How Increased Dietary Folic Acid Intake Impacts Health Outcomes Through Changes in Inflammation, Angiogenesis, and Neurotoxicity
Abstract
:1. Introduction
2. Methods
3. Mechanisms Through Which Folic Acid Acts on Hypoxia to Influence Health Outcomes
3.1. Inflammation and Angiogenesis
3.2. Notch Signaling
3.3. Neurotoxicity of Folic Acid
3.4. Unmetabolized Folic Acid
3.5. Vitamin B12 and Folic Acid Actions
3.6. Genetic Deficiencies in 1C Metabolism
3.7. Sleep Apnea and Folic Acid Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
1C | One-Carbon Metabolism |
HIF-1 | Hypoxia inducible factor-1 |
IL-1β | interleukin-1beta |
MTHFR | methylenetetrahydrofolate reductase |
TNF-α | tumor necrosis factor-alpha |
References
- Jadavji, N.M.; Mosnier, H.; Kelly, E.; Lawrence, K.; Cruickshank, S.; Stacey, S.; McCall, A.; Dhatt, S.; Arning, E.; Bottiglieri, T.; et al. One-Carbon Metabolism Supplementation Improves Outcome after Stroke in Aged Male MTHFR-Deficient Mice. Neurobiol. Dis. 2019, 132, 104613. [Google Scholar] [CrossRef] [PubMed]
- Jadavji, N.M.; Emmerson, J.T.; MacFarlane, A.J.; Willmore, W.G.; Smith, P.D. B-Vitamin and Choline Supplementation Increases Neuroplasticity and Recovery after Stroke. Neurobiol. Dis. 2017, 103, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.D. Nutrition and Risk of Stroke. Nutrients 2019, 11, 647. [Google Scholar] [CrossRef] [PubMed]
- Blatch, S.A.; Stabler, S.P.; Harrison, J.F. The Effects of Folate Intake on DNA and Single-Carbon Pathway Metabolism in the Fruit Fly Drosophila Melanogaster Compared to Mammals. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2015, 189, 34–39. [Google Scholar] [CrossRef]
- Murray, L.K.; Smith, M.J.; Jadavji, N.M. Maternal Oversupplementation with Folic Acid and Its Impact on Neurodevelopment of Offspring. Nutr. Rev. 2018, 76, 708–721. [Google Scholar] [CrossRef]
- Choumenkovitch, S.F.; Selhub, J.; Wilson, P.W.F.; Rader, J.I.; Rosenberg, I.H.; Jacques, P.F. Folic Acid Intake from Fortification in United States Exceeds Predictions. J. Nutr. 2002, 132, 2792–2798. [Google Scholar] [CrossRef]
- Greene, N.D.E.; Copp, A.J. Neural Tube Defects. Annu. Rev. Neurosci. 2014, 37, 221–242. [Google Scholar] [CrossRef]
- Pfeiffer, C.M.; Sternberg, M.R.; Fazili, Z.; Yetley, E.A.; Lacher, D.A.; Bailey, R.L.; Johnson, C.L. Unmetabolized Folic Acid Is Detected in Nearly All Serum Samples from US Children, Adolescents, and Adults. J. Nutr. 2015, 145, 520–531. [Google Scholar] [CrossRef]
- Hansen, M.F.; Jensen, S.Ø.; Füchtbauer, E.-M.; Martensen, P.M. High Folic Acid Diet Enhances Tumour Growth in PyMT-Induced Breast Cancer. Br. J. Cancer 2017, 116, 752–761. [Google Scholar] [CrossRef]
- Deghan Manshadi, S.; Ishiguro, L.; Sohn, K.-J.; Medline, A.; Renlund, R.; Croxford, R.; Kim, Y.-I. Folic Acid Supplementation Promotes Mammary Tumor Progression in a Rat Model. PLoS ONE 2014, 9, e84635. [Google Scholar] [CrossRef]
- Wiens, D.; Desoto, M.C. Is High Folic Acid Intake a Risk Factor for Autism?—A Review. Brain Sci. 2017, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, T.; Zheng, Y.; Muka, T.; Troup, J.; Hu, F.B. Folic Acid Supplementation and the Risk of Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. JAHA 2016, 5, e003768. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.R.; Juraschek, S.; Pastor-Barriuso, R.; Bazzano, L.A.; Appel, L.J.; Guallar, E. Meta-Analysis of Folic Acid Supplementation Trials on Risk of Cardiovascular Disease and Risk Interaction with Baseline Homocysteine Levels. Am. J. Cardiol. 2010, 106, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.; Rivera, I.; Blom, H.J.; Jakobs, C.; de Almeida, I.T. Homocysteine Metabolism, Hyperhomocysteinaemia and Vascular Disease: An Overview. J. Inherit. Metab. Dis. 2006, 29, 3–20. [Google Scholar] [CrossRef]
