Nutrients and Natural Substances for Hypoglycemic Effects and Management in Diabetic Retinopathy
Abstract
:1. Introduction
2. Pathophysiology of Diabetic Retinopathy
2.1. Hyperglycemia and Endothelial Dysfunction
2.2. Oxidative Stress and Inflammation
2.3. Advanced Glycation End Products (AGEs) and Vascular Dysfunction
2.4. Angiogenesis and Neovascularization
2.5. Neurodegeneration in Diabetic Retinopathy
3. Nutrients and Natural Compounds and Diabetic Retinopathy
3.1. Omega-3 Fatty Acids
3.2. Vitamin D
3.3. Polyphenols
3.3.1. Resveratrol
Anti-Inflammatory Effects
Anti-Apoptotic and Neuroprotective Effects
Neurotransmitter Regulation
Bioavailability and Clinical Applications
3.3.2. Curcumin
Protection of the Blood–Retinal Barrier and Anti-Angiogenic Effects
Antioxidant and Anti-Inflammatory Effects
Glycemic Regulation
Clinical Applications
3.3.3. Flavonoids
3.3.4. Berberine
Anti-Inflammatory Effects
Neuroprotective and Neurotransmitter-Regulating Effects
Hypoglycemic Effects
3.3.5. Quercetin
Anti-Inflammatory and Anti-Angiogenic Effects
Gut–Retina Axis and Microbiota Effects
Glycemic Control and Metabolic Regulation
3.3.6. Epigallocatechin Gallate
Antioxidant and β-Cell Protective Effects
Autophagy and Neuroprotection
3.4. Lutein and Zeaxanthin
3.5. Synergistic Effects of Natural Compounds with Conventional Therapies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGEs | advanced glycation end products |
AMPK | AMP-activated protein kinase |
ASM | acid sphingomyelinase |
BDNF | brain-derived neurotrophic factor |
BRB | blood–retinal barrier |
CRP | C-reactive protein |
CML | carboxymethyl–lysine |
DHA | docosahexaenoic acid |
DM | diabetes mellitus |
DR | diabetic retinopathy |
DPA | docosapentaenoic acid |
EPC | endothelial progenitor cell |
EPA | eicosapentaenoic acid |
EGCG | epigallocatechin gallate |
FPG | fasting plasma glucose |
GABA | gamma-aminobutyric acid |
GPR120 | G-protein coupled receptor 120 |
GPR40 | G-protein coupled receptor 40 |
GLUT4 | glucose transporter type 4 |
HbA1c | glycated hemoglobin |
HIF-1 | hypoxia-inducible factor-1 |
HO-1 | heme oxygenase-1 |
ICAM-1 | intercellular adhesion molecule-1 |
IFN-γ | interferon-gamma |
IL-1β | interleukin-1 beta |
IL-6 | interleukin-6 |
IL-8 | interleukin-8 |
IL-18 | interleukin-18 |
IkB | inhibitor of nuclear factor kappa B |
KCNH6 | potassium voltage-gated channel subfamily H member 6 |
LDL | low-density lipoprotein |
MAPK | mitogen-activated protein kinase |
MCP-1 | monocyte chemotactic protein-1 |
MIP-1α | macrophage inflammatory protein-1 alpha |
MIP-1β | macrophage inflammatory protein-1 beta |
mTOR | mechanistic target of rapamycin |
NF-κB | nuclear factor-kappa B |
NPDR | non-proliferative diabetic retinopathy |
NLRP3 | NOD-like receptor pyrin domain-containing 3 |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
OHAs | oral hypoglycemic agents |
PDR | proliferative diabetic retinopathy |
PI3K | phosphoinositide 3-kinase |
PKC | protein kinase C |
PUFAs | polyunsaturated fatty acids |
RAGE | receptor for advanced glycation end products |
RGCs | retinal ganglion cells |
ROS | reactive oxygen species |
RPE | retinal pigment epithelium |
RSV-NS | resveratrol nanosuspension |
SCFAs | short-chain fatty acids |
STZ | streptozotocin |
T1D | type 1 diabetes |
T2DM | type 2 diabetes mellitus |
TAC | total antioxidant capacity |
TC | total cholesterol |
TG | triglycerides |
TLR4 | Toll-like receptor 4 |
TNF-α | tumor necrosis factor-alpha |
TXNIP | thioredoxin-interacting protein |
VCAM-1 | vascular cell adhesion molecule-1 |
VEGF | vascular endothelial growth factor |
VDR | vitamin D receptor |
VGCC | voltage-gated calcium channel |
