The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 2: Comorbidities
Abstract
:1. Introduction
2. Materials and Methods
3. Hypertension and Evidence for the Use of Nutraceuticals
4. Bone Health and Evidence for the Use of Nutraceutical Compounds
5. Polycystic Ovary Syndrome and Evidence for the Use of Nutraceutical Compounds
6. Mental Health and Evidence for the Use of Nutraceutical Compounds
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PCOS | Polycystic ovary syndrome |
CVD | Cardiovascular disease |
T2DM | type 2 diabetes mellitus |
MASLD | metabolic dysfunction-associated steatotic liver disease |
OSA | obstructive sleep apnea |
BP | blood pressure |
RAAS | renin-angiotensin-aldosterone system |
AD | Adiponectin |
DASH | Dietary Approaches to Stop Hypertension |
PUFAs | polyunsaturated fatty acids |
DHA | docosahexaenoic acid |
EPA | eicosapentaenoic acid |
NOS | nitric oxide synthase |
Ca2+ | calcium |
BMI | body mass index |
AAP | American Academy of Pediatrics |
IU | international units |
LH | luteinizing hormone |
SHBG | sex hormone binding globulin |
CFU | colony forming units |
FSH | follicle-stimulating hormone |
LDL | low density lipoprotein |
HDL | high density lipoprotein |
HOMA-IR | homeostasis model assessment—insulin resistance |
MYO | myo-inositol |
DCI | D chiro-inositol |
ALA | alpha-lipoic acid |
GLUT-1 | glucose transporter 1 |
GLUT-4 | glucose transporter 4 |
AST | aspartate aminotransferase |
ALT | alanine aminotransferase |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
HMGB1 | high mobility group box 1 |
hs-CRP | high sensitivity-C reactive protein |
RANK | receptor activator of nuclear factor k B |
RANKL | receptor activator of nuclear factor k B ligand |
GTP | green tea polyphenols |
IGF-1 | insulin growth factor 1 |
PTH | parathyroid hormone |
BDNF | brain-derived neurotrophic factor |
References
- World Health Statistics. Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Wasniewska, M.; Pepe, G.; Aversa, T.; Bellone, S.; De Sanctis, L.; Di Bonito, P.; Faienza, M.F.; Improda, N.; Licenziati, M.R.; Maffeis, C.; et al. Skeptical Look at the Clinical Implication of Metabolic Syndrome in Childhood Obesity. Children 2023, 10, 735. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; Di Bonito, P.; Calcaterra, V.; Cherubini, V.; Corica, D.; De Sanctis, L.; Di Sessa, A.; Faienza, M.F.; Fornari, E.; Iughetti, L.; et al. Cardiometabolic Risk in Children and Adolescents with Obesity: A Position Paper of the Italian Society for Pediatric Endocrinology and Diabetology. Ital. J. Pediatr. 2024, 50, 205. [Google Scholar] [CrossRef] [PubMed]
- Norris, T.; Cole, T.J.; Bann, D.; Hamer, M.; Hardy, R.; Li, L.; Ong, K.K.; Ploubidis, G.B.; Viner, R.; Johnson, W. Duration of Obesity Exposure between Ages 10 and 40 Years and Its Relationship with Cardiometabolic Disease Risk Factors: A Cohort Study. PLoS Med. 2020, 17, e1003387. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Chávez, M.; Olivar, L.; Rojas, M.; Morillo, J.; Mejías, J.; Calvo, M.; Bermúdez, V. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth. Int. J. Reprod. Med. 2014, 2014, 719050. [Google Scholar] [CrossRef]
- Barber, T.M.; Hanson, P.; Weickert, M.O.; Franks, S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119874042. [Google Scholar] [CrossRef]
- Chen, C.-M.; Liang, S.-C.; Sun, C.-K.; Cheng, Y.-S.; Tang, Y.-H.; Liu, C.; Hung, K.-C. Therapeutic Effects of Probiotics on Symptoms of Depression in Children and Adolescents: A Systematic Review and Meta-Analysis. Ital. J. Pediatr. 2024, 50, 239. [Google Scholar] [CrossRef]
- Sagar, R.; Gupta, T. Psychological Aspects of Obesity in Children and Adolescents. Indian. J. Pediatr. 2018, 85, 554–559. [Google Scholar] [CrossRef]
- Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, Y.; Meng, Y.; Li, S.; Suonan, Z.; Sun, Y.; Ji, J.; Shen, Q.; Zheng, H.; Xue, Y. Targeted Delivery of Nutraceuticals Derived from Food for the Treatment of Obesity and Its Related Complications. Food Chem. 2023, 418, 135980. [Google Scholar] [CrossRef]
- Dama, A.; Shpati, K.; Daliu, P.; Dumur, S.; Gorica, E.; Santini, A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024, 16, 507. [Google Scholar] [CrossRef]
- Nijhawan, P.; Behl, T. Nutraceuticals in the Management of Obesity. Obes. Med. 2020, 17, 100168. [Google Scholar] [CrossRef]
- Sun, N.-N.; Wu, T.-Y.; Chau, C.-F. Natural Dietary and Herbal Products in Anti-Obesity Treatment. Molecules 2016, 21, 1351. [Google Scholar] [CrossRef]
- Fiore, G.; Pascuzzi, M.C.; Di Profio, E.; Corsello, A.; Agostinelli, M.; La Mendola, A.; Milanta, C.; Campoy, C.; Calcaterra, V.; Zuccotti, G.; et al. Bioactive Compounds in Childhood Obesity and Associated Metabolic Complications: Current Evidence, Controversies and Perspectives. Pharmacol. Res. 2023, 187, 106599. [Google Scholar] [CrossRef] [PubMed]