- Verhaar, M.C.; Stroes, E.; Rabelink, T.J. Folates and Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 6–13. [Google Scholar] [CrossRef]
- Doshi, S.N.; McDowell, I.F.W.; Moat, S.J.; Lang, D.; Newcombe, R.G.; Kredan, M.B.; Lewis, M.J.; Goodfellow, J. Folate Improves Endothelial Function in Coronary Artery Disease: An Effect Mediated by Reduction of Intracellular Superoxide? ATVB 2001, 21, 1196–1202. [Google Scholar] [CrossRef]
- Stroes, E.S.G.; van Faassen, E.E.; Yo, M.; Martasek, P.; Boer, P.; Govers, R.; Rabelink, T.J. Folic Acid Reverts Dysfunction of Endothelial Nitric Oxide Synthase. Circ. Res. 2000, 86, 1129–1134. [Google Scholar] [CrossRef]
- Jadavji, N.; Emmerson, J.T.; Shanmugalingam, U.; Willmore, W.G.; Macfarlane, A.J.; Smith, P.D. A Genetic Deficiency in Folic Acid Metabolism Impairs Recovery after Ischemic Stroke. Exp. Neurol. 2018, 309, 14–22. [Google Scholar]
- Abhinand, P.A.; Manikandan, M.; Mahalakshmi, R.; Ragunath, P.K. Meta-Analysis Study to Evaluate the Association of MTHFR C677T Polymorphism with Risk of Ischemic Stroke. Bioinformation 2017, 13, 214–219. [Google Scholar]
- Cronin, S.; Furie, K.L.; Kelly, P.J. Dose-Related Association of MTHFR 677T Allele with Risk of Ischemic Stroke: Evidence from a Cumulative Meta-Analysis. Stroke 2005, 36, 1581–1587. [Google Scholar] [CrossRef]
- Hankey, G.J. B Vitamins for Stroke Prevention. Stroke Vasc. Neurol. 2018, 3, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hankey, G.J. Nutrition and the Risk of Stroke. Lancet Neurol. 2012, 11, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Saposnik, G.; Ray, J.G.; Sheridan, P.; McQueen, M.; Lonn, E. Homocysteine-Lowering Therapy and Stroke Risk, Severity, and Disability: Additional Findings from the HOPE 2 Trial. Stroke 2009, 40, 1365–1372. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Tang, J.-Y.; Wu, M.-J.; Lu, J.; Wei, X.; Qin, Y.-Y.; Wang, C.; Xu, J.-F.; He, J. Effect of Folic Acid Supplementation on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. PLoS ONE 2011, 6, e25142. [Google Scholar] [CrossRef]
- Lonn, E.; Yusuf, S.; Arnold, M.J.; Sheridan, P.; Pogue, J.; Micks, M.; McQueen, M.J.; Probstfield, J.; Fodor, G.; Held, C.; et al. Homocysteine Lowering with Folic Acid and B Vitamins in Vascular Disease. N. Engl. J. Med. 2006, 354, 1567–1577. [Google Scholar] [PubMed]
- Bønaa, K.H.; Njølstad, I.; Ueland, P.M.; Schirmer, H.; Tverdal, A.; Steigen, T.; Wang, H.; Nordrehaug, J.E.; Arnesen, E.; Rasmussen, K. Homocysteine Lowering and Cardiovascular Events after Acute Myocardial Infarction. N. Engl. J. Med. 2006, 354, 1578–1588. [Google Scholar]
- Spence, J.D. Perspective on the Efficacy Analysis of the Vitamin Intervention for Stroke Prevention Trial. Clin. Chem. Lab. Med. 2007, 45, 1582–1585. [Google Scholar] [CrossRef]
- Spence, J.D. B Vitamin Therapy for Homocysteine: Renal Function and Vitamin B12 Determine Cardiovascular Outcomes. Clin. Chem. Lab. Med. 2013, 51, 633–637. [Google Scholar] [CrossRef]