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan JC, N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yasvoina, M.; Olvera-Barrios, A.; Mendes, J.; Zhu, M.; Egan, C.; Tufail, A.; Fruttiger, M. Deciphering the Connection Between Microvascular Damage and Neurodegeneration in Early Diabetic Retinopathy. Diabetes 2024, 73, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Teo, Z.L.; Tham, Y.C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology 2021, 128, 1580–1591. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, T.E.; Shao, Y.; Wong, T.Y.; Li, X. Classification of diabetic retinopathy: Past, present and future. Front. Endocrinol. 2022, 13, 1079217. [Google Scholar] [CrossRef]
- Perais, J.; Agarwal, R.; Evans, J.R.; Loveman, E.; Colquitt, J.L.; Owens, D.; Hogg, R.E.; Lawrenson, J.G.; Takwoingi, Y.; Lois, N. Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy. Cochrane Database Syst. Rev. 2023, 2, CD013775. [Google Scholar] [CrossRef]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef]
- Bryl, A.; Mrugacz, M.; Falkowski, M.; Zorena, K. The Effect of Diet and Lifestyle on the Course of Diabetic Retinopathy—A Review of the Literature. Nutrients 2022, 14, 1252. [Google Scholar] [CrossRef]
- Garcia-Medina, J.J.; Rubio-Velazquez, E.; Foulquie-Moreno, E.; Casaroli-Marano, R.P.; Pinazo-Duran, M.D.; Zanon-Moreno, V.; Del-Rio-Vellosillo, M. Update on the Effects of Antioxidants on Diabetic Retinopathy: In Vitro Experiments, Animal Studies and Clinical Trials. Antioxidants 2020, 9, 561. [Google Scholar] [CrossRef]
- Matos, A.L.; Bruno, D.F.; Ambrósio, A.F.; Santos, P.F. The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020, 12, 3169. [Google Scholar] [CrossRef]
- Fanaro, G.B.; Marques, M.R.; Calaza KD, C.; Brito, R.; Pessoni, A.M.; Mendonça, H.R.; Lemos DE, A.; de Brito Alves, J.L.; de Souza, E.L.; Cavalcanti Neto, M.P. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants 2023, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Weir, N.L.; Guan, W.; Karger, A.B.; Klein, B.E.K.; Meuer, S.M.; Cotch, M.F.; Guo, X.; Li, X.; Tan, J.; Genter, P.; et al. Omega-3 Fatty Acids Are Associated with Decreased Presence and Severity of Diabetic Retinopathy: A Combined Analysis of MESA and GOLDR Cohorts. Retina 2023, 43, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lo, A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018, 19, 1816. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- Haydinger, C.D.; Oliver, G.F.; Ashander, L.M.; Smith, J.R. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants 2023, 12, 1649. [Google Scholar] [CrossRef]
- Kowluru, R.A.; Koppolu, P.; Chakrabarti, S.; Chen, S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic. Res. 2003, 37, 1169–1180. [Google Scholar] [CrossRef]
- Yue, T.; Shi, Y.; Luo, S.; Weng, J.; Wu, Y.; Zheng, X. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Front. Immunol. 2022, 13, 1055087. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, L.; Huang, R.; Wu, P.; He, L. Comparison of inflammatory cytokines levels in the aqueous humor with diabetic retinopathy. Int. Ophthalmol. 2020, 40, 2763–2769. [Google Scholar] [CrossRef]
- Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Saxena, S.; Mishra, A.; Saxena, A.; Natu, S.M. Advanced glycation end products and diabetic retinopathy. J. Ocul. Biol. Dis. Inform. 2013, 5, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018, 28, 337–352. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.J.; Yu, J.; Wang, H.J.; Zhang, F.; Liu, Q.; Wu, J. Involvement of Advanced Glycation End Products in the Pathogenesis of Diabetic Retinopathy. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 48, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Saleh, I.; Maritska, Z.; Parisa, N.; Hidayat, R. Inhibition of Receptor for Advanced Glycation End Products as New Promising Strategy Treatment in Diabetic Retinopathy. Open Access Maced. J. Med. Sci. 2019, 7, 3921–3924. [Google Scholar] [CrossRef]
