The Impact of Dietary Intake of Furocoumarins and Furocoumarin-Rich Foods on the Risk of Cutaneous Melanoma: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Process
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. Furocoumarin Sources in Studies
3.4. Role of UVR Exposure in the Analysis of the Furocoumarin–Melanoma Relationship
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CM | Cutaneous melanoma |
UV | Ultraviolet |
UVR | Ultraviolet radiation |
References
- Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet 2018, 392, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Keim, U.; Gandini, S.; Amaral, T.; Katalinic, A.; Hollezcek, B.; Martus, P.; Flatz, L.; Leiter, U.; Whiteman, D. Epidemiology of cutaneous melanoma and keratinocyte cancer in white populations 1943–2036. Eur. J. Cancer 2021, 152, 18–25. [Google Scholar] [CrossRef]
- Raimondi, S.; Suppa, M.; Gandini, S. Melanoma Epidemiology and Sun Exposure. Acta Derm. Venereol. 2020, 100, adv00136. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, J.; Yang, F.; Qu, Y.; Huang, J.; Shi, D. Nutrient-Based Approaches for Melanoma: Prevention and Therapeutic Insights. Nutrients 2023, 15, 4483. [Google Scholar] [CrossRef]
- DeWane, M.E.; Shahriari, N.; Grant-Kels, J.M. Nutrition and melanoma prevention. Clin. Dermatol. 2022, 40, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Godos, J.; Lafranconi, A.; Marranzano, M.; Pajak, A. Caffeinated and decaffeinated coffee consumption and melanoma risk: A dose-response meta-analysis of prospective cohort studies. Int. J. Food Sci. Nutr. 2018, 69, 417–426. [Google Scholar] [CrossRef]
- Vuong, K.; McGeechan, K.; Armstrong, B.K.; Cust, A.E. Risk prediction models for incident primary cutaneous melanoma: A systematic review. JAMA Dermatol. 2014, 150, 434–444. [Google Scholar] [CrossRef]
- Usher-Smith, J.A.; Emery, J.; Kassianos, A.P.; Walter, F.M. Risk prediction models for melanoma: A systematic review. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 1450–1463. [Google Scholar] [CrossRef]
- Kaiser, I.; Pfahlberg, A.B.; Uter, W.; Heppt, M.V.; Veierod, M.B.; Gefeller, O. Risk Prediction Models for Melanoma: A Systematic Review on the Heterogeneity in Model Development and Validation. Int. J. Environ. Res. Public. Health 2020, 17, 7919. [Google Scholar] [CrossRef]
- Sayre, R.M.; Dowdy, J.C. The increase in melanoma: Are dietary furocoumarins responsible? Med. Hypotheses 2008, 70, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Melough, M.M.; Cho, E.; Chun, O.K. Furocoumarins: A review of biochemical activities, dietary sources and intake, and potential health risks. Food Chem. Toxicol. 2018, 113, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Bellringer, H.E. Phyto-photo-dermatitis. Br. Med. J. 1949, 1, 984–986. [Google Scholar] [CrossRef]
- Momtaz, K.; Fitzpatrick, T.B. The benefits and risks of long-term PUVA photochemotherapy. Dermatol. Clin. 1998, 16, 227–234. [Google Scholar] [CrossRef]
- Stern, R.S.; Nichols, K.T.; Vakeva, L.H. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA). The PUVA Follow-Up Study. N. Engl. J. Med. 1997, 336, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schunemann, H.J. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ. Int. 2018, 121, 1027–1031. [Google Scholar] [CrossRef]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef]
