, A.; Kochanowicz, A.; et al. Microbiome Features Associated with Performance Measures in Athletic and Non-Athletic Individuals: A Case-Control Study. PLoS ONE 2024, 19, e0297858. [Google Scholar] [CrossRef] [PubMed]
- Tsolakidis, D.; Gymnopoulos, L.P.; Dimitropoulos, K. Artificial Intelligence and Machine Learning Technologies for Personalized Nutrition: A Review. Informatics 2024, 11, 62. [Google Scholar] [CrossRef]
- Joshi, S.; Shamanna, P.; Dharmalingam, M.; Vadavi, A.; Keshavamurthy, A.; Shah, L.; Mechanick, J.I. Digital Twin-Enabled Personalized Nutrition Improves Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes: Results of a 1-Year Randomized Controlled Study. Endocr. Pract. 2023, 29, 960–970. [Google Scholar] [CrossRef]
- Lagoumintzis, G.; Patrinos, G.P. Triangulating Nutrigenomics, Metabolomics and Microbiomics toward Personalized Nutrition and Healthy Living. Hum. Genom. 2023, 17, 109. [Google Scholar] [CrossRef]
- Ahn, H.J.; Ishikawa, K.; Kim, M.-H. Exploring the Diagnostic Performance of Machine Learning in Prediction of Metabolic Phenotypes Focusing on Thyroid Function. PLoS ONE 2024, 19, e0304785. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Ludgate, M.E.; Masetti, G.; Soares, P. The Relationship between the Gut Microbiota and Thyroid Disorders. Nat. Rev. Endocrinol. 2024, 20, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo’, C.; Marino, M.; Meroño, T.; Nikoloudaki, O.; Calabrese, F.M.; Turroni, S.; Taverniti, V.; et al. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients 2022, 14, 2559. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Almeida, P.P.; Mafra, D.; Stockler-Pinto, M.B. Bioactive Compounds Modulating Toll-like 4 Receptor (TLR4)-Mediated Inflammation: Pathways Involved and Future Perspectives. Nutr. Res. 2022, 107, 96–116. [Google Scholar] [CrossRef]
- da Cunha, L.R.; Muniz-Junqueira, M.I.; dos Santos Borges, T.K. Impact of Polyphenols in Phagocyte Functions. J. Inflamm. Res. 2019, 12, 205–217. [Google Scholar] [CrossRef]
- Plamada, D.; Vodnar, D.C. Polyphenols—Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021, 14, 137. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The Gut Microbiota: A Key Factor in the Therapeutic Effects of (Poly)Phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef]
- Martín, M.Á.; Ramos, S. Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Diseases. Nutrients 2021, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Mosele, J.I.; Macià, A.; Motilva, M.-J. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules 2015, 20, 17429–17468. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Köhrle, J. Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int. J. Mol. Sci. 2023, 24, 3393. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef]
- McGlory, C.; Calder, P.C.; Nunes, E.A. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front. Nutr. 2019, 6, 144. [Google Scholar] [CrossRef]
- Norris, P.C.; Dennis, E.A. Omega-3 Fatty Acids Cause Dramatic Changes in TLR4 and Purinergic Eicosanoid Signaling. Proc. Natl. Acad. Sci. USA 2012, 109, 8517–8522. [Google Scholar] [CrossRef]
- Rogero, M.M.; Calder, P.C. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients 2018, 10, 432. [Google Scholar] [CrossRef] [PubMed]


| Functional Group | Core Physiological Axis | Microbial Contribution | Performance Relevance | Key References |
|---|---|---|---|---|
| Iodine (I) + Selenium (Se) | Endocrine–redox Regulation | Lactobacillus and Bifidobacterium have been linked with increased iodide solubility; while Bacteroides and Clostridium can reduce dietary selenate/selenite to more bioavailable forms in experimental systems, potentially supporting deiodinase and antioxidant enzyme activity. | Contribute to thyroid hormone synthesis and activation (T4 → T3), and help maintain redox balance, which may influence fatigue and thermogenic responses during training | [16,27,111] |
| Iron (Fe) + Zinc (Zn) | Metabolic–immune Efficiency | SCFA-producing and lactate-producing taxa, such as Lactobacillus plantarum and Faecalibacterium, may enhance Fe2+ solubility and modulate the expression of metal transporters, such as DMT1 and ZIP4, in experimental models. At the same time, inflammation-driven increases in hepcidin can limit systemic availability. | Serve as cofactors for TPO, cytochrome enzymes, and THR structure, supporting oxygen transport, immune tolerance, and metabolic regulation under heavy training. | [20,112,113] |
| Vitamin D | Immunoendocrine– neuromuscular integration | Certain Lactobacillus and Bifidobacterium strains have been shown to influence bile acid signalling and VDR expression in experimental models, potentially modulating vitamin D activation and immune responses. | May support neuromuscular function, immune balance, and thyroid–immune tolerance, particularly in athletes with low sunlight exposure. | [27,110,114] |