- Lee, J.; Yun, J.-S.; Ko, S.-H. Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus. Nutrients 2022, 14, 3086. [Google Scholar] [CrossRef]
- Li, H.-Y.; Yun, J.S.; Ko, S.H. Hypoxia-inducible factor-1α: A promising therapeutic target for vasculopathy in diabetic retinopathy. Pharmacol. Res. 2020, 159, 104924. [Google Scholar] [CrossRef]
- Rezzola, S.; Loda, A.; Corsini, M.; Semeraro, F.; Annese, T.; Presta, M.; Ribatti, D. Angiogenesis-Inflammation Cross Talk in Diabetic Retinopathy: Novel Insights From the Chick Embryo Chorioallantoic Membrane/Human Vitreous Platform. Front. Immunol. 2020, 11, 581288. [Google Scholar] [CrossRef]
- Rolev, K.D.; Shu, X.S.; Ying, Y. Targeted pharmacotherapy against neurodegeneration and neuroinflammation in early diabetic retinopathy. Neuropharmacology 2021, 187, 108498. [Google Scholar] [CrossRef]
- Dionysopoulou, S.; Wikstrom, P.; Walum, E.; Georgakis, S.; Thermos, K. Investigation of the Effects of a Novel NOX2 Inhibitor, GLX7013170, against Glutamate Excitotoxicity and Diabetes Insults in the Retina. Pharmaceuticals 2024, 17, 393. [Google Scholar] [CrossRef]
- Augustine, J.; Wikstrom, P.; Walum, E.; Georgakis, S.; Thermos, K. IL-33 regulates Müller cell-mediated retinal inflammation and neurodegeneration in diabetic retinopathy. Dis. Models Mech. 2023, 16, dmm050174. [Google Scholar] [CrossRef]
- Sohn, E.H.; van Dijk, H.W.; Jiao, C.; Kok, P.H.; Jeong, W.; Demirkaya, N.; Garmager, A.; Wit, F.; Kucukevcilioglu, M.; van Velthoven, M.E.; et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc. Natl. Acad. Sci. USA 2016, 113, E2655–E2664. [Google Scholar] [CrossRef]
- SanGiovanni, J.P.; Chew, E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 2005, 24, 87–138. [Google Scholar] [CrossRef]
- Swinkels, D.; Baes, M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol. Ther. 2023, 247, 108440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Jin, D.; Wang, S.; Xu, Y.; Li, H.; Chang, Y.; Ma, Y.; Xu, Y.; Guo, C.; Peng, F.; et al. Serum ω-6/ω-3 polyunsaturated fatty acids ratio and diabetic retinopathy: A propensity score matching based case-control study in China. eClinicalMedicine 2021, 39, 101089. [Google Scholar] [CrossRef] [PubMed]
- Tikhonenko, M.; Lydic, T.A.; Opreanu, M.; Li Calzi, S.; Bozack, S.; McSorley, K.M.; Sochacki, A.L.; Faber, M.S.; Hazra, S.; Duclos, S.; et al. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS ONE 2013, 8, e55177. [Google Scholar] [CrossRef]
- Sapieha, P.; Chen, J.; Stahl, A.; Seaward, M.R.; Favazza, T.L.; Juan, A.M.; Hatton, C.J.; Joyal, J.S.; Krah, N.M.; Dennison, R.J.; et al. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice. Nutr. Diabetes 2012, 2, e36. [Google Scholar] [CrossRef]
- Dátilo, M.N.; Sant’Ana, M.R.; Formigari, G.P.; Rodrigues, P.B.; de Moura, L.P.; da Silva, A.S.R.; Ropelle, E.R.; Pauli, J.R.; Cintra, D.E. Omega-3 from Flaxseed Oil Protects Obese Mice Against Diabetic Retinopathy Through GPR120 Receptor. Sci. Rep. 2018, 8, 14318. [Google Scholar] [CrossRef]
- Sammons, E.L.; Buck, G.; Bowman, L.J.; Stevens, W.M.; Hammami, I.; Parish, S.; Armitage, J.; ASCEND Study Collaborative Group. ASCEND-Eye: Effects of Omega-3 Fatty Acids on Diabetic Retinopathy. Ophthalmology 2024, 131, 526–533. [Google Scholar] [CrossRef]
- Chew, E.Y. Dietary Intake of Omega-3 Fatty Acids From Fish and Risk of Diabetic Retinopathy. JAMA 2017, 317, 2226–2227. [Google Scholar] [CrossRef]