- Melough, M.M.; Chun, O.K. Dietary furocoumarins and skin cancer: A review of current biological evidence. Food Chem. Toxicol. 2018, 122, 163–171. [Google Scholar] [CrossRef]
- Holman, C.D.; Armstrong, B.K.; Heenan, P.J.; Blackwell, J.B.; Cumming, F.J.; English, D.R.; Holland, S.; Kelsall, G.R.; Matz, L.R.; Rouse, I.L.; et al. The causes of malignant melanoma: Results from the West Australian Lions Melanoma Research Project. In Epidemiology of Malignant Melanoma; Recent Results in Cancer Research; Springer: Berlin/Heidelberg, Germany, 1986; Volume 102, pp. 18–37. [Google Scholar] [CrossRef]
- Soliman, A. The Relationship between Diet and Melanoma in Arizona. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1992. [Google Scholar]
- Malavolti, M.; Malagoli, C.; Fiorentini, C.; Longo, C.; Farnetani, F.; Ricci, C.; Albertini, G.; Lanzoni, A.; Reggiani, C.; Virgili, A.; et al. Association between dietary vitamin C and risk of cutaneous melanoma in a population of Northern Italy. Int. J. Vitam. Nutr. Res. 2013, 83, 291–298. [Google Scholar] [CrossRef]
- Malagoli, C.; Malavolti, M.; Farnetani, F.; Longo, C.; Filippini, T.; Pellacani, G.; Vinceti, M. Food and Beverage Consumption and Melanoma Risk: A Population-Based Case-Control Study in Northern Italy. Nutrients 2019, 11, 2206. [Google Scholar] [CrossRef] [PubMed]
- Østerlind, A.; Tucker, M.A.; Stone, B.J.; Jensen, O.M. The Danish case-control study of cutaneous malignant melanoma. IV. No association with nutritional factors, alcohol, smoking or hair dyes. Int. J. Cancer 1988, 42, 825–828. [Google Scholar] [CrossRef]
- Stryker, W.S.; Stampfer, M.J.; Stein, E.V.; Kaplan, L.; Louis, T.A.; Sober, A.; Willett, W.C. Diet, Plasma-Levels of Beta-Carotene and Alpha-Tocopherol and Risk of Malignant-Melanoma. Am. J. Epidemiol. 1988, 128, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Veierød, M.B.; Thelle, D.S.; Laake, P. Diet and risk of cutaneous malignant melanoma: A prospective study of 50,757 Norwegian men and women. Int. J. Cancer 1997, 71, 600–604. [Google Scholar] [CrossRef]
- Feskanich, D.; Willett, W.C.; Hunter, D.J.; Colditz, G.A. Dietary intakes of vitamins A, C, and E and risk of melanoma in two cohorts of women. Br. J. Cancer 2003, 88, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Naldi, L.; Gallus, S.; Tavani, A.; Imberti, G.L.; La Vecchia, C. Risk of melanoma and vitamin A, coffee and alcohol: A case-control study from Italy. Eur. J. Cancer Prev. 2004, 13, 503–508. [Google Scholar] [CrossRef]
- Millen, A.E.; Tucker, M.A.; Hartge, P.; Halpern, A.; Elder, D.E.; Guerry Iv, D.; Holly, E.A.; Sagebiel, R.W.; Potischman, N. Diet and melanoma in a case-control study. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1042–1051. [Google Scholar] [CrossRef]
- Fortes, C.; Mastroeni, S.; Melchi, F.; Pilla, M.A.; Antonelli, G.; Camaioni, D.; Alotto, M.; Pasquini, P. A protective effect of the Mediterranean diet for cutaneous melanoma. Int. J. Epidemiol. 2008, 37, 1018–1029. [Google Scholar] [CrossRef]
