Goal Setting and Attainment in a Randomised Controlled Trial of Digital Health-Assisted Lifestyle Interventions in People with Kidney and Liver Disease
Abstract
:1. Introduction
2. Methods
Statistical Methods
3. Results
3.1. Goal Setting and Achievement
3.2. Goal Attainment Scale Scores
3.3. Self-Efficacy Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cullen, K.W.; Baranowski, T.; Smith, S.P. Using goal setting as a strategy for dietary behavior change. J. Am. Diet. Assoc. 2001, 101, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Shilts, M.K.; Horowitz, M.; Townsend, M.S. Goal setting as a strategy for dietary and physical activity behavior change: A review of the literature. Am. J. Health Promot. 2004, 19, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Kiresuk, T.J.; Sherman, R.E. Goal attainment scaling: A general method for evaluating comprehensive community mental health programs. Community Ment. Health J. 1968, 4, 443–453. [Google Scholar] [CrossRef]
- Logan, B.; Jegatheesan, D.; Viecelli, A.; Pascoe, E.; Hubbard, R. Goal attainment scaling as an outcome measure for randomised controlled trials: A scoping review. BMJ Open 2022, 12, e063061. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Bassi, N.; Karagodin, I.; Wang, S.; Vassallo, P.; Priyanath, A.; Massaro, E.; Stone, N.J. Lifestyle modification for metabolic syndrome: A systematic review. Am. J. Med. 2014, 127, 1242.e1–1242.e10. [Google Scholar] [CrossRef]
- Chen, J.; Muntner, P.; Hamm, L.L.; Jones, D.W.; Batuman, V.; Fonseca, V.; Whelton, P.K.; He, J. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann. Intern. Med. 2004, 140, 167–174. [Google Scholar] [CrossRef]
- Jinjuvadia, R.; Antaki, F.; Lohia, P.; Liangpunsakul, S. The Association Between Nonalcoholic Fatty Liver Disease and Metabolic Abnormalities in The United States Population. J. Clin. Gastroenterol. 2017, 51, 160–166. [Google Scholar] [CrossRef]
- Xie, K.; Bao, L.; Jiang, X.; Ye, Z.; Bing, J.; Dong, Y.; Gao, D.; Ji, X.; Jiang, T.; Li, J.; et al. The association of metabolic syndrome components and chronic kidney disease in patients with hypertension. Lipids Health Dis. 2019, 18, 229. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Akinosun, A.S.; Polson, R.; Diaz-Skeete, Y.; De Kock, J.H.; Carragher, L.; Leslie, S.; Grindle, M.; Gorely, T. Digital Technology Interventions for Risk Factor Modification in Patients With Cardiovascular Disease: Systematic Review and Meta-analysis. JMIR Mhealth Uhealth 2021, 9, e21061. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Y.; Yeh, J.C.; Cheng, C.C.; Huang, S.H.; Yeh, H.C.; Cheng, B.W.; Lin, J.W.; Yang, F.J. Digital health interventions to promote healthy lifestyle in hemodialysis patients: An interventional pilot study. Sci. Rep. 2024, 14, 2849. [Google Scholar] [CrossRef]
- Soni, J.; Pathak, N.; Gharia, M.; Aswal, D.; Parikh, J.; Sharma, P.; Mishra, A.; Lalan, D.; Maheshwari, T. Effectiveness of RESET care program: A real-world-evidence on managing non-alcoholic fatty liver disease through digital health interventions. World J. Hepatol. 2025, 17, 101630. [Google Scholar] [CrossRef]