- Sala-Vila, A.; Vinagre, I.; Cofán, M.; Lázaro, I.; Alé-Chilet, A.; Barraso, M.; Hernandez, T.; Harris, W.S.; Zarranz-Ventura, J.; Ortega, E. Blood omega-3 biomarkers, diabetic retinopathy and retinal vessel status in patients with type 1 diabetes. Eye 2025. [Google Scholar] [CrossRef]
- Gverović Antunica, A.; Znaor, L.; Ivanković, M.; Puzović, V.; Marković, I.; Kaštelan, S. Vitamin D and Diabetic Retinopathy. Int. J. Mol. Sci. 2023, 24, 12014. [Google Scholar] [CrossRef] [PubMed]
- Valle, M.S.; Russo, C.; Malaguarnera, L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab. Res. Rev. 2021, 37, e3447. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Lu, Q.; Chen, W.; Li, J.; Li, C.; Zheng, Z. Vitamin D3 Protects against Diabetic Retinopathy by Inhibiting High-Glucose-Induced Activation of the ROS/TXNIP/NLRP3 Inflammasome Pathway. J. Diabetes Res. 2018, 2018, 8193523. [Google Scholar] [CrossRef]
- Albert, D.M.; Scheef, E.A.; Wang, S.; Mehraein, F.; Darjatmoko, S.R.; Sorenson, C.M.; Sheibani, N. Calcitriol is a potent inhibitor of retinal neovascularization. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2327–2334. [Google Scholar] [CrossRef]
- Ren, Z.; Li, W.; Zhao, Q.; Ma, L.; Zhu, J. The impact of 1,25-dihydroxy vitamin D3 on the expressions of vascular endothelial growth factor and transforming growth factor-β₁ in the retinas of rats with diabetes. Diabetes Res. Clin. Pract. 2012, 98, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Tohari, A.M.; Almarhoun, M.; Alhasani, R.H.; Biswas, L.; Zhou, X.; Reilly, J.; Zeng, Z.; Shu, X. Protection by vitamin D against high-glucose-induced damage in retinal pigment epithelial cells. Exp. Cell Res. 2020, 392, 112023. [Google Scholar] [CrossRef]
- Salum, E.; Kals, J.; Kampus, P.; Salum, T.; Zilmer, K.; Aunapuu, M.; Arend, A.; Eha, J.; Zilmer, M. Vitamin D reduces deposition of advanced glycation end-products in the aortic wall and systemic oxidative stress in diabetic rats. Diabetes Res. Clin. Pract. 2013, 100, 243–249. [Google Scholar] [CrossRef]
- Song, N.; Yang, S.; Wang, Y.Y.; Tang, S.Q.; Zhu, Y.Q.; Dai, Q.; Zhang, H. The Impact of Vitamin D Receptor Gene Polymorphisms on the Susceptibility of Diabetic Vascular Complications: A Meta-Analysis. Genet. Test. Mol. Biomark. 2019, 23, 533–556. [Google Scholar] [CrossRef]
- Zhang, J.; Upala, S.; Sanguankeo, A. Relationship between vitamin D deficiency and diabetic retinopathy: A meta-analysis. Can. J. Ophthalmol. 2017, 52 (Suppl. S1), S39–S44. [Google Scholar] [CrossRef]
- Luo, B.A.; Gao, F.; Qin, L.L. The Association between Vitamin D Deficiency and Diabetic Retinopathy in Type 2 Diabetes: A Meta-Analysis of Observational Studies. Nutrients 2017, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Laiginhas, R.; Madeira, C.; Neves, J.S.; Barbosa, M.; Rosas, V.; Carvalho, D.; Falcão-Reis, F.; Falcão, M. Association between Serum Vitamin D and Diabetic Retinopathy in Portuguese Patients with Type 1 Diabetes. Acta Med. Port. 2020, 33, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; D’Angelo, A.; Martinotti, C.; Valentino, M.C.; Di Matteo, S.; Bruno, G.M.; Maffioli, P. Vitamin D3 supplementation improves glycemic control in type 2 diabetic patients: Results from an Italian clinical trial. Int. J. Vitam. Nutr. Res. 2022, 92, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Nain, P.; Agrawal, B.K.; Singh, R.P. Vitamin D with Calcium Supplementation Managing Glycemic Control with HbA1c and Improve Quality of Life in Patients with Diabetes. Turk. J. Pharm. Sci. 2022, 19, 161–167. [Google Scholar] [CrossRef]
