Lactobacillus plantarum QL01 Alleviates D-Galactose-Induced Oxidative Stress and Restores Gut Microbiota in Ageing Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Source and Culture
2.2. Preparation and Verification of the Bacterial Dose
2.3. Animal Experiment Design
2.4. Biochemical Index Analysis
2.5. Histopathological Analysis
2.6. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Test
2.7. DNA Extraction and rRNA Gene Sequencing
2.8. Determination of Short-Chain Fatty Acids (SCFAs)
2.9. Statistical Analysis
3. Results
3.1. QL01 Inhibited Organ Atrophy in D-Galactose-Induced Ageing Mice
3.2. QL01 Regulated the Levels of Inflammatory Factors in D-Galactose-Induced Ageing Mice
3.3. QL01 Alleviated Hepatic Damage in D-Galactose-Induced Ageing Mice
3.4. QL01 Ameliorated Oxidative Damage in D-Galactose-Induced Ageing Mice
3.5. QL01 Restored Intestinal Homeostasis in D-Galactose-Induced Ageing Mice
3.6. QL01 Modulated the Composition of Gut Microbiota
3.7. Correlation Analysis of Gut Microbiota with Biochemical Parameters and SCFAs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Liu, F.; Xu, C.; Liu, Z.; Ma, J.; Gu, L.; Jiang, Z.; Hou, J. Lactobacillus plantarum 69-2 Combined with Galacto-Oligosaccharides Alleviates D-Galactose-Induced Ageing by Regulating the AMPK/SIRT1 Signaling Pathway and Gut Microbiota in Mice. J. Agric. Food Chem. 2021, 69, 2745–2757. [Google Scholar] [CrossRef]
- Hu, T.; Chen, R.; Qian, Y.; Ye, K.; Long, X.; Park, K.Y.; Zhao, X. Antioxidant effect of Lactobacillus fermentum HFY02-fermented soy milk on D-galactose-induced ageing mice model. Food Sci. Hum. Wellness 2022, 11, 1362–1372. [Google Scholar] [CrossRef]
- Liu, B.; Ma, R.; Zhang, J.; Sun, P.; Yi, R.; Zhao, X. Preventive effect of small-leaved Kuding tea (Ligustrum robustum (Roxb.) Bl.) polyphenols on D-galactose-induced oxidative stress and aging in mice. Evid. Based Complement. Altern. Med. 2019, 2019, 3152324. [Google Scholar] [CrossRef]
- Martinovic, J.; Gusevac Stojanovic, I.; Nesic, S.; Todorovic, A.; Bobic, K.; Stankovic, S.; Drakulic, D. Chronic oral D-galactose induces oxidative stress but not overt organ dysfunction in male Wistar rats. Curr. Issues Mol. Biol. 2025, 47, 161. [Google Scholar] [CrossRef]
- Li, T.; Huang, N.; Chen, H.; Yang, Y.; Zhang, J.; Xu, W.; Xiao, H. Daytime-Restricted Feeding Alleviates d-Galactose-Induced Aging in Mice and Regulates the AMPK and mTORC1 Activities. J. Cell. Physiol. 2025, 240, e70020. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elsaad, N.M.; Abd Elhameed, A.G.; El-Karef, A.; Ibrahim, T.M. Yogurt containing the probacteria Lactobacillus acidophilus combined with natural antioxidants mitigates doxorubicin-induced cardiomyopathy in rats. J. Med. Food 2015, 18, 950–959. [Google Scholar] [CrossRef]
- Lei, G.; Khan, A.; Budryn, G.; Grzelczyk, J. Probiotic products from laboratory to commercialization. Trends Food Sci. Technol. 2025, 155, 104807. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Li, L.; Yang, L.; Feng, Y.; Wang, H.; Xiao, Y. Bifidobacterium bifidum and fucoidan synergistically alleviate D-galactose-induced aging in mice by regulating gut microbiota. Food Biosci. 2025, 46, 108038. [Google Scholar] [CrossRef]
- Lin, M.Y.; Chang, F.J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest. Dis. Sci. 2000, 45, 1617–1622. [Google Scholar] [CrossRef]
- Shen, Q.; Shang, N.; Li, P. In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr. Microbiol. 2011, 62, 1097–1103. [Google Scholar] [CrossRef]
