Effect of Preoperative Inflammatory Diet on Clinical and Oncologic Outcomes Following Colorectal Cancer Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Data Collection and Definition
2.4. Dietary Inflammatory Index Calculation
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Perioperative Clinical Outcomes
3.3. Postoperative Pathologic Outcomes
3.4. Oncologic Outcomes
3.5. Univariate and Multivariate Analyses of Prognostic Factors Associated with Oncologic Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CEA | Carcinoembryonic antigen |
CI | Confidence interval |
CRC | Colorectal cancer |
CRP | C-reactive protein |
DFS | Disease-free survival |
DII | Dietary inflammatory index |
FFQ | Food frequency questionnaire |
HR | Hazard ratio |
IL | Interleukin |
IQR | Interquartile range |
OS | Overall survival |
TNF | Tumor necrosis factor |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef] [PubMed]
- Castro-Espin, C.; Agudo, A. The Role of Diet in Prognosis among Cancer Survivors: A Systematic Review and Meta-Analysis of Dietary Patterns and Diet Interventions. Nutrients 2022, 14, 348. [Google Scholar] [CrossRef]
- Van Blarigan, E.L.; Meyerhardt, J.A. Role of physical activity and diet after colorectal cancer diagnosis. J. Clin. Oncol. 2015, 33, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.J.; Kim, K.E.; Jeong, W.K.; Baek, S.K.; Bae, S.U. Effect of preoperative pan-immune-inflammation value on clinical and oncologic outcomes after colorectal cancer surgery: A retrospective study. Ann. Surg. Treat. Res. 2024, 106, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Bae, S.U.; Jeong, W.K.; Baek, S.K. Impact of Preoperative Visceral Fat Area Measured by Bioelectrical Impedance Analysis on Clinical and Oncologic Outcomes of Colorectal Cancer. Nutrients 2022, 14, 3971. [Google Scholar] [CrossRef] [PubMed]
- Bamia, C.; Lagiou, P.; Buckland, G.; Grioni, S.; Agnoli, C.; Taylor, A.J.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tjønneland, A.; et al. Mediterranean diet and colorectal cancer risk: Results from a European cohort. Eur. J. Epidemiol. 2013, 28, 317–328. [Google Scholar] [CrossRef]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef]
- Tabung, F.K.; Liu, L.; Wang, W.; Fung, T.T.; Wu, K.; Smith-Warner, S.A.; Cao, Y.; Hu, F.B.; Ogino, S.; Fuchs, C.S.; et al. Association of Dietary Inflammatory Potential With Colorectal Cancer Risk in Men and Women. JAMA Oncol. 2018, 4, 366–373. [Google Scholar] [CrossRef]
- Meyerhardt, J.A.; Niedzwiecki, D.; Hollis, D.; Saltz, L.B.; Hu, F.B.; Mayer, R.J.; Nelson, H.; Whittom, R.; Hantel, A.; Thomas, J.; et al. Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. JAMA 2007, 298, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, H.; Wang, P.P.; Savas, S.; Woodrow, J.; Wish, T.; Jin, R.; Green, R.; Woods, M.; Roebothan, B.; et al. Dietary patterns and colorectal cancer recurrence and survival: A cohort study. BMJ Open 2013, 3, e002270. [Google Scholar] [CrossRef]
- Ratjen, I.; Schafmayer, C.; di Giuseppe, R.; Waniek, S.; Plachta-Danielzik, S.; Koch, M.; Nöthlings, U.; Hampe, J.; Schlesinger, S.; Lieb, W. Postdiagnostic Mediterranean and Healthy Nordic Dietary Patterns Are Inversely Associated with All-Cause Mortality in Long-Term Colorectal Cancer Survivors. J. Nutr. 2017, 147, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Wesselink, E.; Valk, A.W.; Kok, D.E.; Lanen, A.V.; de Wilt, J.H.; van Kouwenhoven, E.A.; Schrauwen, R.W.; van Halteren, H.K.; Winkels, R.M.; Balvers, M.G.; et al. Postdiagnostic intake of a more proinflammatory diet is associated with a higher risk of recurrence and all-cause mortality in colorectal cancer survivors. Am. J. Clin. Nutr. 2023, 117, 243–251. [Google Scholar] [CrossRef]