- McFadden, R.; Darling, A.; Lanham-New, S. The effects of vitamin D3 supplementation on insulin resistance and glycaemic control in individuals at high risk of type 2 diabetes: A systematic review and meta–analysis. Proc. Nutr. Soc. 2021, 80, E26. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Ahmad, I.; Hoda, M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci. 2020, 245, 117350. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp. Eye Res. 2019, 181, 356–366. [Google Scholar] [CrossRef]
- Al-Hussaini, H.; Kittaneh, R.S.; Kilarkaje, N. Effects of trans-resveratrol on type 1 diabetes-induced up-regulation of apoptosis and mitogen-activated protein kinase signaling in retinal pigment epithelium of Dark Agouti rats. Eur. J. Pharmacol. 2021, 904, 174167. [Google Scholar] [CrossRef]
- Zeng, K.; Yang, N.; Wang, D.; Li, S.; Ming, J.; Wang, J.; Yu, X.; Song, Y.; Zhou, X.; Yang, Y. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina. Neurochem. Res. 2016, 41, 1050–1064. [Google Scholar] [CrossRef]
- Gonzalez-Perez, J.; Lopera-Echavarría, A.M.; Arevalo-Alquichire, S.; Araque-Marín, P.; Londoño, M.E. Development of a Resveratrol Nanoformulation for the Treatment of Diabetic Retinopathy. Materials 2024, 17, 1420. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.W.; Huang, Y.C.; Chang, K.F.; Huang, X.F.; Sheu, G.T.; Tsai, N.M. Protective Effect of Curcumin on the Tight Junction Integrity and Cellular Senescence in Human Retinal Pigment Epithelium of Early Diabetic Retinopathy. J. Physiol. Investig. 2024, 67, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yi, Q.; You, Y.; Chen, Y.; Niu, T.; Li, Y.; Zhang, J.; Ji, X.; Xu, G.; Zou, W.; et al. Curcumin suppresses oxidative stress via regulation of ROS/NF-κB signaling pathway to protect retinal vascular endothelial cell in diabetic retinopathy. Mol. Cell. Toxicol. 2021, 17, 367–376. [Google Scholar] [CrossRef]
- Yao, B.; Xin, Z.K.; Wang, D. The effect of curcumin on on intravitreal proinflammatory cytokines, oxidative stress markers, and vascular endothelial growth factor in an experimental model of diabetic retinopathy. J. Physiol. Pharmacol. 2023, 74. [Google Scholar] [CrossRef]
- Mahesh, T.; Sri Balasubashini, M.M.; Menon, V.P. Photo-irradiated curcumin supplementation in streptozotocin-induced diabetic rats: Effect on lipid peroxidation. Therapie 2004, 59, 639–644. [Google Scholar] [CrossRef]
- Hodaei, H.; Adibian, M.; Nikpayam, O.; Hedayati, M.; Sohrab, G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol. Metab. Syndr. 2019, 11, 41. [Google Scholar] [CrossRef]
- Tian, J.; Feng, B.; Tian, Z. The Effect of Curcumin on Lipid Profile and Glycemic Status of Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2022, 2022, 8278744. [Google Scholar] [CrossRef]
- Panknin, T.M.; Howe, C.L.; Hauer, M.; Bucchireddigari, B.; Rossi, A.M.; Funk, J.L. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int. J. Mol. Sci. 2023, 24, 4476. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Yu, T.; Wang, H.; Cai, X.; Sun, H. Efficacy and safety of curcumin in diabetic retinopathy: A protocol for systematic review and meta-analysis. PLoS ONE 2023, 18, e0282866. [Google Scholar] [CrossRef]
- Amini, S.; Sahebkar, A.; Dehghani, A.; Iraj, B.; Rezaeian-Ramsheh, A.; Askari, G.; Majeed, M.; Bagherniya, M. The effect of curcumin-piperine on cardiometabolic, inflammatory and oxidative stress factors and macular vascular density in optical coherence tomography angiography (OCTA) in patients with non-proliferative diabetic retinopathy: Study protocol for a randomized, double-blind controlled trial. Avicenna J. Phytomed. 2023, 13, 153–164. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lim, Y.; Moon, M.S.; Kim, J.Y.; Kwon, O. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutr. Metab. 2011, 8, 18. [Google Scholar] [CrossRef]
