Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview
Abstract
:1. Introduction
2. Literature Search Methodology
3. Plant-Based Protein Sources
3.1. Legume Seeds
3.1.1. Soybean
3.1.2. Pea
3.1.3. Fava Bean
3.1.4. Lupin
3.2. Hemp
4. Aquatic Protein Sources
4.1. Microalgae
4.2. Macroalgae
4.3. Water Lentils (Duckweed)
5. Other Alternative Protein Sources
5.1. Insects
5.2. Microbial Proteins
Mycoproteins
5.3. Cultured Meat
6. Alternative Protein Sources—Ethical, Environmental and Health-Related Aspects
6.1. Ethical Aspects Related to Protein Consumption
6.2. Impact of Meat Protein and Their Alternatives on Environment
6.3. Alternative Protein Sources—Health Benefits and Concerns
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fasolin, L.H.; Pereira, R.N.; Pinheiro, A.C.; Martins, J.T.; Andrade, C.C.P.; Ramos, O.L.; Vicente, A.A. Emergent Food Proteins—Towards Sustainability, Health and Innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef] [PubMed]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.R.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal Proteins: Production Strategies and Nutritional and Functional Properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef]
- Shimizu, M. Food-derived Peptides and Intestinal Functions. BioFactors 2004, 21, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Hayes, M.; Mullen, A.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; Aiking, H. Prospects for Pro-Environmental Protein Consumption in Europe: Cultural, Culinary, Economic and Psychological Factors. Appetite 2018, 121, 29–40. [Google Scholar] [CrossRef]
- Niva, M.; Vainio, A.; Jallinoja, P. Barriers to Increasing Plant Protein Consumption in Western Populations. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 157–171. ISBN 978-0-12-803968-7. [Google Scholar]
- Kazir, M.; Abuhassira, Y.; Robin, A.; Nahor, O.; Luo, J.; Israel, A.; Golberg, A.; Livney, Y.D. Extraction of Proteins from Two Marine Macroalgae, Ulva sp. and Gracilaria sp., for Food Application, and Evaluating Digestibility, Amino Acid Composition and Antioxidant Properties of the Protein Concentrates. Food Hydrocoll. 2019, 87, 194–203. [Google Scholar] [CrossRef]
- Grdeń, P.; Jakubczyk, A. Health Benefits of Legume Seeds. J. Sci. Food Agric. 2023, 103, 5213–5220. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Papandreou, C.; Salas-Salvadó, J. Legume Consumption and Cardiometabolic Health. Adv. Nutr. 2019, 10, S437–S450. [Google Scholar] [CrossRef]
- Grela, E.R.; Samolińska, W.; Kiczorowska, B.; Klebaniuk, R.; Kiczorowski, P. Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds. Biol. Trace Elem. Res. 2017, 180, 338–348. [Google Scholar] [CrossRef]
- Bouchenak, M.; Lamri-Senhadji, M. Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. J. Med. Food. 2013, 16, 185–198. [Google Scholar] [CrossRef]
- Sánchez-Chino, X.; Jiménez-Martínez, C.; Dávila-Ortiz, G.; Álvarez-González, I.; Madrigal-Bujaidar, E. Nutrient and Nonnutrient Components of Legumes, and Its Chemopreventive Activity: A Review. Nutr. Cancer. 2015, 67, 401–410. [Google Scholar] [CrossRef]
- Aloo, S.O.; Ofosu, F.K.; Kilonzi, S.M.; Shabbir, U.; Oh, D.H. Edible Plant Sprouts: Health Benefits, Trends, and Opportunities for Novel Exploration. Nutrients 2021, 13, 2882. [Google Scholar] [CrossRef]
- Chon, S.-U. Total Polyphenols and Bioactivity of Seeds and Sprouts in Several Legumes. Curr. Pharm. Des. 2013, 19, 6112–6124. [Google Scholar] [CrossRef]
- Miyahira, R.F.; Lopes, J.D.O.; Antunes, A.E.C. The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. Plant Foods Hum. Nutr. 2021, 76, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Freeze, C.; Williams, S.L. Nutrition Therapy. Can. J. Diabetes 2018, 42, S64–S79. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Calles, T. The International Year of Pulses—Final Report. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4ac63815-9b93-4103-b3e2-71521aa30857/content (accessed on 9 March 2025).
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef]
- Hughes, J.; Pearson, E.; Grafenauer, S. Legumes—A Comprehensive Exploration of Global Food-Based Dietary Guidelines and Consumption. Nutrients 2022, 14, 3080. [Google Scholar] [CrossRef]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef]
- Marventano, S.; Izquierdo Pulido, M.; Sánchez-González, C.; Godos, J.; Speciani, A.; Galvano, F.; Grosso, G. Legume Consumption and CVD Risk: A Systematic Review and Meta-Analysis. Public Health Nutr. 2017, 20, 245–254. [Google Scholar] [CrossRef]
- Applegate, C.; Rowles, J.; Ranard, K.; Jeon, S.; Erdman, J. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2018, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Trock, B.J.; Hilakivi-Clarke, L.; Clarke, R. Meta-Analysis of Soy Intake and Breast Cancer Risk. J. Natl. Cancer Inst. 2006, 98, 459–471. [Google Scholar] [CrossRef]
- Geraldo, R.; Santos, C.S.; Pinto, E.; Vasconcelos, M.W. Widening the Perspectives for Legume Consumption: The Case of Bioactive Non-Nutrients. Front. Plant Sci. 2022, 13, 772054. [Google Scholar] [CrossRef]
- Polak, R.; Phillips, E.M.; Campbell, A. Legumes: Health Benefits and Culinary Approaches to Increase Intake. Clin. Diabetes. 2015, 33, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Havemeier, S.; Erickson, J.; Slavin, J. Dietary Guidance for Pulses: The Challenge and Opportunity to Be Part of Both the Vegetable and Protein Food Groups. Ann. N. Y. Acad. Sci. 2017, 1392, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Strid, A.; Hallström, E.; Sonesson, U.; Sjons, J.; Winkvist, A.; Bianchi, M. Sustainability Indicators for Foods Benefiting Climate and Health. Sustainability 2021, 13, 3621. [Google Scholar] [CrossRef]
- Abdullah, M.M.H.; Hughes, J.; Grafenauer, S. Legume Intake Is Associated with Potential Savings in Coronary Heart Disease-Related Health Care Costs in Australia. Nutrients 2022, 14, 2912. [Google Scholar] [CrossRef]
- Abdullah, M.; Marinangeli, C.; Jones, P.; Carlberg, J. Canadian Potential Healthcare and Societal Cost Savings from Consumption of Pulses: A Cost-Of-Illness Analysis. Nutrients 2017, 9, 793. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Feng, F.; Tian, Z. Toward a “Green Revolution” for Soybean. Mol. Plant. 2020, 13, 688–697. [Google Scholar] [CrossRef]
- Singer, W.M.; Shea, Z.; Yu, D.; Huang, H.; Mian, M.A.R.; Shang, C.; Rosso, M.L.; Song, Q.J.; Zhang, B. Genome-Wide Association Study and Genomic Selection for Proteinogenic Methionine in Soybean Seeds. Front. Plant Sci. 2022, 13, 859109. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Liu, Y.; Dong, S.; Zhang, Y.; Zhu, Y.; Tian, Y.; Li, J.; Wang, Z.; Wang, Y.; et al. Overexpressing GmCGS2 Improves Total Amino Acid and Protein Content in Soybean Seed. Int. J. Mol. Sci. 2023, 24, 14125. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Kong, F. Soybean. Curr. Biol. 2022, 32, R902–R904. [Google Scholar] [CrossRef]
- Belobrajdic, D.P.; James-Martin, G.; Jones, D.; Tran, C.D. Soy and Gastrointestinal Health: A Review. Nutrients 2023, 15, 1959. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef]
- Jung, S.M.; Haddad, E.H.; Kaur, A.; Sirirat, R.; Kim, A.Y.; Oda, K.; Rajaram, S.; Sabaté, J. A Non-Probiotic Fermented Soy Product Reduces Total and LDL Cholesterol: A Randomized Controlled Crossover Trial. Nutrients 2021, 13, 535. [Google Scholar] [CrossRef]
- Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of By-Products from Soybean (Glycine max (L.) Merr.) Processing. Molecules 2020, 25, 2129. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Blanco Mejia, S.; Chiavaroli, L.; Viguiliouk, E.; Li, S.S.; Kendall, C.W.C.; Vuksan, V.; Sievenpiper, J.L. Cumulative Meta-Analysis of the Soy Effect Over Time. J. Am. Heart Assoc. 2019, 8, e012458. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Zhao, R.; Wu, M.; Wan, Q.; Li, T. Soy Consumption and the Risk of Type 2 Diabetes and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1358. [Google Scholar] [CrossRef]
- Barańska, A.; Błaszczuk, A.; Kanadys, W.; Baczewska, B.; Jędrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2531. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Hamaguchi, M.; Fukui, M. Fermented Soybean Foods and Diabetes. J. Diabetes Investig. 2023, 14, 1329–1340. [Google Scholar] [CrossRef]
- Hooshiar, S.H.; Tobeiha, M.; Jafarnejad, S. Soy Isoflavones and Bone Health: Focus on the RANKL/RANK/OPG Pathway. Biomed. Res. Int. 2022, 2022, 8862278. [Google Scholar] [CrossRef]
- Wang, C.; Ding, K.; Xie, X.; Zhou, J.; Liu, P.; Wang, S.; Fang, T.; Xu, G.; Tang, C.; Hong, H. Soy Product Consumption and the Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2024, 16, 986. [Google Scholar] [CrossRef]
- Echeverria, V.; Echeverria, F.; Barreto, G.E.; Echeverría, J.; Mendoza, C. Estrogenic Plants: To Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front. Pharmacol. 2021, 12, 644103. [Google Scholar] [CrossRef]
- Caprio, A.M.; Umano, G.R.; Luongo, C.; Aiello, F.; Dello Iacono, I.; Palumbo, S.; Miraglia Del Giudice, E.; Grandone, A. Case Report: Goiter and Overt Hypothyroidism in an Iodine-Deficient Toddler on Soy Milk and Hypoallergenic Diet. Front. Endocrinol. 2022, 13, 927726. [Google Scholar] [CrossRef]
- Canivenc-Lavier, M.-C.; Bennetau-Pelissero, C. Phytoestrogens and Health Effects. Nutrients 2023, 15, 317. [Google Scholar] [CrossRef]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow’s Milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Dai, H.; Wei, S.; Twardowska, I. Biofortification of Soybean (Glycine max L.) with Se and Zn, and Enhancing Its Physiological Functions by Spiking These Elements to Soil during Flowering Phase. Sci. Total Environ. 2020, 740, 139648. [Google Scholar] [CrossRef]
- Auer, J.; Östlund, J.; Nilsson, K.; Johansson, M.; Herneke, A.; Langton, M. Nordic Crops as Alternatives to Soy—An Overview of Nutritional, Sensory, and Functional Properties. Foods 2023, 12, 2607. [Google Scholar] [CrossRef]
- Soybeans: Are They Used for Food, Feed or Fuel? Available online: https://ourworldindata.org/grapher/soybean-production-and-use (accessed on 9 March 2025).