- Wu, D.; Li, H.; Wang, X.; Chen, R.; Gong, D.; Long, D.; Huang, X.; Tang, Z.; Zhang, Y. Screening and Whole-Genome Analysis of Probiotic Lactic Acid Bacteria with Potential Antioxidants from Yak Milk and Dairy Products in the Qinghai–Tibet Plateau. Antioxidants 2025, 14, 173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Li, H.; Lao, J.; Jia, D.; Liu, J.; Wang, J.; Luo, J.; Guan, G.; Yin, H.; et al. Antioxidant effects of Bifidobacterium longum T37a in mice weight loss and ageing model induced by D-galactose. BMC Microbiol. 2023, 23, 103. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Pan, J.; Yu, L.; Wang, S.; Zhang, C.; Zhao, J.; Narbad, A.; Zhai, Q.; Tian, F. Lactiplantibacillus plantarum CCFM8661 alleviates D-galactose-induced brain aging in mice by the regulation of the gut microbiota. Food Funct. 2023, 14, 10135–10150. [Google Scholar] [CrossRef] [PubMed]
- Joishy, T.K.; Bhattacharya, A.; Singh, C.T.; Mukherjee, A.K.; Khan, M.R. Probiotic and anti-inflammatory properties of Lactiplantibacillus plantarum MKTJ24 isolated from an artisanal fermented fish of North-east India. New Biotechnol. 2024, 83, 121–132. [Google Scholar] [CrossRef]
- Shi, X.; Ma, T.; Sakandar, H.A.; Menghe, B.; Sun, Z. Gut microbiome and aging nexus and underlying mechanism. Appl. Microbiol. Biotechnol. 2022, 106, 5349–5358. [Google Scholar] [CrossRef]
- Liu, J.; Sun, P.; Jin, Z.; Nie, H.; Mu, G.; Wu, X. Inhibition of Salmonella typhimurium infection in mice fed with live or heat-killed Lactiplantibacillus plantarum MWFLp-182. Int. J. Dairy Technol. 2024, 77, 1121–1135. [Google Scholar] [CrossRef]
- Si, X.; Bi, J.; Chen, Q.; Cui, H.; Bao, Y.; Tian, J.; Shu, C.; Wang, Y.; Tan, H.; Zhang, W.; et al. Effect of blueberry anthocyanin-rich extracts on peripheral and hippocampal antioxidant defensiveness: The analysis of the serum fatty acid species and gut microbiota profile. J. Agric. Food Chem. 2021, 69, 3658–3666. [Google Scholar] [CrossRef]
- He, C.; Mao, Y.; Wei, L.; Zhao, A.; Chen, L.; Zhang, F.; Cui, X.; Pan, M.H.; Wang, B. Lactiplantibacillus plantarum JS19-assisted fermented goat milk alleviates d-galactose-induced ageing by modulating oxidative stress and intestinal microbiota in mice. J. Dairy Sci. 2024, 107, 7564–7577. [Google Scholar] [CrossRef]
- Wang, D.; Wang, E.; Li, Y.; Teng, Y.; Li, H.; Jiao, L.; Wu, W. Anti-Ageing Effect of Momordica charantia L. on d-Galactose-Induced Subacute Ageing in Mice by Activating PI3K/AKT Signaling Pathway. Molecules 2022, 27, 4502. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Hu, R.; Chen, Y.; Xiao, M.; Liu, B.; Zeng, F. Prebiotic Agrocybe cylindracea crude polysaccharides combined with Lactobacillus rhamnosus GG postpone ageing-related oxidative stress in mice. Food Funct. 2022, 13, 1218–1231. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, J.; Zhou, X.; Yi, R.; Mu, J.; Long, X.; Pan, Y.; Zhao, X.; Liu, W. Lactobacillus plantarum CQPC11 Isolated from Sichuan Pickled Cabbages Antagonizes d-galactose-Induced Oxidation and Ageing in Mice. Molecules 2018, 23, 3026. [Google Scholar] [CrossRef]
- Li, F.; Huang, G.; Tan, F.; Yi, R.; Zhou, X.; Mu, J.; Zhao, X. Lactobacillus plantarum KSFY06 on d-galactose-induced oxidation and ageing in Kunming mice. Food Sci. Nutr. 2020, 8, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sun, H.; Tan, F.; Yi, R.; Zhou, C.; Deng, Y.; Mu, J.; Zhao, X. Anti-ageing effect of Lactobacillus plantarum HFY09-fermented soymilk on D-galactose-induced oxidative ageing in mice through modulation of the Nrf2 signaling pathway. J. Funct. Foods 2021, 78, 104386. [Google Scholar] [CrossRef]
- Shi, R.; Ye, J.; Fan, H.; Hu, X.; Wu, X.; Wang, D.; Zhao, B.; Dai, X.; Liu, X. Lactobacillus plantarum LLY-606 Supplementation Ameliorates the Cognitive Impairment of Natural Ageing in Mice: The Potential Role of Gut Microbiota Homeostasis. J. Agric. Food Chem. 2024, 72, 4049–4062. [Google Scholar] [CrossRef]