- Yang, L.P.; Sun, H.L.; Wu, L.M.; Guo, X.J.; Dou, H.L.; Tso, M.O.; Zhao, L.; Li, S.M. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2319–2327. [Google Scholar] [CrossRef]
- Jacques, P.F.; Cassidy, A.; Rogers, G.; Peterson, J.J.; Meigs, J.B.; Dwyer, J.T. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J. Nutr. 2013, 143, 1474–1480. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, N.P.; Dalgaard, F.; Murray, K.; Davey, R.J.; Bondonno, C.P.; Cassidy, A.; Lewis, J.R.; Kyrø, C.; Gislason, G.; Scalbert, A.; et al. Higher Habitual Flavonoid Intakes Are Associated with a Lower Incidence of Diabetes. J. Nutr. 2021, 151, 3533–3542. [Google Scholar] [CrossRef]
- Sok Yen, F.; Shu Qin, C.; Tan Shi Xuan, S.; Jia Ying, P.; Yi Le, H.; Darmarajan, T.; Gunasekaran, B.; Salvamani, S. Hypoglycemic Effects of Plant Flavonoids: A Review. Evid. Based Complement. Altern. Med. 2021, 2021, 2057333. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, C.; Xu, Y.; Tan, H.Y.; Chen, H.; Feng, Y. Berberine improves insulin-induced diabetic retinopathy through exclusively suppressing Akt/mTOR-mediated HIF-1α/VEGF activation in retina endothelial cells. Int. J. Biol. Sci. 2021, 17, 4316–4326. [Google Scholar] [CrossRef]
- Zhai, J.; Li, Z.; Zhang, H.; Ma, L.; Ma, Z.; Zhang, Y.; Zou, J.; Li, M.; Ma, L.; Wang, X.; et al. Berberine protects against diabetic retinopathy by inhibiting cell apoptosis via deactivation of the NF-κB signaling pathway. Mol. Med. Rep. 2020, 22, 4227–4235. [Google Scholar] [CrossRef]
- Fang, W.; Huang, X.; Wu, K.; Zong, Y.; Yu, J.; Xu, H.; Shi, J.; Wei, J.; Zhou, X.; Jiang, C. Activation of the GABA-alpha receptor by berberine rescues retinal ganglion cells to attenuate experimental diabetic retinopathy. Front. Mol. Neurosci. 2022, 15, 930599. [Google Scholar] [CrossRef]
- Guo, J.; Chen, H.; Zhang, X.; Lou, W.; Zhang, P.; Qiu, Y.; Zhang, C.; Wang, Y.; Liu, W.J. The Effect of Berberine on Metabolic Profiles in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Oxidative Med. Cell. Longev. 2021, 2021, 2074610. [Google Scholar] [CrossRef]
- Xie, W.; Su, F.; Wang, G.; Peng, Z.; Xu, Y.; Zhang, Y.; Xu, N.; Hou, K.; Hu, Z.; Chen, Y.; et al. Glucose-lowering effect of berberine on type 2 diabetes: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 1015045. [Google Scholar] [CrossRef]
- Chai, G.-R.; Liu, S.; Yang, H.W.; Chen, X.L. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression. Neural Regen. Res. 2021, 16, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, L.; Yao, G.M.; Yan, H.L.; Wang, L. Effects of quercetin on diabetic retinopathy and its association with NLRP3 inflammasome and autophagy. Int. J. Ophthalmol. 2021, 14, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gong, Y.; Li, M.; Li, J. Quercetin protects against hyperglycemia-induced retinopathy in Sprague Dawley rats by regulating the gut-retina axis and nuclear factor erythroid-2-related factor 2 pathway. Nutr. Res. 2024, 122, 55–67. [Google Scholar] [CrossRef]
- Latifi, E.; Mohammadpour, A.A.; H, B.F.; Nourani, H. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomed. Pharmacother. 2019, 110, 197–202. [Google Scholar] [CrossRef]
- Wada, Y.; Takata, A.; Ikemoto, T.; Morine, Y.; Imura, S.; Iwahashi, S.; Saito, Y.; Shimada, M. The protective effect of epigallocatechin 3-gallate on mouse pancreatic islets via the Nrf2 pathway. Surg. Today 2019, 49, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, X.; Zhu, M.; Du, J.; Xu, J.; Qin, X.; Xu, X.; Song, E. Epigallocatechin-3-gallate stimulates autophagy and reduces apoptosis levels in retinal Müller cells under high-glucose conditions. Exp. Cell Res. 2019, 380, 149–158. [Google Scholar] [CrossRef]