- Kang, J.H.; Dong, Z.; Shin, S.H. Benefits of Soybean in the Era of Precision Medicine: A Review of Clinical Evidence. J. Microbiol. Biotechnol. 2023, 33, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, G.; Diao, J.; Wang, C. Recent Advances in Exploring and Exploiting Soybean Functional Peptides—A Review. Front. Nutr. 2023, 10, 1185047. [Google Scholar] [CrossRef]
- Deng, Z.; Kim, S.W. Opportunities and Challenges of Soy Proteins with Different Processing Applications. Antioxidants 2024, 13, 569. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hong, S.; Li, Y. Pea Protein Composition, Functionality, Modification, and Food Applications: A Review. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2022; Volume 101, pp. 71–127. ISBN 978-0-323-98380-8. [Google Scholar]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef] [PubMed]
- Asen, N.D.; Aluko, R.E.; Martynenko, A.; Utioh, A.; Bhowmik, P. Yellow Field Pea Protein (Pisum sativum L.): Extraction Technologies, Functionalities, and Applications. Foods 2023, 12, 3978. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.K.; Karalash, A.; Tyler, R.T.; Warkentin, T.D.; Nickerson, M.T. Functional Attributes of Pea Protein Isolates Prepared Using Different Extraction Methods and Cultivars. Food Res. Int. 2015, 76, 31–38. [Google Scholar] [CrossRef]
- Kumari, T.; Deka, S.C. Potential Health Benefits of Garden Pea Seeds and Pods: A Review. Legum. Sci. 2021, 3, e82. [Google Scholar] [CrossRef]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, Physicochemical Properties of Pea Protein and Its Application in Functional Foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 2593–2605. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.; Corke, H.; Gul, K.; Gan, R.; Fang, Y. The Health Benefits, Functional Properties, Modifications, and Applications of Pea (Pisum sativum L.) Protein: Current Status, Challenges, and Perspectives. Comp. Rev. Food Sci. Food Safe 2020, 19, 1835–1876. [Google Scholar] [CrossRef]
- An, N.; Li, X.; Ji, G.; Liu, J.; Zhu, X.; Li, N.; Wang, Z.; Mu, Z.; Liu, H. A Comprehensive Review on Composition to Application of Pea Protein and Its Components. Int. J. Biol. Macromols. 2024, 282, 137273. [Google Scholar] [CrossRef]
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef]
- Badjona, A.; Bradshaw, R.; Millman, C.; Howarth, M.; Dubey, B. Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules 2023, 28, 5431. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Morton, J.D.; Maes, E.; Kumar, L.; Serventi, L. Exploring Faba Beans (Vicia faba L.): Bioactive Compounds, Cardiovascular Health, and Processing Insights. Crit. Rev. Food Sci. Nutr. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mayer Labba, I.-C.; Frøkiær, H.; Sandberg, A.-S. Nutritional and Antinutritional Composition of Fava Bean (Vicia faba L., Var. Minor) Cultivars. Food Res. Int. 2021, 140, 110038. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Rodríguez, V.A.; López-Hernández, A.A.; López-Cabanillas Lomelí, M.; González-Martínez, B.E.; Vázquez-Rodríguez, J.A. Nutritional Quality of Protein Flours of Fava Bean (Vicia faba L.) and in Vitro Digestibility and Bioaccesibility. Food Chem. 2022, 14, 100303. [Google Scholar] [CrossRef]
- Krause, M.; Sørensen, J.C.; Petersen, I.L.; Duque-Estrada, P.; Cappello, C.; Tlais, A.Z.A.; Di Cagno, R.; Ispiryan, L.; Sahin, A.W.; Arendt, E.K.; et al. Associating Compositional, Nutritional and Techno-Functional Characteristics of Faba Bean (Vicia faba L.) Protein Isolates and Their Production Side-Streams with Potential Food Applications. Foods 2023, 12, 919. [Google Scholar] [CrossRef]
- Tuccillo, F.; Kantanen, K.; Wang, Y.; Martin Ramos Diaz, J.; Pulkkinen, M.; Edelmann, M.; Knaapila, A.; Jouppila, K.; Piironen, V.; Lampi, A.-M.; et al. The Flavor of Faba Bean Ingredients and Extrudates: Chemical and Sensory Properties. Food Res. Int. 2022, 162, 112036. [Google Scholar] [CrossRef]
- Khvostenko, K.; Muñoz-Pina, S.; García-Hernández, J.; Heredia, A.; Andrés, A. Impact of Fava Bean (Vicia faba) Processing on Quality Characteristics and Digestibility of a Protein-Rich Snack. Foods 2024, 13, 2372. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kidwai, M.K.; Noor, R.; Chawla, P.; Rose, P.K. A Review of Nutritional Profile and Processing of Faba Bean (Vicia faba L.). Legum. Sci. 2022, 4, e129. [Google Scholar] [CrossRef]
- Choi, Y.-M.; Yoon, H.; Shin, M.-J.; Lee, S.; Yi, J.; Jeon, Y.; Wang, X.; Desta, K.T. Nutrient Levels, Bioactive Metabolite Contents, and Antioxidant Capacities of Faba Beans as Affected by Dehulling. Foods 2023, 12, 4063. [Google Scholar] [CrossRef]
- Shi, S.-H.; Lee, S.-S.; Zhu, Y.-M.; Jin, Z.-Q.; Wu, F.-B.; Qiu, C.-W. Comparative Metabolomic Profiling Reveals Key Secondary Metabolites Associated with High Quality and Nutritional Value in Broad Bean (Vicia faba L.). Molecules 2022, 27, 8995. [Google Scholar] [CrossRef]
- Beretta, A.; Manuelli, M.; Cena, H. Favism: Clinical Features at Different Ages. Nutrients 2023, 15, 343. [Google Scholar] [CrossRef] [PubMed]
- Diegues, A.; Simões, P.; Ceriz, T.; Lopes, A.R.; Tomé, E. Favism: A Case Report. Cureus 2022, 14, e23269. [Google Scholar] [CrossRef]
- Lippolis, A.; Roland, W.S.U.; Bocova, O.; Pouvreau, L.; Trindade, L.M. The Challenge of Breeding for Reduced Off-Flavor in Faba Bean Ingredients. Front. Plant Sci. 2023, 14, 1286803. [Google Scholar] [CrossRef]
- Torabian, S.; Zakeri, H.; Farhangi-Abriz, S. Optimizing Faba Bean Cultivation: Assessing Varietal Performance in Spring and Fall. Front. Agron. 2024, 6, 1474528. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Khazaei, H.; Ghaouti, L.; Maalouf, F.; Vandenberg, A.; Link, W.; O’Sullivan, D.M. Conventional and Molecular Breeding Tools for Accelerating Genetic Gain in Faba Bean (Vicia faba L.). Front. Plant Sci. 2021, 12, 744259. [Google Scholar] [CrossRef]
- Duan, S.-C.; Kwon, S.-J.; Eom, S.-H. Effect of Thermal Processing on Color, Phenolic Compounds, and Antioxidant Activity of Faba Bean (Vicia faba L.) Leaves and Seeds. Antioxidants 2021, 10, 1207. [Google Scholar] [CrossRef] [PubMed]
- Parvin, S.; Uddin, S.; Tausz-Posch, S.; Armstrong, R.; Tausz, M. Carbon Sink Strength of Nodules but Not Other Organs Modulates Photosynthesis of Faba Bean (Vicia faba) Grown under Elevated [CO2] and Different Water Supply. New Phytol. 2020, 227, 132–145. [Google Scholar] [CrossRef]
- Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Obeme-Nmom, J.I.; Agboinghale, P.E.; Aguchem, R.N.; Nechi, R.N.; Lammi, C. Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits. Nutrients 2021, 13, 3266. [Google Scholar] [CrossRef]
- Boschin, G.; Scigliuolo, G.M.; Resta, D.; Arnoldi, A. Optimization of the Enzymatic Hydrolysis of Lupin (Lupinus) Proteins for Producing ACE-Inhibitory Peptides. J. Agric. Food Chem. 2014, 62, 1846–1851. [Google Scholar] [CrossRef]
- Tahmasian, A.; Broadbent, J.A.; Juhász, A.; Nye-Wood, M.; Le, T.T.; Bose, U.; Colgrave, M.L. Evaluation of Protein Extraction Methods for In-Depth Proteome Analysis of Narrow-Leafed Lupin (Lupinus angustifolius) Seeds. Food Chem. 2022, 367, 130722. [Google Scholar] [CrossRef]
- Pihlanto, A.; Mattila, P.; Mäkinen, S.; Pajari, A.-M. Bioactivities of Alternative Protein Sources and Their Potential Health Benefits. Food Funct. 2017, 8, 3443–3458. [Google Scholar] [CrossRef] [PubMed]
- Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Crit. Rev. Food Sci. Nutr. 2016, 56, 835–857. [Google Scholar] [CrossRef] [PubMed]