- Gigic, B.; Boeing, H.; Toth, R.; Böhm, J.; Habermann, N.; Scherer, D.; Schrotz-King, P.; Abbenhardt-Martin, C.; Skender, S.; Brenner, H.; et al. Associations Between Dietary Patterns and Longitudinal Quality of Life Changes in Colorectal Cancer Patients: The ColoCare Study. Nutr. Cancer 2018, 70, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Nigam, M.; Mishra, A.P.; Deb, V.K.; Dimri, D.B.; Tiwari, V.; Bungau, S.G.; Bungau, A.F.; Radu, A.F. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed. Pharmacother. 2023, 164, 115015. [Google Scholar] [CrossRef] [PubMed]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Martinez-Urbistondo, D.; Vargas-Nuñez, J.A.; Martinez, J.A. The Role of Nutrition on Meta-inflammation: Insights and Potential Targets in Communicable and Chronic Disease Management. Curr. Obes. Rep. 2022, 11, 305–335. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; de Courten, B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev. 2022, 23, e13349. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Shi, Y.; Kong, C.; Zhang, J.; Chen, S. Dietary Inflammatory Index and Its Association with the Prevalence of Coronary Heart Disease among 45,306 US Adults. Nutrients 2022, 14, 4553. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Tan, X.; Su, Z.; Manzi, H.P.; Su, L.; Tang, Z.; Zhang, Y. The Relationship between the Dietary Inflammatory Index (DII) and Metabolic Syndrome (MetS) in Middle-Aged and Elderly Individuals in the United States. Nutrients 2023, 15, 1857. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Hong, Y.; Cheng, Y. Dietary inflammatory index and pancreatic cancer risk: A systematic review and dose–response meta-analysis. Public Health Nutr. 2021, 24, 6427–6435. [Google Scholar] [CrossRef]
- Hayati, Z.; Jafarabadi, M.A.; Pirouzpanah, S. Dietary inflammatory index and breast cancer risk: An updated meta-analysis of observational studies. Eur. J. Clin. Nutr. 2022, 76, 1073–1087. [Google Scholar] [CrossRef]
- Harmon, B.E.; Wirth, M.D.; Boushey, C.J.; Wilkens, L.R.; Draluck, E.; Shivappa, N.; Steck, S.E.; Hofseth, L.; Haiman, C.A.; Le Marchand, L.; et al. The Dietary Inflammatory Index Is Associated with Colorectal Cancer Risk in the Multiethnic Cohort. J. Nutr. 2017, 147, 430–438. [Google Scholar] [CrossRef]
- Syed Soffian, S.S.; Mohammed Nawi, A.; Hod, R.; Ja’Afar, M.H.; Isa, Z.M.; Chan, H.-K.; Hassan, M.R.A. Meta-Analysis of the Association between Dietary Inflammatory Index (DII) and Colorectal Cancer. Nutrients 2022, 14, 1555. [Google Scholar] [CrossRef]
- Galas, A.; Kulig, J. Low-grade dietary-related inflammation and survival after colorectal cancer surgery. J. Cancer Res. Clin. Oncol. 2014, 140, 1517–1525. [Google Scholar] [CrossRef]
- Sharma, I.; Roebothan, B.; Zhu, Y.; Woodrow, J.; Parfrey, P.S.; McLaughlin, J.R.; Wang, P.P. Hypothesis and data-driven dietary patterns and colorectal Cancer survival: Findings from Newfoundland and Labrador colorectal Cancer cohort. Nutr. J. 2018, 17, 55. [Google Scholar] [CrossRef]