- Neelam, K.; Goenadi, C.J.; Lun, K.; Yip, C.C.; Au Eong, K.G. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. Br. J. Ophthalmol. 2017, 101, 551–558. [Google Scholar] [CrossRef]
- Moschos, M.M.; Dettoraki, M.; Tsatsos, M.; Kitsos, G.; Kalogeropoulos, C. Effect of carotenoids dietary supplementation on macular function in diabetic patients. Eye Vis. 2017, 4, 23. [Google Scholar] [CrossRef]
- Kowluru, R.A.; Menon, B.; Gierhart, D.L. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1645–1651. [Google Scholar] [CrossRef]
- Lem, D.W.; Gierhart, D.L.; Davey, P.G. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients 2021, 13, 2441. [Google Scholar] [CrossRef]
- Anzar, C.A.; Joseph, M.V.; Sundaram, R.; Vadiraj, G.B.; Prasad, C.P.; Eranimose, B.; Jagadeesh, S. Safety Assessment of Lutein and Zeaxanthin Supplementation and Its Effects on Blood Glucose Levels, Kidney Functions, Liver Functions and Bone Health—A Randomized, Double-Blind, Placebo-Controlled Clinical Study. medRxiv 2023. [Google Scholar] [CrossRef]
- Roxo, D.F.; Arcaro, C.A.; Gutierres, V.O.; Costa, M.C.; Oliveira, J.O.; Lima, T.F.O.; Assis, R.P.; Brunetti, I.L.; Baviera, A.M. Curcumin combined with metformin decreases glycemia and dyslipidemia, and increases paraoxonase activity in diabetic rats. Diabetol. Metab. Syndr. 2019, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Abdelsamia, E.M.; Khaleel, S.A.; Balah, A.; Abdel Baky, N.A. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed. Pharmacother.=Biomed. Pharmacother. 2019, 109, 2136–2144. [Google Scholar] [CrossRef]
- Xie, T.; Chen, X.; Chen, W.; Huang, S.; Peng, X.; Tian, L.; Wu, X.; Huang, Y. Curcumin is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front. Pharmacol. 2021, 12, 796565. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metab. Clin. Exp. 2008, 57, 712–717. [Google Scholar] [CrossRef]
- Khadke, S.; Mandave, P.; Kuvalekar, A.; Pandit, V.; Karandikar, M.; Mantri, N. Synergistic Effect of Omega-3 Fatty Acids and Oral-Hypoglycemic Drug on Lipid Normalization through Modulation of Hepatic Gene Expression in High Fat Diet with Low Streptozotocin-Induced Diabetic Rats. Nutrients 2020, 12, 3652. [Google Scholar] [CrossRef]
- Atsarina, D.M.; Widyastiti, N.S.; Muniroh, M.; Susilaningsih, N.; Maharani, N. Combination of Metformin and Epigallocatechin-3-Gallate Lowers Cortisol, 11β-Hydroxysteroid Dehydrogenase Type 1, and Blood Glucose Levels in Sprague Dawley Rats with Obesity and Diabetes. J. Obes. Metab. Syndr. 2024, 33, 261–269. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Li, X.; Sun, W.L.; Xing, Y.; Xiu, Z.L.; Zhuang, C.L.; Dong, Y.S. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose. J. Agric. Food Chem. 2017, 65, 8319–8330. [Google Scholar] [CrossRef]
- Tamimi, L.N.; Zakaraya, Z.; Hailat, M.; Abu Dayyih, W.; Daoud, E.; Abed, A.; Saadh, M.J.; Majeed, B.; Abumansour, H.; Aburumman, A.; et al. Anti-diabetic effect of cotreatment with resveratrol and pioglitazone in diabetic rats. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 325–332. [Google Scholar] [CrossRef]
- Valdes, M.; Calzada, F.; Martínez-Solís, J.; Martínez-Rodríguez, J. Antihyperglycemic Effects of Annona cherimola Miller and the Flavonoid Rutin in Combination with Oral Antidiabetic Drugs on Streptozocin-Induced Diabetic Mice. Pharmaceuticals 2023, 16, 112. [Google Scholar] [CrossRef]
- Knop, J.; Misaka, S.; Singer, K.; Hoier, E.; Müller, F.; Glaeser, H.; König, J.; Fromm, M.F. Inhibitory Effects of Green Tea and (-)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein. PLoS ONE 2015, 10, e0139370. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Tsuhako, R.; Atsumi, T.; Narumi, K.; Watanabe, W.; Sugita, C.; Kurokawa, M. Naringenin interferes with the anti-diabetic actions of pioglitazone via pharmacodynamic interactions. J. Nat. Med. 2017, 71, 442–448. [Google Scholar] [CrossRef] [PubMed]