- Bähr, M.; Fechner, A.; Krämer, J.; Kiehntopf, M.; Jahreis, G. Lupin Protein Positively Affects Plasma LDL Cholesterol and LDL: HDL Cholesterol Ratio in Hypercholesterolemic Adults after Four Weeks of Supplementation: A Randomized, Controlled Crossover Study. Nutr. J. 2013, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Rosa Lovati, M.; Manzoni, C.; Castiglioni, S.; Parolari, A.; Magni, C.; Duranti, M. Lupin Seed γ-Conglutin Lowers Blood Glucose in Hyperglycaemic Rats and Increases Glucose Consumption of HepG2 Cells. Br. J. Nutr. 2012, 107, 67–73. [Google Scholar] [CrossRef]
- Schutkowski, A.; Hirche, F.; Geissler, S.; Radtke, J.; Stangl, G.I. Additive Effects of Lupin Protein and Phytic Acid on Aortic Calcification in ApoE Deficient Mice. J. Clin. Transl. Endocrinol. 2015, 2, 6–13. [Google Scholar] [CrossRef]
- Radtke, J.; Geissler, S.; Schutkowski, A.; Brandsch, C.; Kluge, H.; Duranti, M.M.; Keller, S.; Jahreis, G.; Hirche, F.; Stangl, G.I. Lupin Protein Isolate versus Casein Modifies Cholesterol Excretion and mRNA Expression of Intestinal Sterol Transporters in a Pig Model. Nutr. Metab. 2014, 11, 9. [Google Scholar] [CrossRef]
- Lima-Cabello, E.; Alché, J.D.; Morales-Santana, S.; Clemente, A.; Jimenez-Lopez, J.C. Narrow-Leafed Lupin (Lupinus angustifolius L.) Seeds Gamma-Conglutin Is an Anti-Inflammatory Protein Promoting Insulin Resistance Improvement and Oxidative Stress Amelioration in PANC-1 Pancreatic Cell-Line. Antioxidants 2019, 9, 12. [Google Scholar] [CrossRef]
- Viveros, A.; Centeno, C.; Arija, I.; Brenes, A. Cholesterol-Lowering Effects of Dietary Lupin (Lupinus albus var multolupa) in Chicken Diets. Poult. Sci. 2007, 86, 2631–2638. [Google Scholar] [CrossRef]
- Bertoglio, J.C.; Calvo, M.A.; Hancke, J.L.; Burgos, R.A.; Riva, A.; Morazzoni, P.; Ponzone, C.; Magni, C.; Duranti, M. Hypoglycemic Effect of Lupin Seed γ-Conglutin in Experimental Animals and Healthy Human Subjects. Fitoterapia 2011, 82, 933–938. [Google Scholar] [CrossRef]
- Fontanari, G.G.; Batistuti, J.P.; Cruz, R.J.D.; Saldiva, P.H.N.; Arêas, J.A.G. Cholesterol-Lowering Effect of Whole Lupin (Lupinus albus) Seed and Its Protein Isolate. Food Chem. 2012, 132, 1521–1526. [Google Scholar] [CrossRef]
- Elbandy, M.; Rho, J.-R. New Flavone-Di-C-Glycosides from the Seeds of Egyptian Lupin (Lupinus termis). Phytochem. Lett. 2014, 9, 127–131. [Google Scholar] [CrossRef]
- Ruiz-López, M.A.; Barrientos-Ramírez, L.; García-López, P.M.; Valdés-Miramontes, E.H.; Zamora-Natera, J.F.; Rodríguez-Macias, R.; Salcedo-Pérez, E.; Bañuelos-Pineda, J.; Vargas-Radillo, J.J. Nutritional and Bioactive Compounds in Mexican Lupin Beans Species: A Mini-Review. Nutrients 2019, 11, 1785. [Google Scholar] [CrossRef]
- Johnson, S.K.; Chua, V.; Hall, R.S.; Baxter, A.L. Lupin Kernel Fibre Foods Improve Bowel Function and Beneficially Modify Some Putative Faecal Risk Factors for Colon Cancer in Men. Br. J. Nutr. 2006, 95, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Kamran, F.; Phillips, M.; Reddy, N. Functional Properties of Australian Blue Lupin (Lupinus angustifolius) Protein and Biological Activities of Protein Hydrolysates. Legum. Sci. 2021, 3, e65. [Google Scholar] [CrossRef]
- Lee, Y.P.; Mori, T.A.; Puddey, I.B.; Sipsas, S.; Ackland, T.R.; Beilin, L.J.; Hodgson, J.M. Effects of Lupin Kernel Flour–Enriched Bread on Blood Pressure: A Controlled Intervention Study. Am. J. Clin. Nutr. 2009, 89, 766–772. [Google Scholar] [CrossRef]
- Belski, R.; Mori, T.A.; Puddey, I.B.; Sipsas, S.; Woodman, R.J.; Ackland, T.R.; Beilin, L.J.; Dove, E.R.; Carlyon, N.B.; Jayaseena, V.; et al. Effects of Lupin-Enriched Foods on Body Composition and Cardiovascular Disease Risk Factors: A 12-Month Randomized Controlled Weight Loss Trial. Int. J. Obes. 2011, 35, 810–819. [Google Scholar] [CrossRef]
- Skalkos, S.; Moschonis, G.; Thomas, C.J.; McMillan, J.; Kouris-Blazos, A. Effect of Lupin-Enriched Biscuits as Substitute Mid-Meal Snacks on Post-Prandial Interstitial Glucose Excursions in Post-Surgical Hospital Patients with Type 2 Diabetes. Nutrients 2020, 12, 1239. [Google Scholar] [CrossRef]
- Bouchoucha, R.; Kacem Ben, M.; Bouchoucha, M.; Akrout, M.; Feki, M.; Kaabachi, N.; Raies, A.; Slimane, H. Anti-Hyperglycemic and Anti-Hyperlipidemic Effects of Lupinus Albus in Type 2 Diabetic Patients: A Randomized Double-Blind, Placebo-Controlled Clinical Trial. Int. J. Pharmacol. 2016, 12, 830–837. [Google Scholar] [CrossRef]
- Ward, N.C.; Mori, T.A.; Beilin, L.J.; Johnson, S.; Williams, C.; Gan, S.K.; Puddey, I.B.; Woodman, R.; Phillips, M.; Connolly, E.; et al. The Effect of Regular Consumption of Lupin-Containing Foods on Glycaemic Control and Blood Pressure in People with Type 2 Diabetes Mellitus. Food Funct. 2020, 11, 741–747. [Google Scholar] [CrossRef]
- Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The Health Benefits of Sweet Lupin Seed Flours and Isolated Proteins. J. Funct. Foods 2015, 18, 550–563. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Álvarez-Sánchez, N.; Álvarez-Ríos, A.I.; Santos-Sánchez, G.; Pedroche, J.; Millán, F.; Carrera Sánchez, C.; Fernández-Pachón, M.S.; Millán-Linares, M.C.; Martínez-López, A.; et al. Safety and Efficacy of a Beverage Containing Lupine Protein Hydrolysates on the Immune, Oxidative and Lipid Status in Healthy Subjects: An Intervention Study (the Lupine-1 Trial). Mol. Nutr. Food Res. 2021, 65, 2100139. [Google Scholar] [CrossRef]
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial Hemp Seed: From the Field to Value-Added Food Ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- El-Sohaimy, S.A.; Androsova, N.V.; Toshev, A.D.; El Enshasy, H.A. Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants 2022, 11, 2825. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Arango, S.; Kojić, J.; Perović, L.; Đermanović, B.; Stojanov, N.; Sikora, V.; Tomičić, Z.; Raffrenato, E.; Bailoni, L. Chemical Characterization of 29 Industrial Hempseed (Cannabis sativa L.) Varieties. Foods 2024, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Bhetwal, P.; Umar, M.; Anal, A.K. Enhanced Functional Characteristics and Digestibility of Blends of Hemp Protein Hydrolysate and Pea Protein Isolate. J. Food Meas. Charact. 2024, 18, 7112–7123. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A.; Przygodzka, D.; Łysakowska, P. Hemp Seed (Cannabis sativa L.) Enriched Pasta: Physicochemical Properties and Quality Evaluation. PLoS ONE 2021, 16, e0248790. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Y.L. Processing, Nutrition, and Functionality of Hempseed Protein: A Review. Comp. Rev. Food Sci. Food Safe 2019, 18, 936–952. [Google Scholar] [CrossRef]
- Capcanari, T.; Covaliov, E.; Negoița, C.; Siminiuc, R.; Chirsanova, A.; Reșitca, V.; Țurcanu, D. Hemp Seed Cake Flour as a Source of Proteins, Minerals and Polyphenols and Its Impact on the Nutritional, Sensorial and Technological Quality of Bread. Foods 2023, 12, 4327. [Google Scholar] [CrossRef]
- Tănase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp Seeds (Cannabis sativa L.) as a Valuable Source of Natural Ingredients for Functional Foods—A Review. Molecules 2024, 29, 2097. [Google Scholar] [CrossRef]
- Rizzo, G.; Storz, M.A.; Calapai, G. The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods 2023, 12, 3505. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136364-5. Available online: https://openknowledge.fao.org/items/11a4abd8-4e09-4bef-9c12-900fb4605a02 (accessed on 9 March 2025).