- Houston, M. The Role of Nutrition and Nutraceutical Supplements in the Treatment of Hypertension. World J. Cardiol. 2014, 6, 38–66. [Google Scholar] [CrossRef]
- Ren, X.; Wu, W.; Li, Q.; Li, W.; Wang, X.; Wang, G. Different Supplements Improve Insulin Resistance, Hormonal Functions, and Oxidative Stress on Overweight and Obese Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2024, 15, 1464959. [Google Scholar] [CrossRef]
- Roseti, L.; Borciani, G.; Grassi, F.; Desando, G.; Gambari, L.; Grigolo, B. Nutraceuticals in Osteoporosis Prevention. Front. Nutr. 2024, 11, 1445955. [Google Scholar] [CrossRef] [PubMed]
- Bozzatello, P.; Novelli, R.; Montemagni, C.; Rocca, P.; Bellino, S. Nutraceuticals in Psychiatric Disorders: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4824. [Google Scholar] [CrossRef]
- Carrera, I.; Martínez, O.; Cacabelos, R. Neuroprotection with Natural Antioxidants and Nutraceuticals in the Context of Brain Cell Degeneration: The Epigenetic Connection. Curr. Top. Med. Chem. 2019, 19, 2999–3011. [Google Scholar] [CrossRef]
- Jeong, S.I.; Kim, S.H. Obesity and Hypertension in Children and Adolescents. Clin. Hypertens. 2024, 30, 23. [Google Scholar] [CrossRef]
- Orlando, A.; Cazzaniga, E.; Giussani, M.; Palestini, P.; Genovesi, S. Hypertension in Children: Role of Obesity, Simple Carbohydrates, and Uric Acid. Front. Public Health 2018, 6, 129. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2019, 173, 1154. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Vania, A.; Caroli, M.; Orlando, A.; Lieti, G.; Parati, G.; Giussani, M. Non-Pharmacological Treatment for Cardiovascular Risk Prevention in Children and Adolescents with Obesity. Nutrients 2024, 16, 2497. [Google Scholar] [CrossRef]
- Genovesi, S.; Montelisciani, L.; Giussani, M.; Lieti, G.; Patti, I.; Orlando, A.; Antolini, L.; Parati, G. Role of Insulin Resistance as a Mediator of the Relationship between Body Weight, Waist Circumference, and Systolic Blood Pressure in a Pediatric Population. Metabolites 2023, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Binka, E.; Brady, T.M. Real-World Strategies to Treat Hypertension Associated with Pediatric Obesity. Curr. Hypertens. Rep. 2019, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, P.; Antolini, L.; Street, M.E.; Giussani, M.; Galbiati, S.; Valsecchi, M.G.; Stella, A.; Zuccotti, G.V.; Bernasconi, S.; Genovesi, S. Adiponectin and Hypertension in Normal-Weight and Obese Children. Am. J. Hypertens. 2013, 26, 257–264. [Google Scholar] [CrossRef]
- Genovesi, S.; Orlando, A.; Rebora, P.; Giussani, M.; Antolini, L.; Nava, E.; Parati, G.; Valsecchi, M.G. Effects of Lifestyle Modifications on Elevated Blood Pressure and Excess Weight in a Population of Italian Children and Adolescents. Am. J. Hypertens. 2018, 31, 1147–1155. [Google Scholar] [CrossRef]
- Myette, R.L.; Flynn, J.T. The Ongoing Impact of Obesity on Childhood Hypertension. Pediatr. Nephrol. 2024, 39, 2337–2346. [Google Scholar] [CrossRef]
- Wühl, E. Hypertension in Childhood Obesity. Acta Paediatr. 2019, 108, 37–43. [Google Scholar] [CrossRef]
- Amatruda, M.; Ippolito, G.; Vizzuso, S.; Vizzari, G.; Banderali, G.; Verduci, E. Epigenetic Effects of N-3 LCPUFAs: A Role in Pediatric Metabolic Syndrome. Int. J. Mol. Sci. 2019, 20, 2118. [Google Scholar] [CrossRef]
- Cabo, J.; Alonso, R.; Mata, P. Omega-3 Fatty Acids and Blood Pressure. Br. J. Nutr. 2012, 107, S195–S200. [Google Scholar] [CrossRef]
- Zhang, X.; Ritonja, J.A.; Zhou, N.; Chen, B.E.; Li, X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2022, 11, e025071. [Google Scholar] [CrossRef]
- Yang, B.; Shi, M.-Q.; Li, Z.-H.; Yang, J.-J.; Li, D. Fish, Long-Chain n-3 PUFA and Incidence of Elevated Blood Pressure: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- García-López, S.; Villanueva Arriaga, R.E.; Nájera Medina, O.; Rodríguez López, C.P.; Figueroa-Valverde, L.; Cervera, E.G.; Muñozcano Skidmore, O.; Rosas-Nexticapa, M. One Month of Omega-3 Fatty Acid Supplementation Improves Lipid Profiles, Glucose Levels and Blood Pressure in Overweight Schoolchildren with Metabolic Syndrome. J. Pediatr. Endocrinol. Metab. 2016, 29, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.H.; Mølgaard, C.; Hellgren, L.I.; Lauritzen, L. Effects of Fish Oil Supplementation on Markers of the Metabolic Syndrome. J. Pediatr. 2010, 157, 395–400.e1. [Google Scholar] [CrossRef] [PubMed]
- Virgolici, B. Effects of Omega-3 Fatty Acids Associated with Antioxidant Vitamins in Overweight and Obese Children. Acta Endocrinol. 2023, 19, 221–227. [Google Scholar] [CrossRef]