- Song, X.; Zhao, Z.; Zhao, Y.; Jin, Q.; Li, S. Protective Effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-Induced Cognitive Decline, Oxidative Stress and Neuroinflammation. J. Microbiol. Biotechnol. 2022, 32, 212–219. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, X.; Ding, C.; Liu, X.; Chi, L.; Zhang, S. Abscisic acid ameliorates D-galactose-induced ageing in mice by modulating AMPK-SIRT1-p53 pathway and intestinal flora. Heliyon 2024, 10, e28283. [Google Scholar] [CrossRef]
- Ni, Y.; Yang, X.; Zheng, L.; Wang, Z.; Wu, L.; Jiang, J.; Yang, T.; Ma, L.; Fu, Z. Lactobacillus and Bifidobacterium Improves Physiological Function and Cognitive Ability in Aged Mice by the Regulation of Gut Microbiota. Mol. Nutr. Food Res. 2019, 63, e1900603. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Kim, J.K.; Han, S.K.; Jang, S.E.; Han, M.J.; Kim, D.H. Lactobacillus plantarum NK3 and Bifidobacterium longum NK49 Alleviate Bacterial Vaginosis and Osteoporosis in Mice by Suppressing NF-κB-Linked TNF-α Expression. J. Med. Food 2019, 22, 1022–1031. [Google Scholar] [CrossRef]
- Gupta, N.; Abd El-Gawaad, N.S.; Mallasiy, L.O.; Gupta, H.; Yadav, V.K.; Alghamdi, S.; Qusty, N.F. Microbial dysbiosis and the ageing process: A review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front. Microbiol. 2024, 15, 1260793. [Google Scholar] [CrossRef]
- Tong, T.; Guo, J.; Wu, Y.; Sharma, D.; Sangar, M.; Sangpreecha, N.; Song, D.; Unno, T.; Ham, K.-S.; Kang, S.-G. Dietary supplementation of ark clams protects gut health and modifies gut microbiota in D-galactose-induced ageing rats. J. Sci. Food Agric. 2024, 104, 675–685. [Google Scholar] [CrossRef]
- Cheng, L.-H.; Chou, P.-Y.; Hou, A.-T.; Huang, C.-L.; Shiu, W.-L.; Wang, S. Lactobacillus paracasei PS23 improves cognitive deficits via modulating the hippocampal gene expression and the gut microbiota in d-galactose-induced ageing mice. Food Funct. 2022, 13, 5240–5251. [Google Scholar] [CrossRef]
- Gao, K.; Chen, C.; Ke, X.; Fan, Q.; Wang, H.; Li, Y.; Chen, S. Improvements of Age-Related Cognitive Decline in Mice by Lactobacillus helveticus WHH1889, a Novel Strain with Psychobiotic Properties. Nutrients 2023, 15, 3852. [Google Scholar] [CrossRef]
- Vemuri, R.; Gundamaraju, R.; Shinde, T.; Perera, A.P.; Basheer, W.; Southam, B.; Gondalia, S.V.; Karpe, A.V.; Beale, D.J.; Tristram, S.; et al. Lactobacillus acidophilus DDS-1 Modulates Intestinal-Specific Microbiota, Short-Chain Fatty Acid and Immunological Profiles in Ageing Mice. Nutrients 2019, 11, 1297. [Google Scholar] [CrossRef]
- Xiong, W.; Jiang, X.; He, J.; Liu, X.; Zhu, Y.; Liu, B.; Huang, Y. Probiotic Fermentation of Kelp Enzymatic Hydrolysate Promoted its Anti-Ageing Activity in D-Galactose-Induced Ageing Mice by Modulating Gut Microbiota. Mol. Nutr. Food Res. 2023, 67, e2200766. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, F.; Yan, S.; Zhai, Q.; Zhang, H.; Chen, W. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in D-galactose-induced ageing mice. Food Funct. 2018, 9, 917–924. [Google Scholar] [CrossRef]