- Barnett, A.; Catapan, S.C.; Jegatheesan, D.K.; Conley, M.M.; Keating, S.E.; Mayr, H.L.; Webb, L.; Brown, R.C.C.; Coombes, J.S.; Macdonald, G.A.; et al. Patients’ acceptability of self-selected digital health services to support diet and exercise among people with complex chronic conditions: Mixed methods study. Digit. Health 2024, 10, 20552076241245278. [Google Scholar] [CrossRef]
- Brown, R.C.C.; Jegatheesan, D.K.; Conley, M.M.; Mayr, H.L.; Kelly, J.T.; Webb, L.; Barnett, A.; Staudacher, H.M.; Burton, N.W.; Isbel, N.M.; et al. Utilizing Technology for Diet and Exercise Change in Complex Chronic Conditions Across Diverse Environments (U-DECIDE): Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2022, 11, e37556. [Google Scholar] [CrossRef]
- Brown, R.C.C.; Keating, S.E.; Jegatheesan, D.K.; Mayr, H.L.; Barnett, A.; Conley, M.M.; Webb, L.; Kelly, J.T.; Snoswell, C.L.; Staudacher, H.M.; et al. Utilizing technology for diet and exercise change in complex chronic conditions across diverse environments (U-DECIDE): Feasibility randomised controlled trial. BMC Health Serv. Res. 2024, 24, 935. [Google Scholar] [CrossRef]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A.; on Behalf of the PAFS Consensus Group. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. BMJ 2016, 355, i5239. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef]
- Doran, G.T. There’s a SMART Way to Write Management’s Goals and Objectives. J. Manag. Rev. 1981, 70, 35–36. [Google Scholar]
- Schwarzer, R.; Renner, B. Social-cognitive predictors of health behavior: Action self-efficacy and coping self-efficacy. Health Psychol. 2000, 19, 487–495. [Google Scholar] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.R. Goal Setting and Action Planning for Health Behavior Change. Am. J. Lifestyle Med. 2019, 13, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Deslippe, A.L.; Bains, A.; Loiselle, S.E.; Kasvis, P.; Mak, I.; Weiler, H.; Cohen, T.R. SMART goals of children of 6-12 years enrolled in a family-centred lifestyle intervention for childhood obesity: Secondary analysis of a randomized controlled trial. Pediatr. Obes. 2023, 18, e12973. [Google Scholar] [CrossRef]
- Cook, H.E.; Garris, L.A.; Gulum, A.H.; Steber, C.J. Impact of SMART Goals on Diabetes Management in a Pharmacist-Led Telehealth Clinic. J. Pharm. Pract. 2024, 37, 54–59. [Google Scholar] [CrossRef]
- White, N.D.; Bautista, V.; Lenz, T.; Cosimano, A. Using the SMART-EST Goals in Lifestyle Medicine Prescription. Am. J. Lifestyle Med. 2020, 14, 271–273. [Google Scholar] [CrossRef]
- Sguanci, M.; Mancin, S.; Gazzelloni, A.; Diamanti, O.; Ferrara, G.; Morales Palomares, S.; Parozzi, M.; Petrelli, F.; Cangelosi, G. The Internet of Things in the Nutritional Management of Patients with Chronic Neurological Cognitive Impairment: A Scoping Review. Healthcare 2024, 13, 23. [Google Scholar] [CrossRef]
- Sol, B.G.; van der Graaf, Y.; van Petersen, R.; Visseren, F.L. The effect of self-efficacy on cardiovascular lifestyle. Eur. J. Cardiovasc. Nurs. 2011, 10, 180–186. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Bord, S.; Dror-Lavi, G.; Smith, M.L.; Towne, S.D., Jr.; Buch, A.; Webb, M.; Yeshua, H.; Nimer, A.; Shibolet, O. Role of illness perception and self-efficacy in lifestyle modification among non-alcoholic fatty liver disease patients. World J. Gastroenterol. 2017, 23, 1881–1890. [Google Scholar] [CrossRef]