- Garcia-Cervera, E.; Figueroa-Valverde, L.; Pool Gomez, E.; Rosas-Nexticapa, M.; Lenin, H.-H.; Virginia, M.-A.; Perla, P.-G.; Regina, C.-C. Biological Activity Exerted by Omega-3 Fatty Acids on Body Mass Index, Glucose, Total Cholesterol and Blood Pressure in Obese Children. Integr. Obes. Diabetes 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Radulović, Ž.; Zupan, Z.P.; Tomazini, A.; Varda, N.M. Vitamin D in Pediatric Patients with Obesity and Arterial Hypertension. Sci. Rep. 2021, 11, 19591. [Google Scholar] [CrossRef]
- Rajakumar, K.; Moore, C.G.; Khalid, A.T.; Vallejo, A.N.; Virji, M.A.; Holick, M.F.; Greenspan, S.L.; Arslanian, S.; Reis, S.E. Effect of Vitamin D3 Supplementation on Vascular and Metabolic Health of Vitamin D–Deficient Overweight and Obese Children: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2020, 111, 757–768. [Google Scholar] [CrossRef]
- Abboud, M. Vitamin D Supplementation and Blood Pressure in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1163. [Google Scholar] [CrossRef]
- Han, L.; Xu, X.-J.; Zhang, J.-S.; Liu, H.-M. Association between Vitamin D Deficiency and Levels of Renin and Angiotensin in Essential Hypertension. Int. J. Clin. Pract. 2022, 2022, 8975396. [Google Scholar] [CrossRef]
- Krivošíková, K.; Krivošíková, Z.; Wsolová, L.; Seeman, T.; Podracká, Ľ. Hypertension in Obese Children Is Associated with Vitamin D Deficiency and Serotonin Dysregulation. BMC Pediatr. 2022, 22, 289. [Google Scholar] [CrossRef]
- Mokhtari, E.; Hajhashemy, Z.; Saneei, P. Serum Vitamin D Levels in Relation to Hypertension and Pre-Hypertension in Adults: A Systematic Review and Dose–Response Meta-Analysis of Epidemiologic Studies. Front. Nutr. 2022, 9, 829307. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The Health Effects of Vitamin D Supplementation: Evidence from Human Studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef]
- Kao, K.; Abidi, N.; Ranasinha, S.; Brown, J.; Rodda, C.; McCallum, Z.; Zacharin, M.; Simm, P.J.; Magnussen, C.G.; Sabin, M.A. Low Vitamin D Is Associated with Hypertension in Paediatric Obesity. J. Paediatr. Child. Health 2015, 51, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Kindler, J.M.; Lewis, R.D.; Hamrick, M.W. Skeletal Muscle and Pediatric Bone Development. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Chesi, A.; Elci, O.; McCormack, S.E.; Kalkwarf, H.J.; Lappe, J.M.; Gilsanz, V.; Oberfield, S.E.; Shepherd, J.A.; Kelly, A.; et al. Genetics of Bone Mass in Childhood and Adolescence: Effects of Sex and Maturation Interactions. J. Bone Miner. Res. 2015, 30, 1676–1683. [Google Scholar] [CrossRef]
- Pollock, N.K. Childhood Obesity, Bone Development, and Cardiometabolic Risk Factors. Mol. Cell. Endocrinol. 2015, 410, 52–63. [Google Scholar] [CrossRef]
- Fintini, D.; Cianfarani, S.; Cofini, M.; Andreoletti, A.; Ubertini, G.M.; Cappa, M.; Manco, M. The Bones of Children with Obesity. Front. Endocrinol. 2020, 11, 200. [Google Scholar] [CrossRef]
- Dimitri, P.; Jacques, R.M.; Paggiosi, M.; King, D.; Walsh, J.; Taylor, Z.A.; Frangi, A.F.; Bishop, N.; Eastell, R. Leptin May Play a Role in Bone Microstructural Alterations in Obese Children. J. Clin. Endocrinol. Metab. 2015, 100, 594–602. [Google Scholar] [CrossRef]
- Lenchik, L.; Register, T.C.; Hsu, F.-C.; Lohman, K.; Nicklas, B.J.; Freedman, B.I.; Langefeld, C.D.; Carr, J.J.; Bowden, D.W. Adiponectin as a Novel Determinant of Bone Mineral Density and Visceral Fat. Bone 2003, 33, 646–651. [Google Scholar] [CrossRef]
- Corbo, F.; Brunetti, G.; Crupi, P.; Bortolotti, S.; Storlino, G.; Piacente, L.; Carocci, A.; Catalano, A.; Milani, G.; Colaianni, G.; et al. Effects of Sweet Cherry Polyphenols on Enhanced Osteoclastogenesis Associated with Childhood Obesity. Front. Immunol. 2019, 10, 1001. [Google Scholar] [CrossRef]
- Yang, X.; Yin, L.; Li, T.; Chen, Z. Green Tea Extracts Reduce Adipogenesis by Decreasing Expression of Transcription Factors C/EBPα and PPARγ. Int. J. Clin. Exp. Med. 2014, 7, 4906–4914. [Google Scholar] [PubMed]
- Shen, C.-L.; Han, J.; Wang, S.; Chung, E.; Chyu, M.-C.; Cao, J.J. Green Tea Supplementation Benefits Body Composition and Improves Bone Properties in Obese Female Rats Fed with High-Fat Diet and Caloric Restricted Diet. Nutr. Res. 2015, 35, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.K.D.S.; Santos, A.S.E.A.D.C.; Rosa, L.P.D.S.; Mendonça, C.R.; Vitorino, P.V.D.O.; Peixoto, M.D.R.G.; Silveira, É.A. Effect of Extra Virgin Olive Oil and Traditional Brazilian Diet on the Bone Health Parameters of Severely Obese Adults: A Randomized Controlled Trial. Nutrients 2020, 12, 403. [Google Scholar] [CrossRef] [PubMed]
- Jamka, M.; Czochralska-Duszyńska, A.; Mądry, E.; Lisowska, A.; Jończyk-Potoczna, K.; Cielecka-Piontek, J.; Bogdański, P.; Walkowiak, J. The Effect of Conjugated Linoleic Acid Supplementation on Densitometric Parameters in Overweight and Obese Women—A Randomised Controlled Trial. Medicina 2023, 59, 1690. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Zhang, Z.-Y.; Chang, T.-Z.; Yu, Y.-T.; Miao, D.-S.; Zhang, B.-J.; Qiu, W.-X.; Zhang, C.-Y.; Tong, X. A New Perspective on Bone Development in Vitamin D Deficiency-Associated Obese Children. Sci. Rep. 2024, 14, 31482. [Google Scholar] [CrossRef]