- Ratjen, I.; Shivappa, N.; Schafmayer, C.; Burmeister, G.; Nöthlings, U.; Hampe, J.; Hébert, J.R.; Lieb, W.; Schlesinger, S. Association between the dietary inflammatory index and all-cause mortality in colorectal cancer long-term survivors. Int. J. Cancer 2019, 144, 1292–1301. [Google Scholar] [CrossRef]
- Zheng, J.; Tabung, F.K.; Zhang, J.; Murphy, E.A.; Shivappa, N.; Ockene, J.K.; Caan, B.; Kroenke, C.H.; Hébert, J.R.; Steck, S.E. Post-cancer diagnosis dietary inflammatory potential is associated with survival among women diagnosed with colorectal cancer in the Women’s Health Initiative. Eur. J. Nutr. 2020, 59, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Wesselink, E.; Staritsky, L.E.; Van Zutphen, M.; Geijsen, A.J.M.R.; Kok, D.E.; Kruyt, F.; Veenstra, R.P.; Spillenaar Bilgen, E.J.; Kouwenhoven, E.A.; De Wilt, J.H.W.; et al. The association between the adapted dietary inflammatory index and colorectal cancer recurrence and all-cause mortality. Clin. Nutr. 2021, 40, 4436–4443. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.H.; Shim, J.-S.; Kweon, S.; Oh, K. Development of a Food Frequency Questionnaire for the Korea National Health and Nutrition Examination Survey: Data from the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV). Korean J. Nutr. 2013, 46, 186–196. [Google Scholar] [CrossRef]
- Contal, C.; O’Quigley, J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data Anal. 1999, 30, 253–270. [Google Scholar] [CrossRef]
- Wang, K.; Sun, J.-Z.; Wu, Q.-X.; Li, Z.-Y.; Li, D.-X.; Xiong, Y.-F.; Zhong, G.-C.; Shi, Y.; Li, Q.; Zheng, J.; et al. Long-term anti-inflammatory diet in relation to improved breast cancer prognosis: A prospective cohort study. NPJ Breast Cancer 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.C.; Wang, K.; Peng, Y.; Shivappa, N.; Hébert, J.R.; Wu, Y.Q.; Gong, J.P. Dietary inflammatory index and incidence of and death from primary liver cancer: A prospective study of 103,902 American adults. Int. J. Cancer 2020, 147, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Matsui, R.; Inaki, N.; Tsuji, T.; Fukunaga, T. Preoperative Chronic Inflammation Is a Risk Factor for Postoperative Complications Independent of Body Composition in Gastric Cancer Patients Undergoing Radical Gastrectomy. Cancers 2024, 16, 833. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zou, L.; Sun, W.; Zhou, J.; He, Q. The effects of nutritional support team intervention on postoperative immune function, nutritional statuses, inflammatory responses, clinical outcomes of elderly patients with gastric cancer. BMC Surg. 2022, 22, 353. [Google Scholar] [CrossRef] [PubMed]
- Galas, A.; Kulig, P.; Kulig, J. Dietary inflammatory index as a potential determinant of a length of hospitalization among surgical patients treated for colorectal cancer. Eur. J. Clin. Nutr. 2014, 68, 1168–1174. [Google Scholar] [CrossRef]
- Woo, H.D.; Kim, K.; Kim, J. Association between preoperative C-reactive protein level and colorectal cancer survival: A meta-analysis. Cancer Causes Control 2015, 26, 1661–1670. [Google Scholar] [CrossRef]
- Hart, M.J.; Torres, S.J.; McNaughton, S.A.; Milte, C.M. A Dietary Inflammatory Index and associations with C-reactive protein in a general adult population. Eur. J. Nutr. 2021, 60, 4093–4106. [Google Scholar] [CrossRef]
- Mohammadi, S.; Hosseinikia, M.; Ghaffarian-Bahraman, A.; Clark, C.C.T.; Davies, I.G.; Yousefi Rad, E.; Saboori, S. Dietary inflammatory index and elevated serum C-reactive protein: A systematic review and meta-analysis. Food Sci. Nutr. 2023, 11, 5786–5798. [Google Scholar] [CrossRef]