- Vinceti, M.; Bonvicini, F.; Pellacani, G.; Sieri, S.; Malagoli, C.; Giusti, F.; Krogh, V.; Bergomi, M.; Seidenari, S. Food intake and risk of cutaneous melanoma in an Italian population. Eur. J. Clin. Nutr. 2008, 62, 1351–1354. [Google Scholar] [CrossRef]
- Wu, S.W.; Han, J.L.; Feskanich, D.; Cho, E.; Stampfer, M.J.; Willett, W.C.; Qureshi, A.A. Citrus Consumption and Risk of Cutaneous Malignant Melanoma. J. Clin. Oncol. 2015, 33, 23. [Google Scholar] [CrossRef]
- Grasgruber, P.; Hrazdira, E.; Sebera, M.; Kalina, T. Cancer Incidence in Europe: An Ecological Analysis of Nutritional and Other Environmental Factors. Front. Oncol. 2018, 8, 151. [Google Scholar] [CrossRef]
- Mahamat-Saleh, Y.; Cervenka, I.; Al-Rahmoun, M.; Mancini, F.R.; Severi, G.; Ghiasvand, R.; Veierod, M.B.; Caini, S.; Palli, D.; Botteri, E.; et al. Citrus intake and risk of skin cancer in the European Prospective Investigation into Cancer and Nutrition cohort (EPIC). Eur. J. Epidemiol. 2020, 35, 1057–1067. [Google Scholar] [CrossRef]
- Sun, W.Y.; Rice, M.S.; Park, M.K.; Chun, O.K.; Melough, M.M.; Nan, H.M.; Willett, W.C.; Li, W.Q.; Qureshi, A.A.; Cho, E.Y. Intake of Furocoumarins and Risk of Skin Cancer in 2 Prospective US Cohort Studies. J. Nutr. 2020, 150, 1535–1544. [Google Scholar] [CrossRef]
- Melough, M.M.; Kim, K.; Cho, E.; Chun, O.K. Relationship between Furocoumarin Intake and Melanoma History among US Adults in the National Health and Nutrition Examination Survey 2003–2012. Nutr. Cancer 2020, 72, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Melough, M.M.; Wu, S.W.; Li, W.Q.; Eaton, C.; Nan, H.M.; Snetselaar, L.; Wallace, R.; Qureshi, A.A.; Cho, E.; Chun, O.K. Citrus Consumption and Risk of Cutaneous Malignant Melanoma in the Women’s Health Initiative. Nutr. Cancer 2020, 72, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Marley, A.R.; Li, M.; Champion, V.L.; Song, Y.; Han, J.; Li, X. The association between citrus consumption and melanoma risk in the UK Biobank. Br. J. Dermatol. 2021, 185, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Melough, M.M.; Sakaki, J.; Liao, L.D.M.; Sinha, R.; Cho, E.; Chun, O.K. Association between Citrus Consumption and Melanoma Risk in the NIH-AARP Diet and Health Study. Nutr. Cancer 2021, 73, 1613–1620. [Google Scholar] [CrossRef]
- Mullen, M.P.; Pathak, M.A.; West, J.D.; Harrist, T.J.; Dall’Acqua, F. Carcinogenic effects of monofunctional and bifunctional furocoumarins. Natl. Cancer Inst. Monogr. 1984, 66, 205–210. [Google Scholar]
- Aubin, F.; Donawho, C.K.; Kripke, M.L. Effect of psoralen plus ultraviolet A radiation on in vivo growth of melanoma cells. Cancer Res. 1991, 51, 5893–5897. [Google Scholar]
- Fang, X.; Han, D.; Yang, J.; Li, F.; Sui, X. Citrus Consumption and Risk of Melanoma: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2022, 9, 904957. [Google Scholar] [CrossRef]
- Melough, M.M.; Lee, S.G.; Cho, E.; Kim, K.; Provatas, A.A.; Perkins, C.; Park, M.K.; Qureshi, A.; Chun, O.K. Identification and Quantitation of Furocoumarins in Popularly Consumed Foods in the U.S. Using QuEChERS Extraction Coupled with UPLC-MS/MS Analysis. J. Agric. Food Chem. 2017, 65, 5049–5055. [Google Scholar] [CrossRef] [PubMed]