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Procházka, P.; Abrham, J.; Cerveny, J.; Soukupová, J.; Ouma, C.N.; Mullen, K.J.; Sanova, P.; Smutka, L. Algae as a Source of Protein in the Sustainable Food and Gastronomy Industry. Front. Sustain. Food Syst. 2023, 7, 1256473. [Google Scholar] [CrossRef]
- Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. High Variability in Nutritional Value and Safety of Commercially. Available Chlorella and Spirulina Biomass Indicates the Need for Smart Production Strategies. Bioresour. Tech. 2019, 275, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Sandgruber, F.; Höger, A.-L.; Kunze, J.; Schenz, B.; Griehl, C.; Kiehntopf, M.; Kipp, K.; Kühn, J.; Stangl, G.I.; Lorkowski, S.; et al. Impact of Regular Intake of Microalgae on Nutrient Supply and Cardiovascular Risk Factors: Results from the NovAL Intervention Study. Nutrients 2023, 15, 1645. [Google Scholar] [CrossRef] [PubMed]
- Čmiková, N.; Kowalczewski, P.Ł.; Kmiecik, D.; Tomczak, A.; Drożdżyńska, A.; Ślachciński, M.; Królak, J.; Kačániová, M. Characterization of Selected Microalgae Species as Potential Sources of Nutrients and Antioxidants. Foods 2024, 13, 2160. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.; McGinn, P. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Lane, T.W. Barriers to Microalgal Mass Cultivation. Curr. Opin. Biotechnol. 2022, 73, 323–328. [Google Scholar] [CrossRef]
- Wild, K.J.; Steingaß, H.; Rodehutscord, M. Variability in Nutrient Composition and in Vitro Crude Protein Digestibility of 16 Microalgae Products. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1306–1319. [Google Scholar] [CrossRef]
- Riccio, G.; Lauritano, C. Microalgae with Immunomodulatory Activities. Mar. Drugs 2019, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Okumura, E.; Fujishima, M.; Watanabe, F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef]
- Edelmann, M.; Aalto, S.; Chamlagain, B.; Kariluoto, S.; Piironen, V. Riboflavin, Niacin, Folate and Vitamin B12 in Commercial Microalgae Powders. J. Food Compos. Anal. 2019, 82, 103226. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Bioremediation of Heavy Metals Using Microalgae: Recent Advances and Mechanisms. Bioresour. Tech. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Trentacoste, E.M.; Martinez, A.M.; Zenk, T. The Place of Algae in Agriculture: Policies for Algal Biomass Production. Photosynth. Res. 2015, 123, 305–315. [Google Scholar] [CrossRef]
- Wang, C.; Onyeaka, H.; Miri, T.; Soltani, F. Chlorella vulgaris as a Food Substitute: Applications and Benefits in the Food Industry. J. Food Sci. 2024, 89, 8231–8247. [Google Scholar] [CrossRef]
- Moran, L.; Bou, G.; Aldai, N.; Ciardi, M.; Morillas-España, A.; Sánchez-Zurano, A.; Barron, L.J.R.; Lafarga, T. Characterisation of the Volatile Profile of Microalgae and Cyanobacteria Using Solid-Phase Microextraction Followed by Gas Chromatography Coupled to Mass Spectrometry. Sci. Rep. 2022, 12, 3661. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Microalgae: Bioactive Composition, Health Benefits, Safety and Prospects as Potential High-Value Ingredients for the Functional Food Industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.L.; Soares, J.; Coimbra, J.S.D.R.; Leite, M.D.O.; Albino, L.F.T.; Martins, M.A. Microalgae Proteins: Production, Separation, Isolation, Quantification, and Application in Food and Feed. Crit. Rev. Food Sci. Nutr. 2021, 61, 1976–2002. [Google Scholar] [CrossRef]
- Diaz, C.J.; Douglas, K.J.; Kang, K.; Kolarik, A.L.; Malinovski, R.; Torres-Tiji, Y.; Molino, J.V.; Badary, A.; Mayfield, S.P. Developing Algae as a Sustainable Food Source. Front. Nutr. 2023, 9, 1029841. [Google Scholar] [CrossRef]
- Zohir, W.F.; Makhlof, M.E.M.; Abdallah, A.M.; El-Sheekh, M.M. Algae Cultivation Systems. In Value-Added Products from Algae; Abomohra, A., Ende, S., Eds.; Springer: Cham, Switzerland, 2024; pp. 11–41. ISBN 978-3-031-42025-2. [Google Scholar]
- Pereira, L.; Cotas, J.; Gonçalves, A. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024, 16, 1123. [Google Scholar] [CrossRef]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9, 1382. [Google Scholar] [CrossRef] [PubMed]
- Parjikolaei, B.R.; Bruhn, A.; Eybye, K.L.; Larsen, M.M.; Rasmussen, M.B.; Christensen, K.V.; Fretté, X.C. Valuable Biomolecules from Nine North Atlantic Red Macroalgae: Amino Acids, Fatty Acids, Carotenoids, Minerals and Metals. Nat. Resour. J. 2016, 7, 157–183. [Google Scholar] [CrossRef]
- Ismail, M.M.; Alotaibi, B.S.; EL-Sheekh, M.M. Therapeutic Uses of Red Macroalgae. Molecules 2020, 25, 4411. [Google Scholar] [CrossRef]
- Rogel-Castillo, C.; Latorre-Castañeda, M.; Muñoz-Muñoz, C.; Agurto-Muñoz, C. Seaweeds in Food: Current Trends. Plants 2023, 12, 2287. [Google Scholar] [CrossRef] [PubMed]
- García-Casal, M.N.; Pereira, A.C.; Leets, I.; Ramírez, J.; Quiroga, M.F. High Iron Content and Bioavailability in Humans from Four Species of Marine Algae. J. Nutr. 2007, 137, 2691–2695. [Google Scholar] [CrossRef]
- Echave, J.; Otero, P.; Garcia-Oliveira, P.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; Simal-Gandara, J.; Prieto, M.A. Seaweed-Derived Proteins and Peptides: Promising Marine Bioactives. Antioxidants 2022, 11, 176. [Google Scholar] [CrossRef]
- Vaughan, K.; Ranawana, V.; Cooper, D.; Aceves-Martins, M. Effect of Brown Seaweed on Plasma Glucose in Healthy, at-Risk, and Type 2 Diabetic Individuals: Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 80, 1194–1205. [Google Scholar] [CrossRef]
- Kim, Y.R.; Park, M.J.; Park, S.; Kim, J.Y. Brown Seaweed Consumption as a Promising Strategy for Blood Glucose Management: A Comprehensive Meta-Analysis. Nutrients 2023, 15, 4987. [Google Scholar] [CrossRef]
- Paz, S.; Rubio, C.; Frías, I.; Gutiérrez, Á.J.; González-Weller, D.; Martín, V.; Revert, C.; Hardisson, A. Toxic Metals (Al, Cd, Pb and Hg) in the Most Consumed Edible Seaweeds in Europe. Chemosphere 2019, 218, 879–884. [Google Scholar] [CrossRef]
- Afonso, N.C.; Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Brown Macroalgae as Valuable Food Ingredients. Antioxidants 2019, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- O’ Brien, R.O.; Hayes, M.; Sheldrake, G.; Tiwari, B.; Walsh, P. Macroalgal Proteins: A Review. Foods 2022, 11, 571. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Mondragón-Portocarrero, A.C.; Rodríguez, J.A.; Lorenzo, J.M.; Santos, E.M. Algae as a Potential Source of Protein Meat Alternatives. Front. Nutr. 2023, 10, 1254300. [Google Scholar] [CrossRef]
- Bog, M.; Appenroth, K.-J.; Sree, K.S. Duckweed (Lemnaceae): Its Molecular Taxonomy. Front. Sustain. Food Syst. 2019, 3, 117. [Google Scholar] [CrossRef]
- Pagliuso, D.; Grandis, A.; Fortirer, J.S.; Camargo, P.; Floh, E.I.S.; Buckeridge, M.S. Duckweeds as Promising Food Feedstocks Globally. Agronomy 2022, 12, 796. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Water Lentil Protein Concentrate from a Mixture of Lemna Gibba and Lemna Minor as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2023, 21, e07903. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, R.; Clark, W.D.; Sharma, J.G.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R. Mass Production of Lemna Minor and Its Amino Acid and Fatty Acid Profiles. Front. Chem. 2018, 6, 479. [Google Scholar] [CrossRef]