- Chen, J.; Pitmon, E.; Wang, K. Microbiome, inflammation and colorectal cancer. Semin. Immunol. 2017, 32, 43–53. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Gerner, R.R.; Moschen, A.R. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018, 33, 954–964. [Google Scholar] [CrossRef]
- Saus, E.; Iraola-Guzmán, S.; Willis, J.R.; Brunet-Vega, A.; Gabaldón, T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol. Asp. Med. 2019, 69, 93–106. [Google Scholar] [CrossRef]
- Cheng, Y.; Ling, Z.; Li, L. The Intestinal Microbiota and Colorectal Cancer. Front. Immunol. 2020, 11, 615056. [Google Scholar] [CrossRef]
- Seo, I.; Bae, S.U.; Kim, S.; Jeong, W.K.; Baek, S.K. Analysis of Intestinal Mucosal Microbiome Changes before and after Chemoradiation in Locally Advanced Rectal Cancer Patients. J. Bacteriol. Virol. 2019, 49, 162–175. [Google Scholar] [CrossRef]
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef]
- Costa, L.M.; Mendes, M.M.; Oliveira, A.C.; Magalhães, K.G.; Shivappa, N.; Hebert, J.R.; da Costa, T.H.M.; Botelho, P.B. Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: A cross-sectional study. Eur. J. Nutr. 2022, 61, 341–355. [Google Scholar] [CrossRef]
- Tian, Z.; Zhuang, X.; Zhuo, S.; Zhu, Y.; Hu, S.; Zhao, M.; Tang, C.; Zhang, Z.; Li, X.; Ma, R.; et al. Dietary inflammatory potential mediated gut microbiota and metabolite alterations in Crohn’s disease: A fire-new perspective. Clin. Nutr. 2022, 41, 1260–1271. [Google Scholar] [CrossRef]
- Zheng, J.; Hoffman, K.L.; Chen, J.S.; Shivappa, N.; Sood, A.; Browman, G.J.; Dirba, D.D.; Hanash, S.; Wei, P.; Hebert, J.R.; et al. Dietary inflammatory potential in relation to the gut microbiome: Results from a cross-sectional study. Br. J. Nutr. 2020, 124, 931–942. [Google Scholar] [CrossRef]
- Randeni, N.; Bordiga, M.; Xu, B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int. J. Mol. Sci. 2024, 25, 9366. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Aragaki, A.K.; Anderson, G.L.; Pan, K.; Neuhouser, M.L.; Manson, J.E.; Thomson, C.A.; Mossavar-Rahmani, Y.; Lane, D.S.; Johnson, K.C.; et al. Dietary Modification and Breast Cancer Mortality: Long-Term Follow-Up of the Women’s Health Initiative Randomized Trial. J. Clin. Oncol. 2020, 38, 1419–1428. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hébert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef]
- Shivappa, N.; Hébert, J.R.; Steck, S.E.; Hofseth, L.J.; Shehadah, I.; Bani-Hani, K.E.; Al-Jaberi, T.; Al-Nusairr, M.; Heath, D.; Tayyem, R. Dietary inflammatory index and odds of colorectal cancer in a case-control study from Jordan. Appl. Physiol. Nutr. Metab. 2017, 42, 744–749. [Google Scholar] [CrossRef]
High-DII Group (n = 28) | Low-DII Group (n = 98) | p Value | |
---|---|---|---|
Overall DII score | 2.29 (1.35–2.88) | −2.06 (−3.33–−0.88) | <0.001 |
Age (years) | 71.50 (65.00–78.00) | 67.00 (57.00–74.00) | 0.020 |
Sex | 0.442 | ||
Male | 14 (50.0) | 57 (58.2) | |
Female | 14 (50.0) | 41 (41.8) | |
Medical history | |||
Hypertension | 16 (57.1) | 42 (42.9) | 0.181 |
Diabetes mellitus | 7 (25.0) | 18 (18.4) | 0.438 |
Abdominal surgery | 6 (21.4) | 35 (35.7) | 0.155 |
Preoperative CEA > 5 ng/mL | 8 (28.6) | 22 (22.7) | 0.520 |
Preoperative CRP | 0.20 (0.03–0.47) | 0.11 (0.05–0.61) | 0.776 |
BMI (kg/m2) | 23.26 ± 3.2 | 24.15 ± 3.5 | 0.237 |