- Lauharanta, J.; Juvakoski, T.; Kanerva, L.; Lassus, A. Pharmacokinetics of 8-methoxypsoralen in serum and suction blister fluid. Arch. Dermatol. Res. 1982, 273, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Tegeder, I.; Brautigam, L.; Podda, M.; Meier, S.; Kaufmann, R.; Geisslinger, G.; Grundmann-Kollmann, M. Time course of 8-methoxypsoralen concentrations in skin and plasma after topical (bath and cream) and oral administration of 8-methoxypsoralen. Clin. Pharmacol. Ther. 2002, 71, 153–161. [Google Scholar] [CrossRef] [PubMed]
Aspect | Eligibility Criteria |
---|---|
Population | Animal studies were excluded. No further restrictions regarding human study populations. |
Exposure | Consumption of furocoumarin-containing foods, such as fig, carrot, parsley, turnip, celery, dill, coriander, cumin, citrus fruits (lemon, lime, grapefruit, orange or tangerines (mandarin and clementine), and beverages containing furocoumarins such as carrot juice, orange juice, lemon juice, lime juice, and grapefruit juice |
Comparison | Other human populations with different exposure levels |
Outcome | Development of cutaneous melanoma |
Study design | Observational studies, i.e., cohort studies, case-cohort studies, (nested) case-control studies, analytical cross-sectional studies, and ecological studies |
First Author of Publication and Reference | Recruiting Period | Country | Study Type | Sample Size (Cases) | Foods and Food Combinations Investigated | ROB |
---|---|---|---|---|---|---|
Holman [20] | January 1980–November 1981 | Australia | case-control | 1022 (511) | carrot | low |
Østerlind [24] | 1982–1985 | Denmark | case-control | 1400 (474) | carrot | low |
Stryker [25] | July 1982–August 1985 | USA | case-control | 452 (204) | carrot | low |
Soliman [21] | February 1987–January 1992 | USA | case-control | 873 (261) | Grapefruit †, carrot, orange juice, orange | low/high † |
Veierød [26] | 1977–1983 | Norway | cohort | 50,757 (108) | orange | low |
Feskanich [27] | 1980–1998 | USA | cohort | 162,078 (414) | orange juice | low |
Naldi [28] | 1992–1994 | Italy | case-control | 1080 (542) | carrot | low |
Millen [29] | 1991–1992 | USA | case-control | 1058 (497) | citrus fruits and juices | high |
Fortes [30] | May 2001–May 2003 | Italy | case-control | 609 (304) | citrus fruits (orange, mandarin), parsley, carrot | low |
Vinceti [31] | not reported | Italy | case-control | 118 (59) | citrus fruits | low |
Malavolti ‡ [22] | 2005–2006 | Italy | case-control | 1099 (380) | tangerine, orange and grapefruit, orange juice and grapefruit juice | low |
Wu * [32] | NHS 1984–1998, HPFS 1986–1998 | USA | cohort | 105,432 (1840) | citrus fruits and juices (grapefruit, grapefruit juice, orange, orange juice), grapefruit, grapefruit juice, orange, orange juice | low |
Grasgruber [33] | 1993–2011 | Europe | Ecological | - § | orange and mandarin | high |
Malagoli ‡ [23] | 2005–2006 | Italy | case-control | 1099 (380) | citrus fruits | low |
Mahamat-Saleh * [34] | 1992–2000 | Europe | cohort | 270,112 (1371) | citrus fruits and juices, citrus fruits, citrus juices | low |
Sun * [35] | NHS 1984–1998, HPFS 1986–1998 | USA | cohort | 122,744 (1593) | total furocoumarin consumption | low |
Melough * [36] | 2003–2012 | USA | cross sectional | 11,696 (75) | total furocoumarin consumption | high |