| Stage | Primary Trigger | Dominant Mechanism | Micronutrient Status | Physiological Outcome | Recovery Potential | Key References |
|---|---|---|---|---|---|---|
| 1. Eubiosis and nutrient sufficiency | Balanced training load; adequate intake | Nrf2/SIRT1–PGC1α ↑ | Se, Fe, Zn, I ↑ SCFA ↑ | Efficient thermogenesis full redox recovery | Full | [16,120] |
| 2. Early imbalance/ mild deficiency | Repeated load; marginal Deficit | IL-6/TNF-α ↑ D1/2 ↓; D3 ↑ | Se/Zn ↓ | Reversible T3 ↓ transient fatigue | High | [5,20] |
| 3. Redox– inflammatory coupling | Overreaching; emerging dysbiosis | GPx/TrxR ↓ D1/2 ↓↓; D3 ↑↑ | Se/Fe ↓ hepcidin ↑ | Mitochondrial inefficiency energy conservation | Moderate | [118] |
| 4. Mitochondrial stress/ immune drift | Chronic dysbiosis and inflammation | Th1/Th17polarization Nrf2 ↓ | Multi-cofactor depletion | Chronic fatigue thermogenesis ↓ | Low | [2,27] |
| Intervention | Mechanistic Target/ Pathway | Microbial/ Endocrine Effect | Functional Outcome in Athletes | Level of Evidence/Cautionary Note | Key References |
|---|---|---|---|---|---|
| 1. Balanced diet rich in fermentable fibres and plant diversity | Sustains SCFA production and mucosal integrity | Preserves microbial diversity and bile-acid metabolism | Maintains gut–thyroid equilibrium and supports recovery under training stress | Supported by observational and small interventional studies | [26,44,162,163,164,165] |
| 2. Prebiotic supplementation (inulin, GOS, FOS) | ↑ Butyrate → AMPK–SIRT1–PGC-1α signalling | Enhances deiodinase activity and intestinal barrier function | Associated with better recovery and reduced risk of low-T3 during energy deficit | Consistent mechanistic data; limited athlete-specific trials | [26,44,166,167,168,169] |
| 3. Polyphenol-rich foods (berries, cocoa, EVOO, green tea) | Activation of Nrf2 and inhibition of NF-κB; secondary metabolism by Bifidobacterium & Faecalibacterium | Increases antioxidant enzymes (SOD, GPx); lowers IL-6 & TNF-α; supports SCFA and bile-acid homeostasis | May protect deiodinase function and redox balance during oxidative stress; supports mitochondrial efficiency and recovery | Mechanistic and human data are consistent; the magnitude depends on the matrix and microbiota profile | [5,170,171,172,173,174] |
| 4. Micronutrient sufficiency (Se, Zn, Fe, I, Vit D) | Cofactors for DIO1/2, TPO, TrxR, VDR | Supports thyroid-hormone conversion and antioxidant defence | May prevent fatigue, anaemia, and redox imbalance under load | Strong biochemical evidence; monitor serum markers to avoid excess | [16,85,112,175] |
| 5. Synbiotic/ probiotic protocols under adequate training load | ↑ Faecalibacterium, Akkermansia, Lactobacillus → ↑ SCFA, ↓ LPS | Modulates immune tolerance and DIO2 activity; stabilizes the intestinal barrier | May enhance thyroid efficiency and recovery when training and rest are balanced | Benefits are strain- and context-dependent; excessive load blunts response | [20,132,176] |
| 6. Omega-3 fatty acids (EPA, DHA) | ↓ TLR4 signalling; ↑ membrane fluidity | Improves T3 sensitivity in muscle and reduces IL-6 | Associated with better recovery and reduced exercise-induced inflammation | Robust anti-inflammatory evidence; endocrine effects indirect | [103,177,178,179] |
| 7. Predictive multi-omic monitoring and digital twins | Integration of genetic, microbial, and physiological data | Enables personalized tracking of thyroid–microbiota responses | Facilitates early detection of overtraining and adaptive nutrition adjustments | Emerging field; validation pending in athlete cohorts | [27,161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Odriozola, A.; González, A.; Odriozola, I.; Corbi, F.; Álvarez-Herms, J. Thyroid–Microbiome Allostasis and Mitochondrial Performance: An Integrative Perspective in Exercise Physiology. Nutrients 2026, 18, 59. https://doi.org/10.3390/nu18010059
Odriozola A, González A, Odriozola I, Corbi F, Álvarez-Herms J. Thyroid–Microbiome Allostasis and Mitochondrial Performance: An Integrative Perspective in Exercise Physiology. Nutrients. 2026; 18(1):59. https://doi.org/10.3390/nu18010059
Chicago/Turabian StyleOdriozola, Adrian, Adriana González, Iñaki Odriozola, Francesc Corbi, and Jesús Álvarez-Herms. 2026. "Thyroid–Microbiome Allostasis and Mitochondrial Performance: An Integrative Perspective in Exercise Physiology" Nutrients 18, no. 1: 59. https://doi.org/10.3390/nu18010059
APA StyleOdriozola, A., González, A., Odriozola, I., Corbi, F., & Álvarez-Herms, J. (2026). Thyroid–Microbiome Allostasis and Mitochondrial Performance: An Integrative Perspective in Exercise Physiology. Nutrients, 18(1), 59. https://doi.org/10.3390/nu18010059