Location of tumor | 0.841 | ||
Rt | 10 (35.7) | 33 (33.7) | |
Lt | 18 (64.3) | 65 (66.3) |
High-DII Group (n = 28) | Low-DII Group (n = 98) | p Value | |
---|---|---|---|
Operation time (min) | 227.00 (167.50–280.00) | 190.00 (147.00–255.00) | 0.057 |
Time taken to soft diet (days) | 6.00 (4.00–7.50) | 6.00 (4.00–8.00) | 0.999 |
Length of hospital stay (days) | 9.50 (7.00–10.50) | 9.00 (8.00–10.00) | 0.574 |
Combined resection of other organs | 6 (21.4) | 10 (10.2) | 0.116 |
Complications within 30 days of surgery | 16 (57.1) | 35 (35.7) | 0.042 |
Reoperation within 30 days of surgery | 2 (7.1) | 3 (3.1) | 0.308 |
Mortality within 30 days of surgery | 0 (0) | 0 (0) | - |
Postoperative chemotherapy | 15 (53.6) | 61 (62.2) | 0.408 |
High-DII Group (n = 28) | Low-DII Group (n = 98) | p Value | |
---|---|---|---|
Total number | 16 (57.1) | 35 (35.7) | 0.042 |
Types | |||
Acute kidney injury | 0 (0) | 1 (1.0) | 1.000 |
Ileus | 2 (7.1) | 7 (7.1) | 1.000 |
Pseudomembranous colitis | 0 (0) | 2 (2.0) | 1.000 |
Anastomosis leakage | 1 (3.6) | 4 (4.1) | 1.000 |
Intra-abdominal abscess | 1 (3.6) | 1 (1.0) | 0.396 |
Dysuria | 3 (10.7) | 5 (5.1) | 0.375 |
Wound infection | 2 (7.1) | 5 (5.1) | 0.651 |
Bleeding | 4 (14.3) | 3 (3.1) | 0.043 |
Respiratory complications | 1 (3.6) | 0 (0) | 0.222 |
Chyle leakage | 2 (7.1) | 6 (6.1) | 1.000 |
Acute pancreatitis | 0 (0) | 1 (1.0) | 1.000 |
Classification | |||
Medical Complications | 4 (14.3) | 9 (9.2) | 0.483 |
Surgical Complications | 12 (42.9) | 26 (26.5) | 0.097 |
Severity (Clavien-Dindo classification) | |||
CD1 | 6 (21.4) | 13 (13.3) | 0.287 |
CD2 | 7 (25.0) | 18 (18.4) | 0.438 |
CD3a | 1 (3.6) | 0 (0) | 0.222 |
CD3b | 1 (3.6) | 2 (2.0) | 0.533 |
CD4a | 0 (0) | 2 (2.0) | 1.000 |
CD4b | 1 (3.6) | 0 (0) | 0.222 |
CD ≥ 3a | 3 (10.7) | 4 (4.1) | 0.183 |
High-DII Group (n = 28) | Low-DII Group (n = 98) | p Value | |
---|---|---|---|
Tumor stage | 0.762 | ||
T0, T1, T2 | 10 (35.7) | 32 (32.7) | |
T3, T4 | 18 (64.3) | 66 (67.3) | |
Nodal stage | 0.847 | ||
N0 | 16 (57.1) | 58 (59.2) | |
N1, N2 | 12 (42.9) | 40 (40.8) | |
Metastatic stage | 1.000 | ||
M0 | 26 (92.9) | 92 (93.9) | |
M1 | 2 (7.1) | 6 (6.1) | |
Differentiation | 0.227 | ||
Well, moderately differentiated | 24 (85.7) | 92 (93.9) | |
Poorly, mucinous differentiated | 4 (14.3) | 6 (6.1) | |
Retrieved LNs | 16.50 (13.00–21.50) | 18.00 (13.00–29.00) | 0.544 |
Positive LNs | 0.00 (0.00–2.50) | 0.00 (0.00–1.00) | 0.256 |
Tumor size (cm) | 4.45 (2.85–6.45) | 3.80 (2.50–4.70) | 0.253 |
Lymphovascular invasion | 10 (38.5) | 37 (38.1) | 0.976 |
Perineural invasion | 9 (33.3) | 25 (26.0) | 0.454 |
Tumor budding | 16 (59.3) | 59 (62.8) | 0.741 |
Prognostic Factor | N | Overall Survival (5 Years, %) | p Value | Disease-Free Survival (5 Years, %) | p Value |
---|---|---|---|---|---|
Age (years) | 0.097 | 0.302 | |||
≤65 | 52 | 64.8 | 69.8 | ||
>65 | 74 | 90.8 | 79.2 | ||
Sex | 0.482 | 0.675 | |||
Male | 71 | 83.2 | 75.3 | ||
Female | 55 | 75.3 | 75.7 | ||
DII score | 0.044 | 0.850 | |||
≤0.90182 | 98 | 90.4 | 76.4 | ||
>0.90182 | 28 | 41.3 | 72.3 | ||
BMI | 0.548 | 0.676 | |||
≤25 | 82 | 78.1 | 77.4 | ||
>25 | 44 | 85.2 | 72.0 | ||
History of hypertension | 0.168 | 0.296 | |||
Negative | 68 | 82.5 | 73.1 | ||
Positive | 58 | 81.4 | 78.1 | ||
History of diabetes mellitus | 0.817 | 0.405 | |||
Negative | 101 | 79.1 | 74.1 | ||
Positive | 25 | 92.0 | 77.0 | ||