Melough * [37] | 1993–1998 | USA | cohort | 56,205 (956) | citrus fruits and juices (orange, grapefruit, tangerine, orange juice, grapefruit juice), citrus fruits (orange, grapefruit, tangerine), citrus juices (orange juice, grapefruit juice) | low |
Marley * [38] | 2006–2010 | UK | cohort | 198,964 (1592) | citrus fruits and juices (grapefruit, grapefruit juice, mandarin, orange, orange juice), grapefruit, grapefruit juice, mandarin, orange, orange juice | unclear |
Melough * [39] | 1995–1996 | USA | cohort | 388,467 (3894) | citrus fruits and juices (grapefruits, orange, tangerine, tangelo, orange and grapefruit juice), citrus fruits (grapefruits, orange, tangerine, tangelo), citrus juices (orange and grapefruit juice), grapefruit, orange/tangerine/tangelo | low |
N (n) * | % | |
---|---|---|
Type of study | ||
case-control studies | 9 (0) | 47.4 |
cohort studies | 8 (6) | 42.1 |
cross-sectional studies | 1 (1) | 5.3 |
ecological studies | 1 (0) | 5.3 |
Geographic region | ||
USA | 9 (5) | 47.4 |
Italy | 4 (0) | 21.1 |
Europe | 2 (1) | 10.5 |
Australia | 1 (0) | 5.3 |
Denmark | 1 (0) | 5.3 |
Norway | 1 (0) | 5.3 |
UK | 1 (1) | 5.3 |
Publication period † | ||
before 1990 | 3 (0) | 15.0 |
1990–1999 | 2 (0) | 10.0 |
2000–2009 | 5 (0) | 25.0 |
2010–2019 | 4 (1) | 20.0 |
2020 and later | 6 (6) | 30.0 |
Publications | Association | |||
---|---|---|---|---|
n * | n (nsig) | |||
Furocoumarin Food/Beverage Category | + | o | − | |
Citrus fruits and juices | 6 | 3 (2) | 2 | 1 (0) |
Citrus fruits | 6 | 2 (1) | 3 | 1 (1) |
Citrus juices | 3 | 1 (0) | 2 | |
Grapefruit and grapefruit juice | ||||
Grapefruit | 4 | 3 (1) | 1 | |
Grapefruit juice | 2 | 1 (0) | 1 | |
Oranges and orange juice | ||||
Orange | 4 | 1 (1) | 3 | |
Orange juice | 5 | 3 (3) | 2 | |
Other citrus fruits | ||||
Orange, tangerine, tangelo | 1 | 1 | ||
Mandarin | 1 | 1 | ||
Orange and grapefruit | 1 | 1 | ||
Orange and mandarin | 1 | 1 | ||
Orange juice and grapefruit juice | 1 | 1 | ||
Tangerine | 1 | 1 | ||
Others | ||||
Parsley | 1 | 1 | ||
Carrot | 6 | 4 | 2 (2) | |
Total furocoumarin consumption | 2 | 2 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, I.; Rappl, A.; Bolay, L.S.; Pfahlberg, A.B.; Heppt, M.V.; Gefeller, O. The Impact of Dietary Intake of Furocoumarins and Furocoumarin-Rich Foods on the Risk of Cutaneous Melanoma: A Systematic Review. Nutrients 2025, 17, 1296. https://doi.org/10.3390/nu17081296
Kaiser I, Rappl A, Bolay LS, Pfahlberg AB, Heppt MV, Gefeller O. The Impact of Dietary Intake of Furocoumarins and Furocoumarin-Rich Foods on the Risk of Cutaneous Melanoma: A Systematic Review. Nutrients. 2025; 17(8):1296. https://doi.org/10.3390/nu17081296
Chicago/Turabian StyleKaiser, Isabelle, Anja Rappl, Lena S. Bolay, Annette B. Pfahlberg, Markus V. Heppt, and Olaf Gefeller. 2025. "The Impact of Dietary Intake of Furocoumarins and Furocoumarin-Rich Foods on the Risk of Cutaneous Melanoma: A Systematic Review" Nutrients 17, no. 8: 1296. https://doi.org/10.3390/nu17081296
APA StyleKaiser, I., Rappl, A., Bolay, L. S., Pfahlberg, A. B., Heppt, M. V., & Gefeller, O. (2025). The Impact of Dietary Intake of Furocoumarins and Furocoumarin-Rich Foods on the Risk of Cutaneous Melanoma: A Systematic Review. Nutrients, 17(8), 1296. https://doi.org/10.3390/nu17081296