- On-Nom, N.; Promdang, P.; Inthachat, W.; Kanoongon, P.; Sahasakul, Y.; Chupeerach, C.; Suttisansanee, U.; Temviriyanukul, P. Wolffia Globosa-Based Nutritious Snack Formulation with High Protein and Dietary Fiber Contents. Foods 2023, 12, 2647. [Google Scholar] [CrossRef]
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a Model Plant System in the Genomics and Postgenomics Era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef]
- Sulaiman, N.S.; Mohd Zaini, H.; Wan Ishak, W.R.; Matanjun, P.; George, R.; Mantihal, S.; Ching, F.F.; Pindi, W. Duckweed Protein: Extraction, Modification, and Potential Application. Food Chem. 2025, 463, 141544. [Google Scholar] [CrossRef]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Nutritional Composition of Edible Insects Consumed in Africa: A Systematic Review. Nutrients 2020, 12, 2786. [Google Scholar] [CrossRef] [PubMed]
- Imathiu, S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Lampová, B.; Kopecká, A.; Šmíd, P.; Kulma, M.; Kurečka, M.; Ogrinc, N.; Heath, D.; Kouřimská, L.; Doskočil, I. Evaluating Protein Quality in Edible Insects: A Comparative Analysis of House Cricket, Yellow Mealworm, and Migratory Locust Using DIAAS Methodologies. LWT 2024, 213, 117062. [Google Scholar] [CrossRef]
- Urbański, J. Hodowla Przemysłowa Owadów—Nowa Gałąź Produkcji Rolnej, Czy Przejściowy Trend?: Owady w Przemyśle Spożywczym. Rys Historyczny, Perspektywy, Kierunki Rozwoju, Status Branży i Sytuacja Prawa w UE. Kosmos 2022, 72, 385–392. [Google Scholar] [CrossRef]
- Quintieri, L.; Nitride, C.; De Angelis, E.; Lamonaca, A.; Pilolli, R.; Russo, F.; Monaci, L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023, 15, 1509. [Google Scholar] [CrossRef]
- Toti, E.; Massaro, L.; Kais, A.; Aiello, P.; Palmery, M.; Peluso, I. Entomophagy: A Narrative Review on Nutritional Value, Safety, Cultural Acceptance and A Focus on the Role of Food Neophobia in Italy. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 628–643. [Google Scholar] [CrossRef]
- Vangsoe, M.T.; Thogersen, R.; Bertram, H.C.; Heckmann, L.-H.L.; Hansen, M. Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial. Nutrients 2018, 10, 1357. [Google Scholar] [CrossRef]
- Latunde-Dada, G.O.; Yang, W.; Vera Aviles, M. In Vitro Iron Availability from Insects and Sirloin Beef. J. Agric. Food Chem. 2016, 64, 8420–8424. [Google Scholar] [CrossRef]
- Kosečková, P.; Zvěřina, O.; Pěchová, M.; Krulíková, M.; Duborská, E.; Borkovcová, M. Mineral Profile of Cricket Powders, Some Edible Insect Species and Their Implication for Gastronomy. J. Food Compos. Anal. 2022, 107, 104340. [Google Scholar] [CrossRef]
- Puteri, B.; Jahnke, B.; Zander, K. Booming the Bugs: How Can Marketing Help Increase Consumer Acceptance of Insect-Based Food in Western Countries? Appetite 2023, 187, 106594. [Google Scholar] [CrossRef]
- Sikora, D.; Proch, J.; Niedzielski, P.; Rzymski, P. Elemental Content of the Commercial Insect-Based Products. Available in the European Union. J. Food Compos. Anal. 2023, 121, 105367. [Google Scholar] [CrossRef]
- Matandirotya, N.R.; Filho, W.L.; Mahed, G.; Maseko, B.; Murandu, C.V. Edible Insects Consumption in Africa towards Environmental Health and Sustainable Food Systems: A Bibliometric Study. Int. J. Environ. Res. Public Health 2022, 19, 14823. [Google Scholar] [CrossRef]
- Omuse, E.R.; Tonnang, H.E.Z.; Yusuf, A.A.; Machekano, H.; Egonyu, J.P.; Kimathi, E.; Mohamed, S.F.; Kassie, M.; Subramanian, S.; Onditi, J.; et al. The Global Atlas of Edible Insects: Analysis of Diversity and Commonality Contributing to Food Systems and Sustainability. Sci. Rep. 2024, 14, 5045. [Google Scholar] [CrossRef]
- Edible Insects—Future Prospects for Food and Feed Security. Available online: https://www.fao.org/fsnforum/resources/reports-and-briefs/edible-insects-future-prospects-food-and-feed-security (accessed on 11 March 2025).
- Oonincx, D.G.A.B.; De Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and Hurdles of Edible Insects for Food and Feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food Waste Valorisation and Circular Economy Concepts in Insect Production and Processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef]
- Liceaga, A.M.; Aguilar-Toalá, J.E.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Insects as an Alternative Protein Source. Annu. Rev. Food Sci. Technol. 2022, 13, 19–34. [Google Scholar] [CrossRef]
- Matassa, S.; Boon, N.; Pikaar, I.; Verstraete, W. Microbial Protein: Future Sustainable Food Supply Route with Low Environmental Footprint. Microb. Biotechnol. 2016, 9, 568–575. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent Advances and Challenges in Single Cell Protein (SCP) Technologies for Food and Feed Production. NPJ Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Jahn, L.J.; Rekdal, V.M.; Sommer, M.O.A. Microbial Foods for Improving Human and Planetary Health. Cell 2023, 186, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guan, X.; Yu, S.; Zhou, J.; Chen, J. Production of Meat Alternatives Using Live Cells, Cultures and Plant Proteins. Curr. Opin. Food Sci. 2022, 43, 43–52. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single Cell Protein: Sources, Mechanism of Production, Nutritional Value and Its Uses in Aquaculture Nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Bratosin, B.C.; Darjan, S.; Vodnar, D.C. Single Cell Protein: A Potential Substitute in Human and Animal Nutrition. Sustainability 2021, 13, 9284. [Google Scholar] [CrossRef]
- He, J.; Tang, M.; Zhong, F.; Deng, J.; Li, W.; Zhang, L.; Lin, Q.; Xia, X.; Li, J.; Guo, T. Current Trends and Possibilities of Typical Microbial Protein Production Approaches: A Review. Crit. Rev. Biotechnol. 2024, 44, 1515–1532. [Google Scholar] [CrossRef] [PubMed]
- Ugbogu, E.A.; Ugbogu, O.C. A Review of Microbial Protein Production: Prospects and Challenges. FUW Trends Sci. Technol. J. 2016, 1, 182–185. [Google Scholar]
- Singh, A.K.; Prajapati, K.S.; Shuaib, M.; Kushwaha, P.P.; Kumar, S. Microbial Proteins: A Potential Source of Protein. In Functional Foods and Nutraceuticals; Egbuna, C., Dable Tupas, G., Eds.; Springer: Cham, Switzerland, 2020; pp. 139–147. ISBN 978-3-030-42318-6. [Google Scholar]
- Knychala, M.M.; Boing, L.A.; Ienczak, J.L.; Trichez, D.; Stambuk, B.U. Precision Fermentation as an Alternative to Animal Protein, a Review. Fermentation 2024, 10, 315. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Meyer, A.S.; Arnau, J. The Next Food Revolution Is Here: Recombinant Microbial Production of Milk and Egg Proteins by Precision Fermentation. Annu. Rev. Food Sci. 2024, 15, 173–187. [Google Scholar] [CrossRef]
- Novel Food—EFSA. Available online: https://www.efsa.europa.eu/en/topics/topic/novel-food (accessed on 26 January 2025).