- Karimian, P.; Ebrahimi, H.K.; Jafarnejad, S.; Delavar, M.A. Effects of Vitamin D on Bone Density in Healthy Children: A Systematic Review. J. Fam. Med. Prim. Care 2022, 11, 870–878. [Google Scholar] [CrossRef]
- Brzeziński, M.; Jankowska, A.; Słomińska-Frączek, M.; Metelska, P.; Wiśniewski, P.; Socha, P.; Szlagatys-Sidorkiewicz, A. Long-Term Effects of Vitamin D Supplementation in Obese Children During Integrated Weight-Loss Programme-A Double Blind Randomized Placebo-Controlled Trial. Nutrients 2020, 12, 1093. [Google Scholar] [CrossRef]
- Franks, S. Polycystic Ovary Syndrome in Adolescents. Int. J. Obes. 2008, 32, 1035–1041. [Google Scholar] [CrossRef]
- Glueck, C.J.; Goldenberg, N. Characteristics of Obesity in Polycystic Ovary Syndrome: Etiology, Treatment, and Genetics. Metabolism 2019, 92, 108–120. [Google Scholar] [CrossRef]
- Lim, S.S.; Hutchison, S.K.; Van Ryswyk, E.; Norman, R.J.; Teede, H.J.; Moran, L.J. Lifestyle Changes in Women with Polycystic Ovary Syndrome. Cochrane Database Syst. Rev. 2019, 2019, CD007506. [Google Scholar] [CrossRef]
- Lass, N.; Kleber, M.; Winkel, K.; Wunsch, R.; Reinehr, T. Effect of Lifestyle Intervention on Features of Polycystic Ovarian Syndrome, Metabolic Syndrome, and Intima-Media Thickness in Obese Adolescent Girls. J. Clin. Endocrinol. Metab. 2011, 96, 3533–3540. [Google Scholar] [CrossRef] [PubMed]
- Fordham, T.M.; Morelli, N.S.; Garcia-Reyes, Y.; Ware, M.A.; Rahat, H.; Sundararajan, D.; Fuller, K.N.Z.; Severn, C.; Pyle, L.; Malloy, C.R.; et al. Metabolic Effects of an Essential Amino Acid Supplement in Adolescents with PCOS and Obesity. Obesity 2024, 32, 678–690. [Google Scholar] [CrossRef]
- Rizk, M.G.; Thackray, V.G. Intersection of Polycystic Ovary Syndrome and the Gut Microbiome. J. Endocr. Soc. 2021, 5, bvaa177. [Google Scholar] [CrossRef]
- Kaur, I.; Suri, V.; Sachdeva, N.; Rana, S.V.; Medhi, B.; Sahni, N.; Ahire, J.; Singh, A. Efficacy of Multi-Strain Probiotic along with Dietary and Lifestyle Modifications on Polycystic Ovary Syndrome: A Randomised, Double-Blind Placebo-Controlled Study. Eur. J. Nutr. 2022, 61, 4145–4154. [Google Scholar] [CrossRef] [PubMed]
- Ghanei, N.; Rezaei, N.; Amiri, G.A.; Zayeri, F.; Makki, G.; Nasseri, E. The Probiotic Supplementation Reduced Inflammation in Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Funct. Foods 2018, 42, 306–311. [Google Scholar] [CrossRef]
- Chudzicka-Strugała, I.; Kubiak, A.; Banaszewska, B.; Zwozdziak, B.; Siakowska, M.; Pawelczyk, L.; Duleba, A.J. Effects of Synbiotic Supplementation and Lifestyle Modifications on Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, 2566–2573. [Google Scholar] [CrossRef] [PubMed]
- Aloo, S.-O.; Ofosu, F.K.; Kim, N.-H.; Kilonzi, S.M.; Oh, D.-H. Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants 2023, 12, 416. [Google Scholar] [CrossRef]
- Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.-L. Novel Insights of Dietary Polyphenols and Obesity. J. Nutr. Biochem. 2014, 25, 1–18. [Google Scholar] [CrossRef]
- Tehrani, H.G.; Allahdadian, M.; Zarre, F.; Ranjbar, H.; Allahdadian, F. Effect of Green Tea on Metabolic and Hormonal Aspect of Polycystic Ovarian Syndrome in Overweight and Obese Women Suffering from Polycystic Ovarian Syndrome: A Clinical Trial. J. Educ. Health Promot. 2017, 6, 36. [Google Scholar] [CrossRef]
- Jamilian, M.; Foroozanfard, F.; Kavossian, E.; Aghadavod, E.; Shafabakhsh, R.; Hoseini, A.; Asemi, Z. Effects of Curcumin on Body Weight, Glycemic Control and Serum Lipids in Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. ESPEN 2020, 36, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, J.; Moini, A.; Sepidarkish, M.; Morvaridzadeh, M.; Salehi, M.; Palmowski, A.; Mojtahedi, M.F.; Shidfar, F. Effects of Curcumin Supplementation on Blood Glucose, Insulin Resistance and Androgens in Patients with Polycystic Ovary Syndrome: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Phytomedicine 2021, 80, 153395. [Google Scholar] [CrossRef] [PubMed]
- Asan, S.A.; Baş, M.; Eren, B.; Karaca, E. The Effects of Curcumin Supplementation Added to Diet on Anthropometric and Biochemical Status in Women with Polycystic Ovary Syndrome: A Randomized, Placebo-Controlled Trial. Prog. Nutr. 2021, 22, e2020089. [Google Scholar] [CrossRef]
- Khorshidi, M.; Moini, A.; Alipoor, E.; Rezvan, N.; Gorgani-Firuzjaee, S.; Yaseri, M.; Hosseinzadeh-Attar, M.J. The Effects of Quercetin Supplementation on Metabolic and Hormonal Parameters as Well as Plasma Concentration and Gene Expression of Resistin in Overweight or Obese Women with Polycystic Ovary Syndrome. Phytother. Res. 2018, 32, 2282–2289. [Google Scholar] [CrossRef]