Bioactive Compound | Mechanisms of Action | Pathways Affected in DR | References |
---|---|---|---|
Omega-3 (DHA, EPA) | Anti-inflammatory, vascular protection, enhances endothelial function, anti-inflammatory, reduces vascular permeability | NF-κB inhibition, VEGF modulation, ASM downregulation | [12,33,34,35,36,37,38,39,40,41] |
Vitamin D | Anti-inflammatory, antioxidant, anti-angiogenic, preserves blood–retinal barrier, improves insulin sensitivity and reduces fasting glucose levels | NF-κB suppression, TXNIP/NLRP3 inflammasome inhibition, VEGF modulation | [42,43,44,45,46,47,48,49,50,51,52,53,54,55] |
Resveratrol | PON1 modulation, anti-angiogenic, antioxidant, protects RPE, anti-inflammatory | PON1 pathway, MAPK signaling, VEGF suppression, glutamate balance | [57,58,59,60,61] |
Curcumin | Antioxidant, anti-inflammatory, protects blood–retinal barrier, reduces VEGF, improves insulin sensitivity | ROS/NF-κB inhibition, caspase-3/Bcl-2 modulation, mitochondrial protection | [62,63,64,65,66,67,68,69,70] |
Flavonoids | Antioxidant, anti-inflammatory, vasoprotective, inhibition of intestinal glucose absorption, enhancement of insulin signaling, reduction of oxidative stress in pancreatic β-cells | AMPK activation, PI3K/Akt modulation, GLUT4 translocation | [10,71,72,73,74,75] |
Berberine | Anti-inflammatory, antioxidant, anti-angiogenic, glucose regulation, glucose-lowering effects | Akt/mTOR inhibition, NF-κB suppression, Bcl-2 modulation, inhibition of KCNH6 potassium channels in pancreatic β-cells | [76,77,78,79,80] |
Quercetin | Anti-inflammatory, antioxidant, anti-angiogenic, glucose regulation | HMGB1/TLR4/NF-κB/NLRP3 pathway, VEGF suppression, gut microbiota modulation, increases BDNF | [81,82,83,84] |
Epigallocatechin gallate (EGCG) | Antioxidant, anti-apoptotic, protects pancreatic islets, enhances insulin secretion | Nrf2 antioxidant activation, HO-1 expression, Müller cells autophagy regulation | [85,86] |
Lutein and Zeaxanthin | Antioxidant, anti-inflammatory, VEGF modulation, blue light filtration | NF-κB suppression, VEGF modulation, upregulation of glutathione peroxidase and superoxide dismutase | [87,88,89,90,91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappellani, F.; Foti, R.; Malaguarnera, G.; D’Esposito, F.; Musumeci, C.; Rapisarda, L.; Tognetto, D.; Gagliano, C.; Zeppieri, M. Nutrients and Natural Substances for Hypoglycemic Effects and Management in Diabetic Retinopathy. Nutrients 2025, 17, 1207. https://doi.org/10.3390/nu17071207
Cappellani F, Foti R, Malaguarnera G, D’Esposito F, Musumeci C, Rapisarda L, Tognetto D, Gagliano C, Zeppieri M. Nutrients and Natural Substances for Hypoglycemic Effects and Management in Diabetic Retinopathy. Nutrients. 2025; 17(7):1207. https://doi.org/10.3390/nu17071207
Chicago/Turabian StyleCappellani, Francesco, Roberta Foti, Giulia Malaguarnera, Fabiana D’Esposito, Carlo Musumeci, Lorenzo Rapisarda, Daniele Tognetto, Caterina Gagliano, and Marco Zeppieri. 2025. "Nutrients and Natural Substances for Hypoglycemic Effects and Management in Diabetic Retinopathy" Nutrients 17, no. 7: 1207. https://doi.org/10.3390/nu17071207
APA StyleCappellani, F., Foti, R., Malaguarnera, G., D’Esposito, F., Musumeci, C., Rapisarda, L., Tognetto, D., Gagliano, C., & Zeppieri, M. (2025). Nutrients and Natural Substances for Hypoglycemic Effects and Management in Diabetic Retinopathy. Nutrients, 17(7), 1207. https://doi.org/10.3390/nu17071207