- Woern, C.; Grossmann, L. Microbial Gas Fermentation Technology for Sustainable Food Protein Production. Biotechnol. Adv. 2023, 69, 108240. [Google Scholar] [CrossRef]
- Azizi, R.; Baggio, A.; Capuano, E.; Pellegrini, N. Protein Transition: Focus on Protein Quality in Sustainable Alternative Sources. Crit. Rev. Food Sci. Nutr. 2024, 1–21. [Google Scholar] [CrossRef]
- You, X.-Y.; Ding, Y.; Bu, Q.-Y.; Wang, Q.-H.; Zhao, G.-P. Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins. Foods 2024, 13, 671. [Google Scholar] [CrossRef]
- Dean, D.; Rombach, M.; Koning, W.D.; Vriesekoop, F.; Satyajaya, W.; Yuliandari, P.; Anderson, M.; Mongondry, P.; Urbano, B.; Luciano, C.A.G.; et al. Understanding Key Factors Influencing Consumers’ Willingness to Try, Buy, and Pay a Price Premium for Mycoproteins. Nutrients 2022, 14, 3292. [Google Scholar] [CrossRef]
- Li, K.; Qiao, K.; Xiong, J.; Guo, H.; Zhang, Y. Nutritional Values and Bio-Functional Properties of Fungal Proteins: Applications in Foods as a Sustainable Source. Foods 2023, 12, 4388. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Ahmed, M.A.; Verma, A.K.; Umaraw, P.; Mehta, N.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Lee, S.-J.; et al. Technological Interventions in Improving the Functionality of Proteins during Processing of Meat Analogs. Front. Nutr. 2022, 9, 1044024. [Google Scholar] [CrossRef]
- Liu, Y.; Aimutis, W.R.; Drake, M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024, 13, 1010. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Pan, J.H.; Kim, D.; Heo, W.; Shin, E.C.; Kim, Y.J.; Shim, Y.Y.; Reaney, M.J.T.; Ko, S.; Hong, S.; et al. Mycoproteins and Their Health-promoting Properties: Fusarium Species and Beyond. Comp. Rev. Food Sci. Food Safe 2024, 23, e13365. [Google Scholar] [CrossRef]
- Lonchamp, J.; Stewart, K.; Munialo, C.D.; Evans, L.; Akintoye, M.; Gordon, S.; Clegg, P.S.; Willoughby, N.; Euston, S.R. Mycoprotein as Novel Functional Ingredient: Mapping of Functionality, Composition and Structure throughout the Quorn Fermentation Process. Food Chem. 2022, 396, 133736. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.; Leung, G.-K. The Effect of Plant-Based and Mycoprotein-Based Meat Substitute Consumption on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis of Controlled Intervention Trials. Dietetics 2023, 2, 104–122. [Google Scholar] [CrossRef]
- Khan, R.; Brishti, F.H.; Arulrajah, B.; Goh, Y.M.; Abd Rahim, M.H.; Karim, R.; Hajar-Azhari, S.; Kin Kit, S.; Anwar, F.; Saari, N. Mycoprotein as a Meat Substitute: Production, Functional Properties, and Current Challenges-a Review. Int. J. Food Sci. 2024, 59, 522–544. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Khosravi-Darani, K.; Hosseini, H.; Farshi, P.; Reihani, S.F.S. Mycoproteins as Safe Meat Substitutes. J. Clean. Prod. 2020, 253, 119958. [Google Scholar] [CrossRef]
- Finnigan, T.; Mach, K.; Edlin, A. Mycoprotein: A Healthy New Protein with a Low Environmental Impact. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 539–566. ISBN 978-0-323-91652-3. [Google Scholar]
- Mazac, R.; Järviö, N.; Tuomisto, H.L. Environmental and Nutritional Life Cycle Assessment of Novel Foods in Meals as Transformative Food for the Future. Sci. Total Environ. 2023, 876, 162796. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat Alternatives: Life Cycle Assessment of Most Known Meat Substitutes. Int. J. Life Cycle Assess 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Andersson, D.; Ferreira, J.A.; Taherzadeh, M.J. Mycoprotein: Environmental Impact and Health Aspects. World J. Microbiol. Biotechnol. 2019, 35, 147. [Google Scholar] [CrossRef]
- Program, H.F. Human Food Made with Cultured Animal Cells. Available online: https://www.fda.gov/food/food-ingredients-packaging/human-food-made-cultured-animal-cells (accessed on 26 January 2025).
- FDA Gives “Green Light” to Cultivated Meat Product for the First Time. Available online: http://www.technologynetworks.com/applied-sciences/news/fda-gives-green-light-to-cultivated-meat-product-for-the-first-time-367700 (accessed on 26 January 2025).
- Malila, Y.; Owolabi, I.O.; Chotanaphuti, T.; Sakdibhornssup, N.; Elliott, C.T.; Visessanguan, W.; Karoonuthaisiri, N.; Petchkongkaew, A. Current Challenges of Alternative Proteins as Future Foods. NPJ Sci. Food 2024, 8, 53. [Google Scholar] [CrossRef]
- Shaikh, S.; Lee, E.; Ahmad, K.; Ahmad, S.-S.; Chun, H.; Lim, J.; Lee, Y.; Choi, I. Cell Types Used for Cultured Meat Production and the Importance of Myokines. Foods 2021, 10, 2318. [Google Scholar] [CrossRef] [PubMed]
- Djisalov, M.; Knežić, T.; Podunavac, I.; Živojević, K.; Radonic, V.; Knežević, N.Ž.; Bobrinetskiy, I.; Gadjanski, I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. Biology 2021, 10, 204. [Google Scholar] [CrossRef]
- Fraeye, I.; Kratka, M.; Vandenburgh, H.; Thorrez, L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front. Nutr. 2020, 7, 35. [Google Scholar] [CrossRef]
- Kim, M.; Jung, H.Y.; Jo, C. Fundamental Study on Structural Formation, Amino Acids and Nucleotide-Related Compounds of Cultivated Meat from 3D-Cultured Pig Muscle Stem Cells. Food Sci. Biotechnol. 2025, 34, 457–469. [Google Scholar] [CrossRef]
- Joo, S.-T.; Choi, J.-S.; Hur, S.-J.; Kim, G.-D.; Kim, C.-J.; Lee, E.-Y.; Bakhsh, A.; Hwang, Y.-H. A Comparative Study on the Taste Characteristics of Satellite Cell Cultured Meat Derived from Chicken and Cattle Muscles. Food Sci. Anim. Resour. 2022, 42, 175–185. [Google Scholar] [CrossRef]
- Amin, S.E.; Qazi, Z.A.; Karim, A.; Masood, S.; Soomro, M.B.; Soomro, F.; Bakhtawar, N.; Anam, M.; Gul, M.; Ilyas, M.A.; et al. Identification of Lab Grown Meat and Its Nutritional Impacts on Human Health. Vet. Res. 2021, 14, 34–39. [Google Scholar]
- Chriki, S.; Hocquette, J.-F. The Myth of Cultured Meat: A Review. Front. Nutr. 2020, 7, 7. [Google Scholar] [CrossRef]
- Treich, N. Cultured Meat: Promises and Challenges. Environ. Resour. Econ. 2021, 79, 33–61. [Google Scholar] [CrossRef]
- Sikora, D.; Rzymski, P. Assessment of the Potential Nutritional Value of Cell-Cultured Chicken Meat in Light of European Dietary Recommendations. J. Food Compos. Anal. 2024, 135, 106663. [Google Scholar] [CrossRef]
- Franceković, P.; García-Torralba, L.; Sakoulogeorga, E.; Vučković, T.; Perez-Cueto, F.J.A. How Do Consumers Perceive Cultured Meat in Croatia, Greece, and Spain? Nutrients 2021, 13, 1284. [Google Scholar] [CrossRef]
- Mancini, M.C.; Antonioli, F. Exploring Consumers’ Attitude towards Cultured Meat in Italy. Meat Sci. 2019, 150, 101–110. [Google Scholar] [CrossRef]
- Sikora, D.; Rzymski, P. The Heat about Cultured Meat in Poland: A Cross-Sectional Acceptance Study. Nutrients 2023, 15, 4649. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Sinke, P.; Swartz, E.; Sanctorum, H.; Van Der Giesen, C.; Odegard, I. Ex-Ante Life Cycle Assessment of Commercial-Scale Cultivated Meat Production in 2030. Int. J. Life Cycle Assess 2023, 28, 234–254. [Google Scholar] [CrossRef]
- Song, H.; Chen, P.; Sun, Y.; Sheng, J.; Zhou, L. Knowledge Maps and Emerging Trends in Cell-Cultured Meat since the 21st Century Research: Based on Different National Perspectives of Spatial-Temporal Analysis. Foods 2024, 13, 2070. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Chriki, S.; Fournier, D.; Ellies-Oury, M.-P. Review: Will “Cultured Meat” Transform Our Food System towards More Sustainability? Animal 2025, 19, 101145. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Cai, L.; Zhou, G.; Li, C. Comparison of Nutritional Profile between Plant-Based Meat Analogues and Real Meat: A Review Focusing on Ingredients, Nutrient Contents, Bioavailability, and Health Impacts. Int. Food Res. 2024, 187, 114460. [Google Scholar] [CrossRef] [PubMed]
- Roser, M. How Many Animals Get Slaughtered Every Day? Our World in Data 2023. Available online: https://ourworldindata.org/how-many-animals-get-slaughtered-every-day (accessed on 26 January 2025).