- Banaszewska, B.; Wrotyńska-Barczyńska, J.; Spaczynski, R.Z.; Pawelczyk, L.; Duleba, A.J. Effects of Resveratrol on Polycystic Ovary Syndrome: A Double-Blind, Randomized, Placebo-Controlled Trial. J. Clin. Endocrinol. Metab. 2016, 101, 4322–4328. [Google Scholar] [CrossRef]
- Mansour, A.; Samadi, M.; Sanginabadi, M.; Gerami, H.; Karimi, S.; Hosseini, S.; Shirzad, N.; Hekmatdoost, A.; Mahdavi-Gorabi, A.; Mohajeri-Tehrani, M.R.; et al. Effect of Resveratrol on Menstrual Cyclicity, Hyperandrogenism and Metabolic Profile in Women with PCOS. Clin. Nutr. 2021, 40, 4106–4112. [Google Scholar] [CrossRef]
- Esmaeilinezhad, Z.; Babajafari, S.; Sohrabi, Z.; Eskandari, M.-H.; Amooee, S.; Barati-Boldaji, R. Effect of Synbiotic Pomegranate Juice on Glycemic, Sex Hormone Profile and Anthropometric Indices in PCOS: A Randomized, Triple Blind, Controlled Trial. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 201–208. [Google Scholar] [CrossRef]
- Abedini, M.; Ramezani-Jolfaie, N.; Ghasemi-Tehrani, H.; Tarrahi, M.J.; Amani, R. The Effect of Concentrated Pomegranate Juice on Biomarkers of Inflammation, Oxidative Stress, and Sex Hormones in Overweight and Obese Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial. Phytother. Res. 2023, 37, 2255–2261. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, W.; Chen, G.; Zhu, W.; Ding, W.; Ge, Z.; Tan, Y.; Ma, T.; Cui, G. L-Carnitine Treatment of Insulin Resistance: A Systematic Review and Meta-Analysis. Adv. Clin. Exp. Med. 2017, 26, 333–338. [Google Scholar] [CrossRef]
- Masha, A.; Manieri, C.; Dinatale, S.; Bruno, G.A.; Ghigo, E.; Martina, V. Prolonged Treatment with N-Acetylcysteine and L-Arginine Restores Gonadal Function in Patients with Polycistic Ovary Syndrome. J. Endocrinol. Investig. 2009, 32, 870–872. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Prati, A.; Battipaglia, C.; Genazzani, A.R.; Simoncini, T.; Szeliga, A.; Podfigurna, A.; Meczekalski, B. Synergistic Effects of the Integrative Administration of Acetyl-L-Carnitine, L-Carnitine, L-Arginine and N-Acetyl-Cysteine on Metabolic Dynamics and on Hepatic Insulin Extraction in Overweight/Obese Patients with PCOS. Gynecol. Reprod. Endocrinol. Metab. 2020, 1, 56–63. [Google Scholar] [CrossRef]
- Orio, F.; Muscogiuri, G.; Palomba, S.; Savastano, S.; Volpe, A.; Orio, M.; Colarieti, G.; La Sala, G.B.; Colao, A.; Marciano, F.; et al. Berberine Improves Reproductive Features in Obese Caucasian Women with Polycystic Ovary Syndrome Independently of Changes of Insulin Sensitivity. E-SPEN J. 2013, 8, e200–e204. [Google Scholar] [CrossRef]
- Greff, D.; Juhász, A.E.; Váncsa, S.; Váradi, A.; Sipos, Z.; Szinte, J.; Park, S.; Hegyi, P.; Nyirády, P.; Ács, N.; et al. Inositol Is an Effective and Safe Treatment in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Reprod. Biol. Endocrinol. 2023, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Street, M.E.; Cirillo, F.; Catellani, C.; Dauriz, M.; Lazzeroni, P.; Sartori, C.; Moghetti, P. Current Treatment for Polycystic Ovary Syndrome: Focus on Adolescence. Minerva Pediatr. 2020, 72, 288–311. [Google Scholar] [CrossRef] [PubMed]
- Gerli, S.; Mignosa, M.; Di Renzo, G.C. Effects of Inositol on Ovarian Function and Metabolic Factors in Women with PCOS: A Randomized Double Blind Placebo-Controlled Trial. Eur. Rev. Med. Pharmacol. Sci. 2003, 7, 151–159. [Google Scholar]
- Nordio, M.; Proietti, E. The Combined Therapy with Myo-Inositol and D-Chiro-Inositol Reduces the Risk of Metabolic Disease in PCOS Overweight Patients Compared to Myo-Inositol Supplementation Alone. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 575–581. [Google Scholar]
- Benelli, E.; Del Ghianda, S.; Di Cosmo, C.; Tonacchera, M. A Combined Therapy with Myo-Inositol and D-Chiro-Inositol Improves Endocrine Parameters and Insulin Resistance in PCOS Young Overweight Women. Int. J. Endocrinol. 2016, 2016, 3204083. [Google Scholar] [CrossRef] [PubMed]
- Le Donne, M.; Metro, D.; Alibrandi, A.; Papa, M.; Benvenga, S. Effects of Three Treatment Modalities (Diet, Myoinositol or Myoinositol Associated with D-Chiro-Inositol) on Clinical and Body Composition Outcomes in Women with Polycystic Ovary Syndrome. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2293–2301. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Shefer, K.; Della Casa, D.; Prati, A.; Napolitano, A.; Manzo, A.; Despini, G.; Simoncini, T. Modulatory Effects of Alpha-Lipoic Acid (ALA) Administration on Insulin Sensitivity in Obese PCOS Patients. J. Endocrinol. Investig. 2018, 41, 583–590. [Google Scholar] [CrossRef]
