Thinking Beyond Food to Nutrition and Beyond Cells to Immunology
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Gonçalves, A.M.; Velho, S.; Rodrigues, B.; Antunes, M.L.; Cardoso, M.; Godinho-Santos, A.; Gonçalves, J.; Marinho, A. The Immunomodulatory Activity of High Doses of Vitamin D in Critical Care Patients with Severe SARS-CoV-2 Pneumonia-A Randomized Controlled Trial. Nutrients 2025, 17, 540. https://doi.org/10.3390/nu17030540.
- Nishi, K.; Nakatani, Y.; Ishida, M.; Kadota, A.; Sugahara, T. Anti-Inflammatory Activity of the Combination of Nobiletin and Docosahexaenoic Acid in Lipopolysaccharide-Stimulated RAW 264.7 Cells: A Potential Synergistic Anti-Inflammatory Effect. Nutrients 2024, 16, 2080. https://doi.org/10.3390/nu16132080.
- Rezai, T.; Fell-Hakai, S.; Guleria, S.; Toldi, G. The Role of Breast Milk Cell-Free DNA in the Regulation of the Neonatal Immune Response. Nutrients 2024, 16, 4373. https://doi.org/10.3390/nu16244373.
- Guerreiro, D.; Almeida, A.; Ramalho, R. Ketogenic Diet and Neuroinflammation: Implications for Neuroimmunometabolism and Therapeutic Approaches to Refractory Epilepsy. Nutrients 2024, 16, 3994. https://doi.org/10.3390/nu16233994.
- Sakurai-Yageta, M.; Suzuki, Y. Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients 2024, 16, 2444. https://doi.org/10.3390/nu16152444.
References
- Wegener, G. ‘Let food be thy medicine, and medicine be thy food’: Hippocrates revisited. Acta Neuropsychiatr. 2014, 26, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J. Evidence-based practice in nutrition and dietetics: Translating evidence into practice. Nutr. Diet. 2019, 76, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Murofushi, K.; Badaracco, C.; County, C.; Gonzales-Pacheco, D.; Silzle, C.; Watowicz, R.; Moloney, L. Implementation Science in Evidence-based Nutrition Practice: Considerations for the Registered Dietitian Nutritionist. J. Acad. Nutr. Diet. 2021, 121, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Forde, C.G.; Bolhuis, D. Interrelations Between Food Form, Texture, and Matrix Influence Energy Intake and Metabolic Responses. Curr. Nutr. Rep. 2022, 11, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Kamdem, J.P.; Tsopmo, A. Reactivity of peptides within the food matrix. J. Food Biochem. 2019, 43, e12489. [Google Scholar] [CrossRef] [PubMed]
- Bascuñán, K.A.; Araya, M.; Rodríguez, J.M.; Roncoroni, L.; Elli, L.; Alvarez, J.; Valenzuela, R. Interplay of n-3 Polyunsaturated Fatty Acids, Intestinal Inflammation, and Gut Microbiota in Celiac Disease Pathogenesis. Nutrients 2025, 17, 621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ajam, A.; Liu, Z.; Peroumal, D.; Khan, S.R.; Razani, B. Leucine accelerates atherosclerosis through dose-dependent MTOR activation in macrophages. Autophagy 2025, 1–3. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, Y.; Han, Y.; Li, M.; Wang, G. Targeting glutamine metabolism crosstalk with tumor immune response. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189257. [Google Scholar] [CrossRef]
- Graham, K.L.; Carty, D.; Poulter, S.P.; Blackman, C.; Dunstan, O.G.; Milton, T.L.; Ferguson, C.; Smith, K.; Van Dijk, E.; Jongebloed, D.; et al. The nutrition-related adverse events associated with immune checkpoint inhibitor treatment for patients with non-small cell lung cancer: A systematic review. Nutr. Diet. 2024, 81, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Garbagna, L.; Saheer, L.B.; Oghaz, M.M.D. AI-driven approaches for air pollution modeling: A comprehensive systematic review. Environ. Pollut. 2025, 125937. [Google Scholar] [CrossRef] [PubMed]
- Hornstein, T.; Spannbrucker, T.; Unfried, K. Combustion-derived carbon nanoparticles cause delayed apoptosis in neutrophil-like HL-60 cells in vitro and in primed human neutrophilic granulocytes ex vivo. Part. Fibre Toxicol. 2025, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Iban-Arias, R.; Portela, A.S.D.; Masieri, S.; Radu, A.; Yang, E.J.; Chen, L.C.; Gordon, T.; Pasinetti, G.M. Role of acute exposure to environmental stressors in the gut-brain-periphery axis in the presence of cognitive resilience. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167760. [Google Scholar] [CrossRef]
- Simpson, A.; DiColandrea, T.; Przyborski, S. Assessing the impact of airborne particulate pollution on human skin utilizing a novel human skin equivalent containing MUTZ-3-derived Langerhans cells. Bioeng. Transl. Med. 2025, 10, e10738. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.; Deeney, M.; Muncke, J.; Carney Almroth, B.; Dignac, M.F.; Castillo, A.C.; Courtene-Jones, W.; Kadiyala, S.; Kumar, E.; Stoett, P.; et al. Plastics matter in the food system. Commun. Earth Environ. 2025, 6, 176. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, C.L.; Aukema, H.M.; Calder, P.C.; Gibson, D.L.; Henrickson, S.E.; Khan, S.; Mailhot, G.; Panahi, S.; Tabung, F.K.; Tom, M.; et al. Nutrition and immunity: Perspectives on key issues and next steps. Appl. Physiol. Nutr. Metab. 2023, 48, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Eyerich, S.; Sarin, T.; Klatt, K.C. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020, 12, 818. [Google Scholar] [CrossRef] [PubMed]
- Wolowczuk, I.; Verwaerde, C.; Viltart, O.; Delanoye, A.; Delacre, M.; Pot, B.; Grangette, C. Feeding our immune system: Impact on metabolism. Clin. Dev. Immunol. 2008, 2008, 639803. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chu, Z.; Liu, M.; Zou, Q.; Li, J.; Liu, Q.; Wang, Y.; Wang, T.; Xiang, J.; Wang, B. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yao, Y.; Ge, T.; Ge, S.; Jia, R.; Song, X.; Zhuang, A. Amino acid metabolism reprogramming: Shedding new light on T cell anti-tumor immunity. J. Exp. Clin. Cancer Res. 2023, 42, 291. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, C.; Krause, F.; Bentlage, C.; Wolff, J.; Bein, T.; Windisch, W.; Busse, R. In-hospital mortality, comorbidities, and costs of one million mechanically ventilated patients in Germany: A nationwide observational study before, during, and after the COVID-19 pandemic. Lancet Reg. Health Eur. 2024, 42, 100954. [Google Scholar] [CrossRef] [PubMed]
- Saleem, F.; Soos, M.P. Biotin Deficiency. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalho, R. Thinking Beyond Food to Nutrition and Beyond Cells to Immunology. Nutrients 2025, 17, 1254. https://doi.org/10.3390/nu17071254
Ramalho R. Thinking Beyond Food to Nutrition and Beyond Cells to Immunology. Nutrients. 2025; 17(7):1254. https://doi.org/10.3390/nu17071254
Chicago/Turabian StyleRamalho, Renata. 2025. "Thinking Beyond Food to Nutrition and Beyond Cells to Immunology" Nutrients 17, no. 7: 1254. https://doi.org/10.3390/nu17071254
APA StyleRamalho, R. (2025). Thinking Beyond Food to Nutrition and Beyond Cells to Immunology. Nutrients, 17(7), 1254. https://doi.org/10.3390/nu17071254