- Spence, J.D. Recent Advances in Preventing Stroke Recurrence. F1000Research 2017, 6, 1017. [Google Scholar] [CrossRef]
- Huo, Y.; Li, J.; Qin, X.; Huang, Y.; Wang, X.; Gottesman, R.F.; Tang, G.; Wang, B.; Chen, D.; He, M.; et al. Efficacy of Folic Acid Therapy in Primary Prevention of Stroke Among Adults with Hypertension in China: The CSPPT Randomized Clinical Trial. JAMA 2015, 313, 1325. [Google Scholar] [CrossRef]
- Huang, X.; He, Z.; Jiang, X.; Hou, M.; Tang, Z.; Zhen, X.; Liang, Y.; Ma, J. Folic Acid Represses Hypoxia-Induced Inflammation in THP-1 Cells through Inhibition of the PI3K/Akt/HIF-1α Pathway. PLoS ONE 2016, 11, e0151553. [Google Scholar] [CrossRef]
- Merrell, B.J.; McMurry, J.P. Folic Acid. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Liu, H.; Huang, G.W.; Zhang, X.M.; Ren, D.L.; Wilson, J.X. Folic Acid Supplementation Stimulates Notch Signaling and Cell Proliferation in Embryonic Neural Stem Cells. J. Clin. Biochem. Nutr. 2010, 47, 174–180. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Cong, G.; Tian, Z.; Ren, D.; Wilson, J.X.; Huang, G. Effects of Folate on Notch Signaling and Cell Proliferation in Neural Stem Cells of Neonatal Rats In Vitro. J. Nutr. Sci. Vitaminol. 2008, 54, 353–356. [Google Scholar] [CrossRef]
- Olney, J.W.; Fuller, T.A.; de Gubareff, T. Kainate-like Neurotoxicity of Folates. Nature 1981, 292, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Kirsch, S.H.; Dilmann, S.; Klein, C.; Eckert, R.; Geisel, J.; Herrmann, W. Folic Acid Causes Higher Prevalence of Detectable Unmetabolized Folic Acid in Serum than B-Complex: A Randomized Trial. Eur. J. Nutr. 2016, 55, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.M.; Ames, D.; Mander, A.G.; Carne, R.P.; Brodaty, H.; Woodward, M.C.; Boundy, K.; Ellis, K.A.; Bush, A.I.; Faux, N.G.; et al. Among Vitamin B12 Deficient Older People, High Folate Levels Are Associated with Worse Cognitive Function: Combined Data from Three Cohorts. JAD 2014, 39, 661–668. [Google Scholar] [CrossRef]
- Johnson, M.A. If High Folic Acid Aggravates Vitamin B12 Deficiency What Should Be Done About It? Nutr. Rev. 2008, 65, 451–458. [Google Scholar] [CrossRef]
- Min, H. Effects of Dietary Supplementation of High-Dose Folic Acid on Biomarkers of Methylating Reaction in Vitamin B12-Deficient Rats. Nutr. Res. Pract. 2009, 3, 122. [Google Scholar] [CrossRef]
- Shulpekova, Y.; Nechaev, V.; Kardasheva, S.; Sedova, A.; Kurbatova, A.; Bueverova, E.; Kopylov, A.; Malsagova, K.; Dlamini, J.C.; Ivashkin, V. The Concept of Folic Acid in Health and Disease. Molecules 2021, 26, 3731. [Google Scholar] [CrossRef]
- Bahous, R.H.; Jadavji, N.M.; Deng, L.; Cosín-Tomás, M.; Lu, J.; Malysheva, O.; Leung, K.-Y.; Ho, M.-K.; Pallàs, M.; Kaliman, P.; et al. High Dietary Folate in Pregnant Mice Leads to Pseudo-MTHFR Deficiency and Altered Methyl Metabolism, with Embryonic Growth Delay and Short-Term Memory Impairment in Offspring. Hum. Mol. Genet. 2017, 26, 888–900. [Google Scholar] [CrossRef]