- Skibska, B.; Kochan, E.; Stanczak, A.; Lipert, A.; Skibska, A. Antioxidant and Anti-Inflammatory Effects of α-Lipoic Acid on Lipopolysaccharide-Induced Oxidative Stress in Rat Kidney. Arch. Immunol. Ther. Exp. 2023, 71, 16. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Battipaglia, C.; Rusce, L.; Prampolini, G.; Aio, C.; Ricciardiello, F.; Foschi, M.; Sponzilli, A.; Semprini, E.; Petrillo, T. Alpha Lipoic Acid Administration Improved Both Peripheral Sensitivity to Insulin and Liver Clearance of Insulin Reducing Potential Risk of Diabetes and Nonalcoholic Fatty Liver Disease in Overweight/Obese PCOS Patients. Gynecol. Endocrinol. 2024, 40, 2341701. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, F.; Catellani, C.; Lazzeroni, P.; Sartori, C.; Tridenti, G.; Vezzani, C.; Fulghesu, A.M.; Madeddu, E.; Amarri, S.; Street, M.E. HMGB1 Is Increased in Adolescents with Polycystic Ovary Syndrome (PCOS) and Decreases after Treatment with Myo-Inositol (MYO) in Combination with Alpha-Lipoic Acid (ALA). Gynecol. Endocrinol. 2020, 36, 588–593. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Prati, A.; Santagni, S.; Ricchieri, F.; Chierchia, E.; Rattighieri, E.; Campedelli, A.; Simoncini, T.; Artini, P.G. Differential Insulin Response to Myo-Inositol Administration in Obese Polycystic Ovary Syndrome Patients. Gynecol. Endocrinol. 2012, 28, 969–973. [Google Scholar] [CrossRef] [PubMed]
- D Genazzani, A. Effects of a Combination of Alpha Lipoic Acid and Myo-Inositol on Insulin Dynamics in Overweight/Obese Patients with PCOS. Endocrinol. Metab. Syndr. 2014, 3, 1000140. [Google Scholar] [CrossRef]
- Soldat-Stanković, V.; Popović-Pejičić, S.; Stanković, S.; Prtina, A.; Malešević, G.; Bjekić-Macut, J.; Livadas, S.; Ognjanović, S.; Mastorakos, G.; Micić, D.; et al. The Effect of Metformin and Myoinositol on Metabolic Outcomes in Women with Polycystic Ovary Syndrome: Role of Body Mass and Adiponectin in a Randomized Controlled Trial. J. Endocrinol. Investig. 2022, 45, 583–595. [Google Scholar] [CrossRef]
- Hassan, S.; Shah, M.; Malik, M.O.; Ehtesham, E.; Habib, S.H.; Rauf, B. Treatment with Combined Resveratrol and Myoinositol Ameliorates Endocrine, Metabolic Alterations and Perceived Stress Response in Women with PCOS: A Double-Blind Randomized Clinical Trial. Endocrine 2023, 79, 208–220. [Google Scholar] [CrossRef]
- Bahmani, F.; Karamali, M.; Shakeri, H.; Asemi, Z. The Effects of Folate Supplementation on Inflammatory Factors and Biomarkers of Oxidative Stress in Overweight and Obese Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clin. Endocrinol. 2014, 81, 582–587. [Google Scholar] [CrossRef]
- Asemi, Z.; Karamali, M.; Esmaillzadeh, A. Metabolic Response to Folate Supplementation in Overweight Women with Polycystic Ovary Syndrome: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Mol. Nutr. Food Res. 2014, 58, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Han, S.; Chu, J.; Xu, Z.; Zhu, C.; Guo, X. Trends in Overweight and Obesity among Children and Adolescents in China from 1981 to 2010: A Meta-Analysis. PLoS ONE 2012, 7, e51949. [Google Scholar] [CrossRef]
- Du, Y.; Wang, M.; Wang, Y.; Dou, Y.; Yan, Y.; Fan, H.; Fan, N.; Yang, X.; Ma, X. The Association between Dietary Quality, Sleep Duration, and Depression Symptoms in the General Population: Findings from Cross-Sectional NHANES Study. BMC Public Health 2024, 24, 2588. [Google Scholar] [CrossRef]
- Calcaterra, V.; Rossi, V.; Magenes, V.C.; Baldassarre, P.; Grazi, R.; Loiodice, M.; Fabiano, V.; Zuccotti, G. Dietary Habits, Depression and Obesity: An Intricate Relationship to Explore in Pediatric Preventive Strategies. Front. Pediatr. 2024, 12, 1368283. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, Y.; Zhao, F.; Cui, R.; Xie, W.; Liu, Q.; Yang, W. Shared Biological Mechanisms of Depression and Obesity: Focus on Adipokines and Lipokines. Aging 2023, 15, 5917–5950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.; Zhao, Y.; Zhang, X.; Li, B.; Cui, R. The Effects of Calorie Restriction in Depression and Potential Mechanisms. Curr. Neuropharmacol. 2015, 13, 536–542. [Google Scholar] [CrossRef]
- Eyles, D.W. Vitamin D: Brain and Behavior. JBMR Plus 2021, 5, e10419. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, Y.; Jie, R.; He, J.; Luo, Z.; Li, J. Vitamin D: The Crucial Neuroprotective Factor for Nerve Cells. Neuroscience 2024, 560, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Pertile, R.A.N.; Cui, X.; Hammond, L.; Eyles, D.W. Vitamin D Regulation of GDNF/Ret Signaling in Dopaminergic Neurons. FASEB J. 2018, 32, 819–828. [Google Scholar] [CrossRef]
- Anwar, M.J.; Alenezi, S.K.; Alhowail, A.H. Molecular Insights into the Pathogenic Impact of Vitamin D Deficiency in Neurological Disorders. Biomed. Pharmacother. 2023, 162, 114718. [Google Scholar] [CrossRef]
- Albuloshi, T.; Dimala, C.A.; Kuhnle, G.G.C.; Bouhaimed, M.; Dodd, G.F.; Spencer, J.P.E. The Effectiveness of Vitamin D Supplementation in Reducing Depressive Symptoms: A Systematic Review and Meta-Analysis of Randomized Controlled Trials (RCTs). Nutr. Healthy Aging 2022, 6, 301–318. [Google Scholar] [CrossRef]