- Śledztwo na fermie kur niosek Fermy Drobiu Woźniak. Raport Dobrostanowy. 2023. Available online: https://storage.googleapis.com/otwarteklatki-wp-media/sites/1/2023/09/Raport-Fermy-Drobiu-Wozniak-2023.pdf (accessed on 26 January 2025).
- Busch, G.; Spiller, A.; Kühl, S. Review: Ethical Responsibilities and Transformation Strategies of Focal Companies in the Meat Supply Chain: The Implementation Dilemma. Animal 2023, 17, 100915. [Google Scholar] [CrossRef]
- Janssen, M.; Rödiger, M.; Hamm, U. Labels for Animal Husbandry Systems Meet Consumer Preferences: Results from a Meta-Analysis of Consumer Studies. J. Agric. Environ. Ethics 2016, 29, 1071–1100. [Google Scholar] [CrossRef]
- Evolving Appetites: An in-Depth Look at European Attitudes towards Plant-Based Eating. Available online: https://proveg.org/report/evolving-appetites-an-in-depth-look-at-european-attitudes-towards-plant-based-eating/ (accessed on 9 March 2025).
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A.; Bhat, H.F. Technological, Regulatory, and Ethical Aspects of In Vitro Meat: A Future Slaughter-Free Harvest. Comp. Rev. Food Sci. Food Safe 2019, 18, 1192–1208. [Google Scholar] [CrossRef]
- Delvendahl, N.; Rumpold, B.A.; Langen, N. Edible Insects as Food–Insect Welfare and Ethical Aspects from a Consumer Perspective. Insects 2022, 13, 121. [Google Scholar] [CrossRef]
- Fukuda, E.P.; Carrasco, M.N.; Perez, A.J.; Fischer, B.; Drewery, M.L. US Consumer Perceptions of Insects as Livestock Feed: Ethical Considerations for Insects. J. Insects Food Feed 2023, 10, 125–139. [Google Scholar] [CrossRef]
- Romanello, M.; Napoli, C.D.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Walawender, M.; Ali, Z.; Ameli, N.; Ayeb-Karlsson, S.; et al. The 2023 Report of the Lancet Countdown on Health and Climate Change: The Imperative for a Health-Centred Response in a World Facing Irreversible Harms. Lancet 2023, 402, 2346–2394. [Google Scholar] [CrossRef] [PubMed]
- Recanati, F.; Allievi, F.; Scaccabarozzi, G.; Espinosa, T.; Dotelli, G.; Saini, M. Global Meat Consumption Trends and Local Deforestation in Madre de Dios: Assessing Land Use Changes and Other Environmental Impacts. Procedia Eng. 2015, 118, 630–638. [Google Scholar] [CrossRef]
- Donoso, V.G.; Hirye, M.C.M.; Gerwenat, C.; Reicher, C. Amazon Deforestation and Global Meat Consumption Trends: An Assessment of Land Use Change and Market Data from Rondônia That Shows Why We Should Consider Changing Our Diets. Sustainability 2024, 16, 4526. [Google Scholar] [CrossRef]
- Wiebe, R.A.; Wilcove, D.S. Global Biodiversity Loss from Outsourced Deforestation. Nature 2025, 639, 389–394. [Google Scholar] [CrossRef]
- Steinfeld, H. Livestock’s Long Shadow Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability 2024, 16, 7701. [Google Scholar] [CrossRef]
- Porto Costa, M.; Saget, S.; Zimmermann, B.; Petig, E.; Angenendt, E.; Rees, R.M.; Chadwick, D.; Gibbons, J.; Shrestha, S.; Williams, M.; et al. Environmental and Land Use Consequences of Replacing Milk and Beef with Plant-Based Alternatives. J. Clean. Prod. 2023, 424, 138826. [Google Scholar] [CrossRef]
- Scarborough, P.; Clark, M.; Cobiac, L.; Papier, K.; Knuppel, A.; Lynch, J.; Harrington, R.; Key, T.; Springmann, M. Vegans, Vegetarians, Fish-Eaters and Meat-Eaters in the UK Show Discrepant Environmental Impacts. Nat. Food 2023, 4, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Ristic, D.; Pleissner, D.; Tuomisto, H.L.; Parniakov, O.; Heinz, V. Meat Substitutes: Resource Demands and Environmental Footprints. Resour. Conserv. Recycl. 2023, 190, 106831. [Google Scholar] [CrossRef] [PubMed]
- Gallani, V.; Klapp, A.-L. Building Bridges Between Habit and Health. 2024. Available online: https://proveg.org/wp-content/uploads/2024/11/INT_Research_Plant-based-alternatives-comparison_2024_F.V.-2.pdf (accessed on 26 January 2025).
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- IARC Monographs Evaluate Consumption of Red Meat and Processed Meat. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr240_E.pdf (accessed on 9 March 2025).
- Meat, Fish and Dairy Products and the Risk of Cancer. Available online: https://www.wcrf.org/wp-content/uploads/2024/10/Meat-fish-and-dairy-products.pdf (accessed on 9 March 2025).
- Shi, W.; Huang, X.; Schooling, C.M.; Zhao, J.V. Red Meat Consumption, Cardiovascular Diseases, and Diabetes: A Systematic Review and Meta-Analysis. Eur. Heart J. 2023, 44, 2626–2635. [Google Scholar] [CrossRef]
- Plant-Based Diets and Their Impact on Health, Sustainability and the Environment. A Review of the Evidence. Available online: https://iris.who.int/bitstream/handle/10665/349086/WHO-EURO-2021-4007-43766-61591-eng.pdf?sequence=1https://pmc.ncbi.nlm.nih.gov/articles/PMC10516628/ (accessed on 9 March 2025).
- Key, T.J.; Papier, K.; Tong, T.Y.N. Plant-Based Diets and Long-Term Health: Findings from the EPIC-Oxford Study. Proc. Nutr. Soc. 2022, 81, 190–198. [Google Scholar] [CrossRef]
- Wang, T.; Masedunskas, A.; Willett, W.C.; Fontana, L. Vegetarian and Vegan Diets: Benefits and Drawbacks. Eur. Heart J. 2023, 44, 3423–3439. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Muszalska, A.; Wiecanowska, J.; Michałowska, J.; Pastusiak-Zgolińska, K.M.; Polok, I.; Łompieś, K.; Bogdański, P. The Role of the Planetary Diet in Managing Metabolic Syndrome and Cardiovascular Disease: A Narrative Review. Nutrients 2025, 17, 862. [Google Scholar] [CrossRef] [PubMed]
- Beal, T.; Ortenzi, F.; Fanzo, J. Estimated Micronutrient Shortfalls of the EAT–Lancet Planetary Health Diet. Lancet Planet. Health 2023, 7, e233–e237. [Google Scholar] [CrossRef]
- Beal, T.; Massiot, E.; Arsenault, J.E.; Smith, M.R.; Hijmans, R.J. Global Trends in Dietary Micronutrient Supplies and Estimated Prevalence of Inadequate Intakes. PLoS ONE 2017, 12, e0175554. [Google Scholar] [CrossRef]
- Stanton, A.V. Plant-Based Diets–Impacts of Consumption of Little or No Animal-Source Foods on Human Health. Front. Nutr. 2024, 11, 1423925. [Google Scholar] [CrossRef]
- Visioli, F. Redefining Protein Quality: Integrating Health Outcomes and Environmental Impacts in the Plant-Animal Protein Debate. Foods 2024, 13, 4128. [Google Scholar] [CrossRef]
- Glenn, A.J.; Wang, F.; Tessier, A.-J.; Manson, J.E.; Rimm, E.B.; Mukamal, K.J.; Sun, Q.; Willett, W.C.; Rexrode, K.M.; Jenkins, D.J.; et al. Dietary Plant-to-Animal Protein Ratio and Risk of Cardiovascular Disease in 3 Prospective Cohorts. Am. J. Clin. 2024, 120, 1373–1386. [Google Scholar] [CrossRef]
- Ferrari, L.; Panaite, S.-A.; Bertazzo, A.; Visioli, F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar] [CrossRef]
- Kim, I.-S.; Yang, W.-S.; Kim, C.-H. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int. J. Mol. Sci. 2021, 22, 8570. [Google Scholar] [CrossRef]
- Olías, R.; Delgado-Andrade, C.; Padial, M.; Marín-Manzano, M.C.; Clemente, A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods 2023, 12, 2665. [Google Scholar] [CrossRef]
- Soybean, Canada 0.39 kg CO2e/kg—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/agricultural-reports/benchmarks/84e552e2-7277-4330-9971-b89cdfe395b7 (accessed on 9 March 2025).