- Jadavji, N.M.; Deng, L.; Leclerc, D.; Malysheva, O.; Bedell, B.J.; Caudill, M.A.; Rozen, R. Severe Methylenetetrahydrofolate Reductase Deficiency in Mice Results in Behavioral Anomalies with Morphological and Biochemical Changes in Hippocampus. Mol. Genet. Metab. 2012, 106, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Kiang, K.M.-Y.; Li, N.; Liu, J.; Zhang, P.; Jin, L.; He, X.; Zhang, S.; Leung, G.K.-K. Folate Enzyme MTHFD2 Links One-Carbon Metabolism to Unfolded Protein Response in Glioblastoma. Cancer Lett. 2022, 549, 215903. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Huang, K.-T.; Su, M.-C.; Hsu, P.-Y.; Chin, C.-H.; Lin, I.-C.; Liou, C.-W.; Wang, T.-Y.; Lin, Y.-Y.; Hsiao, C.-C.; et al. Aberrant DNA Methylation Levels of the Formyl Peptide Receptor 1/2/3 Genes Are Associated with Obstructive Sleep Apnea and Its Clinical Phenotypes. Am. J. Transl. Res. 2020, 12, 2521–2537. [Google Scholar]
- Baldwin, C.M.; Bootzin, R.R.; Schwenke, D.C.; Quan, S.F. Antioxidant Nutrient Intake and Supplements as Potential Moderators of Cognitive Decline and Cardiovascular Disease in Obstructive Sleep Apnea. Sleep Med. Rev. 2005, 9, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Liu, Z.; Tian, Z.; Pei, X.; Liu, L.; Li, Y. Folic Acid Oversupplementation during Pregnancy Disorders Lipid Metabolism in Male Offspring via Regulating Arginase 1-Associated NOS3-AMPKα Pathway. Clin. Nutr. 2022, 41, 21–32. [Google Scholar] [CrossRef]
- Vollset, S.E.; Clarke, R.; Lewington, S.; Ebbing, M.; Halsey, J.; Lonn, E.; Armitage, J.; Manson, J.E.; Hankey, G.J.; Spence, J.D.; et al. Effects of Folic Acid Supplementation on Overall and Site-Specific Cancer Incidence during the Randomised Trials: Meta-Analyses of Data on 50,000 Individuals. Lancet 2013, 381, 1029–1036. [Google Scholar] [CrossRef]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic Acid Food Fortification—Its History, Effect, Concerns, and Future Directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef]
- Virdi, S.; McKee, A.M.; Nuthi, M.; Jadavji, N.M. The Role of One-Carbon Metabolism in Healthy Brain Aging. Nutrients 2023, 15, 3891. [Google Scholar] [CrossRef]
- Hammer, S.E.; Polymenis, M. One-Carbon Metabolic Enzymes Are Regulated during Cell Division and Make Distinct Contributions to the Metabolome and Cell Cycle Progression in Saccharomyces Cerevisiae. G3 Genes Genomes Genet. 2023, 13, jkad005. [Google Scholar] [CrossRef]
Vitamin B12 Intake | Health Outcomes |
---|---|
Deficient | Results in methyl trap. Negative health otucomes, including megaloblastic anemia, neuropathy, reversible dementia, neuropsychiatric diseases, and cognitive impairment. |
Adequate | Changes in hepatic storage of folic acid and risk of cognitive impairment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunnala, S.; Buhlman, L.M.; Jadavji, N.M. How Increased Dietary Folic Acid Intake Impacts Health Outcomes Through Changes in Inflammation, Angiogenesis, and Neurotoxicity. Nutrients 2025, 17, 1286. https://doi.org/10.3390/nu17071286
Gunnala S, Buhlman LM, Jadavji NM. How Increased Dietary Folic Acid Intake Impacts Health Outcomes Through Changes in Inflammation, Angiogenesis, and Neurotoxicity. Nutrients. 2025; 17(7):1286. https://doi.org/10.3390/nu17071286
Chicago/Turabian StyleGunnala, Siddarth, Lori M. Buhlman, and Nafisa M. Jadavji. 2025. "How Increased Dietary Folic Acid Intake Impacts Health Outcomes Through Changes in Inflammation, Angiogenesis, and Neurotoxicity" Nutrients 17, no. 7: 1286. https://doi.org/10.3390/nu17071286
APA StyleGunnala, S., Buhlman, L. M., & Jadavji, N. M. (2025). How Increased Dietary Folic Acid Intake Impacts Health Outcomes Through Changes in Inflammation, Angiogenesis, and Neurotoxicity. Nutrients, 17(7), 1286. https://doi.org/10.3390/nu17071286