- Lin, W.; Lin, J.; Kuo, Y.; Chiang, P.F.R.; Ho, H.H. Probiotics and their Metabolites Reduce Oxidative Stress in Middle-Aged Mice. Curr. Microbiol. 2022, 79, 104. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, J.; Qin, G.; Huang, Y.; Cheng, S.; Chen, Z.; Zhang, Y.; Shu, Y.; Zeng, X.; Guo, R. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in ICR mice. Int. J. Biol. Macromol. 2023, 245, 125517. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Jia, C.; Yang, B.; Wu, Y.; Chen, L.; Liu, R.; Wu, M.; Yu, H.; Ge, Q. The ameliorative mechanism of Lactiplantibacillus plantarum NJAU-01 against D-galactose induced oxidative stress: A hepatic proteomics and gut microbiota analysis. Food Funct. 2024, 15, 6174–6188. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Evivie, S.E.; Lu, J.; Jiao, Y.; Wang, C.; Li, Z.; Liu, F.; Huo, G. Lactobacillus helveticus KLDS1.8701 alleviates d-galactose-induced ageing by regulating Nrf-2 and gut microbiota in mice. Food Funct. 2018, 9, 6587–6599. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhao, Z.; Zhao, Y.; Wang, Z.; Wang, C.; Yang, G.; Li, S. Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl3 induced mice model of Alzheimer’s disease via modulating gut microbiota and PI3K/Akt/GSK-3β signaling pathway. Nutr. Neurosci. 2022, 25, 2588–2600. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Q.; Zheng, X.; Shi, F.; Ma, K.; Ji, F.; Meng, N.; Li, R.; Lv, J.; Li, Q. Antiageing Effects of Human Fecal Transplants with Different Combinations of Bifidobacterium bifidum LTBB21J1 and Lactobacillus casei LTL1361 in D-Galactose-Induced Mice. J. Agric. Food Chem. 2024, 72, 9818–9827. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Ding, D.; Zhu, H.; Wang, R.; Su, F.; Wu, W.; Xiao, Z.; Liang, X.; Zhao, Q.; Hong, Z.; et al. Disturbed microbial ecology in Alzheimer’s disease: Evidence from the gut microbiota and fecal metabolome. BMC Microbiol. 2021, 21, 226. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Dadwal, U.C.; Lenburg, M.E.; Kacena, M.A.; Charles, J.F. Murine Gut Microbiome Meta-analysis Reveals Alterations in Carbohydrate Metabolism in Response to Ageing. Msystems 2022, 7, e0124821. [Google Scholar] [CrossRef]






| Gene | Primer | Sequence (5′ to 3′) |
|---|---|---|
| ZO-1 | forward | AAGCAGTGGAAGAAGTTACAGTTGAG |
| reverse | TTGAGCATACACAGGTTTCGGTTC | |
| Occludin | forward | TTGAAAGTCCACCTCCTTACAGA |
| reverse | CCGGATAAAAAGAGTACGCTGG | |
| GAPDH | forward | AGGTCGGTGTGAACGGATTTG |
| reverse | GGGGTCGTTGATGGCAACA |
| Groups | Organ Index (g/g) % | ||||
|---|---|---|---|---|---|
| Thymus | Brain | Liver | Kidney | Lung | |
| NC | 0.195 ± 0.034 * | 1.088 ± 0.074 | 3.585 ± 0.135 * | 1.327 ± 0.077 * | 0.575 ± 0.062 |
| MC | 0.153 ± 0.013 | 0.986 ± 0.070 | 3.339 ± 0.288 | 1.139 ± 0.088 | 0.530 ± 0.022 |
| VC | 0.188 ± 0.032 | 1.084 ± 0.056 | 3.495 ± 0.200 | 1.334 ± 0.197 ** | 0.575 ± 0.061 |
| LP | 0.194 ± 0.021 * | 1.111 ± 0.094 * | 3.373 ± 0.104 | 1.225 ± 0.095 | 0.576 ± 0.030 * |
| HP | 0.205 ± 0.038 ** | 1.100 ± 0.098 * | 3.516 ± 0.151 | 1.235 ± 0.088 | 0.620 ± 0.069 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, H.; Zhang, M.; Wu, D.; Gong, D.; Huang, J.; Tang, Z.; Wang, L.; Zhang, Y. Lactobacillus plantarum QL01 Alleviates D-Galactose-Induced Oxidative Stress and Restores Gut Microbiota in Ageing Mice. Nutrients 2026, 18, 35. https://doi.org/10.3390/nu18010035
Li H, Zhang M, Wu D, Gong D, Huang J, Tang Z, Wang L, Zhang Y. Lactobacillus plantarum QL01 Alleviates D-Galactose-Induced Oxidative Stress and Restores Gut Microbiota in Ageing Mice. Nutrients. 2026; 18(1):35. https://doi.org/10.3390/nu18010035
Chicago/Turabian StyleLi, Haichuan, Mingqing Zhang, Diyan Wu, Di Gong, Jiazhang Huang, Zhenchuang Tang, Liang Wang, and Ying Zhang. 2026. "Lactobacillus plantarum QL01 Alleviates D-Galactose-Induced Oxidative Stress and Restores Gut Microbiota in Ageing Mice" Nutrients 18, no. 1: 35. https://doi.org/10.3390/nu18010035
APA StyleLi, H., Zhang, M., Wu, D., Gong, D., Huang, J., Tang, Z., Wang, L., & Zhang, Y. (2026). Lactobacillus plantarum QL01 Alleviates D-Galactose-Induced Oxidative Stress and Restores Gut Microbiota in Ageing Mice. Nutrients, 18(1), 35. https://doi.org/10.3390/nu18010035