Tumor location | 0.342 | 0.241 | |||
Rt side | 43 | 84.6 | 67.7 | ||
Lt side | 83 | 80.5 | 78.8 | ||
Preoperative CEA | 0.017 | 0.103 | |||
≤5 | 95 | 84.9 | 79.7 | ||
>5 | 30 | 71.8 | 65.1 | ||
Preoperative CRP | 0.563 | 0.748 | |||
≤0.3 | 75 | 77.8 | 72.0 | ||
>0.3 | 37 | 94.3 | 79.8 | ||
Complications within 30 days of surgery | 0.011 | 0.008 | |||
Negative | 75 | 87.5 | 82.7 | ||
Positive | 51 | 75.0 | 64.6 | ||
Differentiation | 0.113 | 0.467 | |||
Well, moderately differentiated | 116 | 82.0 | 77.7 | ||
Poorly, mucinous differentiated | 10 | 78.8 | 48.0 | ||
T stage | 0.086 | 0.011 | |||
T0, T1, T2 | 42 | 97.4 | 90.7 | ||
T3, T4 | 84 | 72.6 | 68.0 | ||
N stage | 0.260 | 0.008 | |||
N0 | 74 | 78.0 | 84.8 | ||
N1, N2 | 52 | 84.9 | 61.1 | ||
M stage | 0.001 | 0.013 | |||
M0 | 118 | 84.4 | 77.3 | ||
M1 | 8 | 35.7 | 46.9 | ||
Lymphovascular invasion | 0.003 | 0.004 | |||
Negative | 76 | 86.5 | 85.1 | ||
Positive | 47 | 77.2 | 58.4 | ||
Perineural invasion | 0.001 | 0.001 | |||
Negative | 89 | 86.8 | 84.5 | ||
Positive | 34 | 73.1 | 49.1 | ||
Tumor budding | 0.059 | 0.452 | |||
Negative | 46 | 96.2 | 79.9 | ||
Positive | 75 | 70.5 | 71.2 |
Variables | Reference Category | Overall Survival | Disease-Free Survival | ||
---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | ||
Age (years) | 0.314 (0.060–1.658) | 0.172 | 1.118 (0.434–2.885) | 0.817 | |
>65 | ≤65 | ||||
DII score | 0.118 (0.023–0.613) | 0.011 | 1.246 (0.441–3.520) | 0.678 | |
≤0.90182 | >0.90182 | ||||
Preoperative CEA | 0.982 (0.190–5.072) | 0.982 | 1.258 (0.461–3.438) | 0.654 | |
≤5 | >5 | ||||
Complications within 30 days from surgery | 4.643 (0.548–39.363) | 0.159 | 2.352 (0.957–5.777) | 0.062 | |
Positive | Negative | ||||
T stage | 104314.920 (0.000–5.100) | 0.958 | 1.878 (0.478–7.376) | 0.367 | |
T3, T4 | T0, T1, T2 | ||||
N stage | 0.183 (0.023–1.424) | 0.105 | 1.175 (0.426–3.243) | 0.756 | |
N1, N2 | N0 | ||||
M stage | 10.910 (1.491–79.847) | 0.019 | 2.325 (0.634–8.525) | 0.203 | |
M1 | M0 | ||||
Lymphovascular invasion | 3.904 (0.431–35.366) | 0.226 | 1.963 (0.727–5.299) | 0.183 | |
Positive | Negative | ||||
Perineural invasion | 8.360 (0.808–86.452) | 0.075 | 3.495 (1.059–11.533) | 0.040 | |
Positive | Negative | ||||
Tumor budding | 3.818 (0.381–38.247) | 0.254 | 0.558 (0.184–1.686) | 0.301 | |
Positive | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, H.; Kim, K.; Cho, J.; Jeong, W.; Baek, S.; Lee, J.; Bae, S. Effect of Preoperative Inflammatory Diet on Clinical and Oncologic Outcomes Following Colorectal Cancer Surgery. Nutrients 2025, 17, 1522. https://doi.org/10.3390/nu17091522
Kim M, Kim H, Kim K, Cho J, Jeong W, Baek S, Lee J, Bae S. Effect of Preoperative Inflammatory Diet on Clinical and Oncologic Outcomes Following Colorectal Cancer Surgery. Nutrients. 2025; 17(9):1522. https://doi.org/10.3390/nu17091522
Chicago/Turabian StyleKim, Minjoon, Haewon Kim, Kyeongeui Kim, Jaemin Cho, Woonkyung Jeong, Seongkyu Baek, Jaeho Lee, and Sunguk Bae. 2025. "Effect of Preoperative Inflammatory Diet on Clinical and Oncologic Outcomes Following Colorectal Cancer Surgery" Nutrients 17, no. 9: 1522. https://doi.org/10.3390/nu17091522
APA StyleKim, M., Kim, H., Kim, K., Cho, J., Jeong, W., Baek, S., Lee, J., & Bae, S. (2025). Effect of Preoperative Inflammatory Diet on Clinical and Oncologic Outcomes Following Colorectal Cancer Surgery. Nutrients, 17(9), 1522. https://doi.org/10.3390/nu17091522