- Satyanarayana, P.T.; Suryanarayana, R.; Yesupatham, S.T.; Varadapuram Ramalingareddy, S.R.; Gopalli, N.A. Does Vitamin D3 Supplementation Improve Depression Scores among Rural Adolescents? A Randomized Controlled Trial. Nutrients 2024, 16, 1828. [Google Scholar] [CrossRef]
- Fulton, S.; Décarie-Spain, L.; Fioramonti, X.; Guiard, B.; Nakajima, S. The Menace of Obesity to Depression and Anxiety Prevalence. Trends Endocrinol. Metab. 2022, 33, 18–35. [Google Scholar] [CrossRef]
- Schell, M.; Wardelmann, K.; Hauffe, R.; Rath, M.; Chopra, S.; Kleinridders, A. Lactobacillus Rhamnosus Sex-Specifically Attenuates Depressive-like Behavior and Mitigates Metabolic Consequences in Obesity. Biol. Psychiatry Glob. Open Sci. 2023, 3, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Zandifar, A.; Badrfam, R.; Mohammaditabar, M.; Kargar, B.; Goodarzi, S.; Hajialigol, A.; Ketabforoush, S.; Heidari, A.; Fathi, H.; Shafiee, A.; et al. The Effect of Prebiotics and Probiotics on Levels of Depression, Anxiety, and Cognitive Function: A Meta-Analysis of Randomized Clinical Trials. Brain Behav. 2025, 15, e70401. [Google Scholar] [CrossRef]
- Vaghef-Mehrabany, E.; Ranjbar, F.; Asghari-Jafarabadi, M.; Hosseinpour-Arjmand, S.; Ebrahimi-Mameghani, M. Calorie Restriction in Combination with Prebiotic Supplementation in Obese Women with Depression: Effects on Metabolic and Clinical Response. Nutr. Neurosci. 2021, 24, 339–353. [Google Scholar] [CrossRef] [PubMed]
- De Vargas, L.D.S.; Jantsch, J.; Fontoura, J.R.; Dorneles, G.P.; Peres, A.; Guedes, R.P. Effects of Zinc Supplementation on Inflammatory and Cognitive Parameters in Middle-Aged Women with Overweight or Obesity. Nutrients 2023, 15, 4396. [Google Scholar] [CrossRef]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and Anti-Inflammatory Effects of Zinc. Zinc-Dependent NF-κB Signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Solati, Z.; Jazayeri, S.; Tehrani-Doost, M.; Mahmoodianfard, S.; Gohari, M.R. Zinc Monotherapy Increases Serum Brain-Derived Neurotrophic Factor (BDNF) Levels and Decreases Depressive Symptoms in Overweight or Obese Subjects: A Double-Blind, Randomized, Placebo-Controlled Trial. Nutr. Neurosci. 2015, 18, 162–168. [Google Scholar] [CrossRef]
- Canheta, A.B.D.S.; Santos, A.S.E.A.D.C.; Souza, J.D.D.; Silveira, E.A. Traditional Brazilian Diet and Extra Virgin Olive Oil Reduce Symptoms of Anxiety and Depression in Individuals with Severe Obesity: Randomized Clinical Trial. Clin. Nutr. 2021, 40, 404–411. [Google Scholar] [CrossRef]
Nutraceutical | Dose | Sample Size | Positive Effects | Limitations | References |
---|---|---|---|---|---|
Omega-3 fatty acids | 2.4 g/day for 1 month | 39 patients (11–12 yr) overweight with SM | Reductions in both SBP and DBP, improved lipid profiles and glucose levels | Limited number of studies in children, longer-term safety and efficacy of the treatment in this population is required | [34] |
1.5 g/day for 16 weeks | 78 male patients (13–15 yr) overweight | SBP was 3.8 ± 1.4 mmHg lower (p < 0.006) and DBP was 2.6 ± 1.1 mmHg lower (p < 0.01) in the receiving fish oil group compared with the control group | [35] | ||
130 mg DHA + 25 mg EPA associated with antioxidant vitamins for 3 months | 65 obese (11.8 ± 3.5 yr) and 35 normal weight (11.6 ± 3.4 yr) | SBP was 133.2 ± 12.9 mmHg obese children before the treatment and 119.2 ± 12.2 mmHg after the treatment | [36] | ||
100 to 350 mg/day | 300 obese children (fifth and sixth graders) | Omega-3 fatty acids induce changes BP in a dose-dependent manner | [37] | ||
Vitamin D (cholecalciferol) | 600 to 1000 or 2000 IU/day for 6 months | 225 patients (10 to 18 yr) overweight and obese | Reduction of central-systolic, central-diastolic, and systemic-diastolic BP at 6 months is more effective in the 1000–2000 IU group | Conflicting results regarding effects on BP in pediatric population | [39] |
Nutraceutical | Dose, Administration Period | Sample Size (Age Range) | Positive Effects | Limitations | References |
---|---|---|---|---|---|
Essential amino acids | 15 g/day, 4 weeks | 21 patients (12–21 yr) | Improves AST and triglyceride levels | Single short-term study | [64] |
Probiotics | 1 capsule/day of 10 billion CFUs for 2 months then 2 capsules/day of 10 billion CFUs for 4 months 2 capsules/day of 1 billion CFUs, 12 weeks | 104 patients, 52 receiving probiotics, 52 receiving placebo (18–40 yr) 60 patients, 30 receiving probiotics, 30 receiving placebo (18–45 yr) | Improves weight-loss, menstrual regularity, testosterone and insulin levels, LH/FSH ratio | Studies in adult patients only | [66,67] |
Green tea | 500 mg/twice a day, 12 weeks | 60 patients, 30 receiving green tea, 30 receiving placebo (20–40 yr) | Improves body composition, insulin, and testosterone levels | Single short-term study in adult patients | [71] |