- Hurn, J.; Kneebone, I.; Cropley, M. Goal setting as an outcome measure: A systematic review. Clin. Rehabil. 2006, 20, 756–772. [Google Scholar] [CrossRef]
- Hu, L.; St-Jules, D.E.; Popp, C.J.; Sevick, M.A. Determinants and the Role of Self-Efficacy in a Sodium-Reduction Trial in Hemodialysis Patients. J. Ren. Nutr. 2019, 29, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Wingo, B.C.; Desmond, R.A.; Brantley, P.; Appel, L.; Svetkey, L.; Stevens, V.J.; Ard, J.D. Self-efficacy as a predictor of weight change and behavior change in the PREMIER trial. J. Nutr. Educ. Behav. 2013, 45, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.E.; Harden, S.M.; Almeida, F.A.; You, W.; Hill, J.L.; Goessl, C.; Estabrooks, P.A. Brief self-efficacy scales for use in weight-loss trials: Preliminary evidence of validity. Psychol. Assess. 2016, 28, 1255–1264. [Google Scholar] [CrossRef]
- Woodgate, J.; Brawley, L.R. Self-efficacy for exercise in cardiac rehabilitation: Review and recommendations. J. Health Psychol. 2008, 13, 366–387. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attina, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Wdowiak-Szymanik, A.; Wdowiak, A.; Szymanik, P.; Grocholewicz, K. Pandemic COVID-19 Influence on Adult’s Oral Hygiene, Dietary Habits and Caries Disease-Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 12744. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Klobukowski, F.; Wasilewska, E.; Malgorzewicz, S. Dietary Habits before and during the COVID-19 Epidemic in Selected European Countries. Nutrients 2021, 13, 1690. [Google Scholar] [CrossRef]
- Ng, T.K.Y.; Kwok, C.K.C.; Ngan, G.Y.K.; Wong, H.K.H.; Zoubi, F.A.; Tomkins-Lane, C.C.; Yau, S.K.; Samartzis, D.; Pinto, S.M.; Fu, S.N.; et al. Differential Effects of the COVID-19 Pandemic on Physical Activity Involvements and Exercise Habits in People With and Without Chronic Diseases: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2022, 103, 1448–1465.e6. [Google Scholar] [CrossRef]
- Kipnis, V.; Midthune, D.; Freedman, L.; Bingham, S.; Day, N.E.; Riboli, E.; Ferrari, P.; Carroll, R.J. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public. Health Nutr. 2002, 5, 915–923. [Google Scholar] [CrossRef]
Variable | Comparator | Intervention | Overall |
---|---|---|---|
(n = 34) | (n = 32) | (n = 66) | |
Age (mean, SD) | 48.8 (12.3) | 54.0 (14.3) | 51.0 (13.3) |
Male gender (n, %) | 20 (59%) | 17 (53%) | 37 (56%) |
Chronic disease (n, %) | |||
Kidney | 22 (65%) | 24 (75%) | 46 (70%) |
Liver | 12 (35%) | 8 (25%) | 20 (30%) |
Stage of chronic disease (n, %) | |||
Kidney Disease | |||
CKD | 14 (41%) | 8 (25%) | 22 (33%) |
Transplant | 4 (12%) | 12 (38%) | 16 (24%) |
HD | 2 (6%) | 2 (6%) | 4 (6%) |
PD | 2 (6%) | 2 (6%) | 4 (6%) |
Liver Disease | |||
Transplant | 9 (26%) | 4 (13%) | 13 (20%) |
MASLD/MASH/other | 3 (9%) | 4 (13%) | 7 (11%) |
Cause of kidney disease (n, %) | |||
Glomerulonephritis | 7 (21%) | 9 (28%) | 16 (24%) |
Diabetic nephropathy | 2 (6%) | 5 (16%) | 7 (11%) |
Other/unknown | 2 (6%) | 5 (16%) | 7 (11%) |
ADPKD | 5 (15%) | 1 (3%) | 6 (9%) |
Congenital nephropathy | 3 (9%) | 3 (9%) | 6 (9%) |
Hypertension/vascular | 3 (9%) | 1 (3%) | 4 (6%) |
Dietary Goals | Frequency | Fitness Goals | Frequency |