Curcumin | 500 mg/day, 12 weeks 500 mg/twice a day, 12 weeks 93.34 mg/day, 8 weeks | 50 patients, 24 receiving curcumin, 26 receiving placebo (18–40 yr) 67 patients, 34 receiving curcumin, 33 receiving placebo (18–49 yr) 30 patients, 15 receiving curcumin, 15 receiving placebo (20–35 yr) | Improves glucose and insulin levels, insulin sensitivity, and lipid balance, lowers body weight, BMI, and hyperandrogenism | Studies in adult patients only. Conflicting results regarding hormone level improvement | [72,73,74] |
Quercetin | 1000 mg/day, 12 weeks | 78 patients, 39 receiving quercetin, 39 receiving placebo (20–40 yr) | Lowers resistin, insulin, testosterone, and LH levels | Single short-term study in adult patients. | [75] |
Resveratrol | 1500 mg/day, 3 months 1000 mg/day, 3 months | 30 patients, 15 receiving resveratrol, 15 receiving placebo (26.8 ± 1.1 yr) 78 patients, 39 receiving resveratrol, 39 receiving placebo (18–40 yr) | Improves menstrual regularity and hyperandrogenism | Low efficacy in hyperandrogenism at lower doses. Studies are in adult patients only | [76,77] |
Pomegranate juice | 2 litres of pomegranate juice + 20 g of insulin + 200 million CFU/g of lactobacillus a week, 8 weeks 45 mL/day, 8 weeks | 86 patients, 22 receiving synbiotic pomegranate juice, 22 receiving pomegranate juice, 21 receiving synbiotic juice, 21 receiving placebo (15–48 yr) 42 patients, 21 receiving pomegranate juice, 21 receiving placebo (18–40 yr) | Improves insulin sensitivity and testosterone levels, decreases weight and waist circumference | Limited evidence in adolescents | [78,79] |
Carnitine, L-arginine, and N-acetylcysteine | 250 mg carnitine + 500 mg, L-arginine + 50 mg N-acetylcysteine/day, 24 weeks | 45 patients (adults, age not specified) | Lowers insulin levels and HOMA-IR index, improves lipid parameters | Studies are in adult patients only. No changes in hormonal levels | [82] |
Berberine | 500 mg/twice a day, 6 months | 50 patients (25.0 ± 3.5 yr) | Improves visceral adiposity, HOMA-IR, lipid profile and menstrual regularity, lower androgens | Single study in adult patients | [83] |
Inositols (Myo-inositol and D chiro-inositol) | 550 mg MYO + 13.8 mg DCI, twice a day, 6 months | 50 patients, 26 receiving MYO + DCI, 24 receiing MYO (18–41 yr) 46 patients, 21 receiving MYO + DCI + folic acid, 25 receiving folic acid as placebo (23.0 ± 6.8 yr) 43 patients, 12 receiving MYO + DCI + diet, 10 receiving MYO + diet, 21 only diet (16–45 yr) | Improves ovulation and insulin sensitivity | Some studies are in small series | [85,87,88,89] |
Alpha-lipoic acid | 400 mg/day, 12 weeks | 32 patients (24.5 ± 1.3 yr) 32 patients (adults, age not specified) | Improves insulin sensitivity, metabolic parameters, and liver enzyme levels | Studies in adult patients only | [90,92] |
Myo-inositol + Alpha-lipoic acid | 1000 mg MYO + 400 mg ALA/day for 3 months, then twice a day for 3 months 2000 mg MYO + 200 mg ALA/day, 8 weeks 1000 mg MYO + 400 mg ALA/day, 12 weeks | 23 patients (17.22 ± 0.72 yr) 42 patients (adults, age not specified) 34 patients (26.4 ± 0.8 yr) | Improves metabolic parameters and inflammatory status. Lowers BMI, LH/FSH, androstenedione, and insulin levels | Limited sample size | [93,94,95] |
Folic acid | 5 mg/day, 8 weeks | 69 patients, 23 receiving folic acid 5 mg/day, 23 receiving folic acid 1 mg/day, 23 receiving placebo (18–40 yr) 81 patients, 27 receiving folic acid 5 mg/day, 27 receiving folic acid 1 mg/day, 27 receiving placebo (18–40 yr) | Improves inflammatory factors, oxidative stress biomarkers, and lipid profile | Studies in adult patients only | [98,99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Street, M.E.; Casadei, F.; Di Bari, E.R.; Ferraboschi, F.; Montani, A.G.; Mele, M.C.; Shulhai, A.-M.; Esposito, S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 2: Comorbidities. Nutrients 2025, 17, 1487. https://doi.org/10.3390/nu17091487
Street ME, Casadei F, Di Bari ER, Ferraboschi F, Montani AG, Mele MC, Shulhai A-M, Esposito S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 2: Comorbidities. Nutrients. 2025; 17(9):1487. https://doi.org/10.3390/nu17091487
Chicago/Turabian StyleStreet, Maria Elisabeth, Federica Casadei, Erika Rita Di Bari, Francesca Ferraboschi, Anna Giuseppina Montani, Maria Concetta Mele, Anna-Mariia Shulhai, and Susanna Esposito. 2025. "The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 2: Comorbidities" Nutrients 17, no. 9: 1487. https://doi.org/10.3390/nu17091487
APA StyleStreet, M. E., Casadei, F., Di Bari, E. R., Ferraboschi, F., Montani, A. G., Mele, M. C., Shulhai, A.-M., & Esposito, S. (2025). The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 2: Comorbidities. Nutrients, 17(9), 1487. https://doi.org/10.3390/nu17091487