---|---|---|---|
Increased fruit/vegetables | 4 | Walking/steps | 22 |
Reduce snacks/junk/processed food | 4 | Cycling | 4 |
Increase seafood | 2 | Running | 4 |
Reduce carbohydrates | 2 | Resistance training | 3 |
Calorie target | 1 | ||
Reduce sweetened beverages | 1 | ||
Reduce salt in diet | 1 | ||
Increase hydration | 1 | ||
Reduce days stressing about food decisions | 1 |
Variable | Comparator | Intervention | Overall | p-Value |
---|---|---|---|---|
(n = 34) | (n = 32) | (n = 66) | ||
Baseline GAS Score | 0.535 | |||
Median (IQR) | 30 (26, 31) | 30 (26, 38) | 30 (26, 32) | |
Range | 25, 40 | 25, 44 | 25, 44 | |
Outcome GAS Score | 0.714 | |||
Median (IQR) | 37 (30, 45) | 38 (30, 42) | 38 (30, 44) | |
Range | 25, 75 | 25, 60 | 25, 75 | |
Change in GAS Score | 0.578 | |||
Median (IQR) | 7 (0, 18) | 6 (0, 10) | 6 (0, 12) | |
Range | −12, 50 | −10, 34 | −12, 50 |
Comparator | Intervention | Overall | p-Value | |
---|---|---|---|---|
(n = 34) | (n = 32) | (n = 66) | ||
Nutrition Self-efficacy Score | 0.31 | |||
Median (IQR) | 17 (15, 19) | 15 (14, 19) | 17 (14, 19) | |
Range | 10, 20 | 7, 20 | 7, 20 | |
Physical Exercise Self-efficacy Score | 0.28 | |||
Median (IQR) | 14 (10, 15) | 14 (12, 17) | 14 (11, 16) | |
Range | 5, 20 | 5, 20 | 5, 20 | |
Composite Self-efficacy Score | 0.85 | |||
Median (IQR) | 31 (26, 34) | 31 (25, 34) | 31 (25, 34) | |
Range | 17, 40 | 12, 40 | 12, 40 |
Self-Efficacy Score | Change in GAS | |
---|---|---|
Physical Exercise Self-efficacy | Spearman’s rho | −0.12 |
p-value | 0.50 | |
Nutrition Self-efficacy | Spearman’s rho | 0.51 |
p-value | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jegatheesan, D.K.; Pinzon Perez, W.F.; Brown, R.C.C.; Burton, N.W.; Barnett, A.; Webb, L.; Conley, M.M.; Mayr, H.L.; Keating, S.E.; Kelly, J.T.; et al. Goal Setting and Attainment in a Randomised Controlled Trial of Digital Health-Assisted Lifestyle Interventions in People with Kidney and Liver Disease. Nutrients 2025, 17, 1183. https://doi.org/10.3390/nu17071183
Jegatheesan DK, Pinzon Perez WF, Brown RCC, Burton NW, Barnett A, Webb L, Conley MM, Mayr HL, Keating SE, Kelly JT, et al. Goal Setting and Attainment in a Randomised Controlled Trial of Digital Health-Assisted Lifestyle Interventions in People with Kidney and Liver Disease. Nutrients. 2025; 17(7):1183. https://doi.org/10.3390/nu17071183
Chicago/Turabian StyleJegatheesan, Dev K., William F. Pinzon Perez, Riley C. C. Brown, Nicola W. Burton, Amandine Barnett, Lindsey Webb, Marguerite M. Conley, Hannah L. Mayr, Shelley E. Keating, Jaimon T. Kelly, and et al. 2025. "Goal Setting and Attainment in a Randomised Controlled Trial of Digital Health-Assisted Lifestyle Interventions in People with Kidney and Liver Disease" Nutrients 17, no. 7: 1183. https://doi.org/10.3390/nu17071183
APA StyleJegatheesan, D. K., Pinzon Perez, W. F., Brown, R. C. C., Burton, N. W., Barnett, A., Webb, L., Conley, M. M., Mayr, H. L., Keating, S. E., Kelly, J. T., Macdonald, G. A., Coombes, J. S., Hickman, I. J., & Isbel, N. M. (2025). Goal Setting and Attainment in a Randomised Controlled Trial of Digital Health-Assisted Lifestyle Interventions in People with Kidney and Liver Disease. Nutrients, 17(7), 1183. https://doi.org/10.3390/nu17071183