- Peas Yellow, Dry 0.80 kg CO2e/kg—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/65677465438 (accessed on 9 March 2025).
- Dry Broad Beans, Croatia 1.36 kg CO2e/kg—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/agricultural-reports/benchmarks/6beafbf4-e74d-4d88-b6eb-aefa02bbe6ee (accessed on 9 March 2025).
- Annicchiarico, P.; Manunza, P.; Arnoldi, A.; Boschin, G. Quality of Lupinus albus L. (White lupin) Seed: Extent of Genotypic and Environmental Effects. J. Agric. Food Chem. 2014, 62, 6539–6545. [Google Scholar] [CrossRef]
- Pereira, A.; Ramos, F.; Sanches Silva, A. Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges. Molecules 2022, 27, 8557. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The Future of Lupin as a Protein Crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef]
- Lupin Seeds, Dry 0.57 kg CO2e/kg—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/60497451124 (accessed on 9 March 2025).
- Nath, M.K. Benefits of Cultivating Industrial Hemp (Cannabis sativa ssp. sativa)—A Versatile Plant for a Sustainable Future. Chem. Proc. 2022, 10, 14. [Google Scholar] [CrossRef]
- Meffo Kemda, M.; Marchi, M.; Neri, E.; Marchettini, N.; Niccolucci, V. Environmental Impact Assessment of Hemp Cultivation and Its Seed-Based Food Products. Front. Environ. Sci. 2024, 12, 1342330. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Hempseed, w. Shell 0.74 Kg CO2e/Kg—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/60369549536 (accessed on 9 March 2025).
- Tzachor, A.; Smidt-Jensen, A.; Ramel, A.; Geirsdóttir, M. Environmental Impacts of Large-Scale Spirulina (Arthrospira platensis) Production in Hellisheidi Geothermal Park Iceland: Life Cycle Assessment. Mar. Biotechnol. 2022, 24, 991–1001. [Google Scholar] [CrossRef]
- Seaweed, Live Weight, Farmed 0.70 kg CO2e/kg—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/184849770057 (accessed on 9 March 2025).
- Liu, Y.; Xu, H.; Yu, C.; Zhou, G. Multifaceted Roles of Duckweed in Aquatic Phytoremediation and Bioproducts Synthesis. GCB Bioenergy 2021, 13, 70–82. [Google Scholar] [CrossRef]
- Ros-Baró, M.; Casas-Agustench, P.; Díaz-Rizzolo, D.A.; Batlle-Bayer, L.; Adrià-Acosta, F.; Aguilar-Martínez, A.; Medina, F.-X.; Pujolà, M.; Bach-Faig, A. Edible Insect Consumption for Human and Planetary Health: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 11653. [Google Scholar] [CrossRef]
- Augustin, M.A.; Hartley, C.J.; Maloney, G.; Tyndall, S. Innovation in Precision Fermentation for Food Ingredients. Crit. Rev. Food Sci. Nutr. 2024, 64, 6218–6238. [Google Scholar] [CrossRef]
- Sillman, J.; Uusitalo, V.; Ruuskanen, V.; Ojala, L.; Kahiluoto, H.; Soukka, R.; Ahola, J. A Life Cycle Environmental Sustainability Analysis of Microbial Protein Production via Power-to-Food Approaches. Int. J. Life Cycle Assess 2020, 25, 2190–2203. [Google Scholar] [CrossRef]
- Impact. Solar Foods. Available online: https://solarfoods.com/impact/ (accessed on 9 March 2025).
- Kirsch, M.; Morales-Dalmau, J.; Lavrentieva, A. Cultivated Meat Manufacturing: Technology, Trends, and Challenges. Eng. Life Sci. 2023, 23, e2300227. [Google Scholar] [CrossRef] [PubMed]
- Reiss, J.; Robertson, S.; Suzuki, M. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. Int. J. Mol. Sci. 2021, 22, 7513. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.; Pierrehumbert, R. Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 5. [Google Scholar] [CrossRef]
References | Sources | Kg CO2e per kg | Protein % d.w. | Manufacturing Method | Lipid % d.w | Nutritional Value | Health Benefits | Environmental Benefits | Limitations |
---|---|---|---|---|---|---|---|---|---|
[32,38,44,45,46,47,48,258,259,260] | Soybean | 0.38–0.85 | 35–40 | Traditional cultivation | 20 | high-quality vegetable protein, soluble fibers, oligosaccharides, minerals, vitamin B, soy lecithin, bioactive phytoestrogens, low in saturated fat and a source of unsaturated and omega-3 (n-3) fatty acids | consumption is associated with lower levels of total cholesterol, low-density lipoproteins, and triglycerides; prevention and control of T2D; antioxidant properties; helps reduce insulin resistance; anti-inflammatory effects; supports bone health; reduced risk of cancer; helps alleviate menopause symptoms | Compared to animal protein sources, soybeans are more sustainable, requiring less land and water while producing lower greenhouse gas emissions, fixing atmospheric nitrogen, and reducing the need for synthetic fertilizers; | Negative impact on thyroid function in individuals with iodine deficiency or subclinical hypothyroidism. |
[55,56,57,59,60,62,261] | Pea | 0.8 | 20–25 | Traditional cultivation | 1.5–2 | high-quality vegetable protein, source of vitamin B, potassium, phosphorus, magnesium, calcium, polyphenols, bioactive peptides, starch and dietary fiber | reduce the risk of cardiovascular diseases and diabetes, protective effect against various cancers, antioxidant, antihypertensive, anti-inflammatory and cholesterol-lowering effects, appetite-suppressing effect | Compared to animal protein sources, peas are more sustainable, requiring less land and water while producing lower greenhouse gas emissions, having the ability to fix nitrogen from the atmosphere, reducing the need for synthetic fertilizers and enhancing soil quality | antinutritional substances such as protease inhibitors, phytic acid, oxalates and tannins, undesirable beany aftertaste, and a complex spherical structure |
[65,66,67,69,71,72,73,74,75,76,262] | Faba bean | 1.36 | 20–35 | Traditional cultivation | 0.7–2 | High protein content; rich in lysine; high-starch fraction; bioactive compounds; source of iron, phosphorus, magnesium, potassium, B vitamins; oligosaccharides | Possesses immune-modulating properties; lowers serum LDL and VLDL cholesterol levels; promotes the growth of beneficial gut microbiota; reduces chronic inflammation; lowers the risk of colon cancer | Fix atmospheric nitrogen; reduce the need for nitrogen fertilizers; | antinutritional factors such as vicine and convincing can trigger favism in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency; Antinutritional factors such as lectins, saponins, trypsin inhibitors, phytic acid, and condensed tannins |
[82,84,85,86,87,88,89,90,91,92,93,94,95,96,263,264,265,266] | Lupin | 0.57 | 31–52 | Traditional cultivation | 7–12 | Bioactive peptides; dietary fiber; high levels of oleic, linoleic, linolenic, palmitic and stearic acids; vitamins: thiamine, niacin, riboflavin, tocopherols and other micronutrients, e.g., carotenoids, iron, zinc and manganese; phenolic compounds; phytosterols; squalene; polyphenols | Antioxidative, anti-inflammatory, hypoglycemic, lipid profile-improving and hypotensive properties; reduced risk of colon cancer; positive effect on lipid profile and blood pressure | Ability to efficiently fix nitrogen from the atmosphere; reduced dependency on synthetic fertilizers; contribution to the process of carbon sequestration; helps mitigate climate change by capturing and storing carbon in the soil; exhibits an incredibly high tolerance to drought and frost, enabling diverse farming opportunities across the globe | The presence of antinutritional components such as lectins, protease inhibitors, condensed tannins, cyanogenic glycosides, saponins, alkaloids, phytic acid and selected oligosaccharides |
[106,107,108,111,112,267,268,269,270] | Hemp seeds | 0.73 | 20–25 | Traditional cultivation | 25–35 | Easily digestible and amino acid-rich protein; linoleic acid, α-linolenic acid, and oleic acid; dietary fiber; minerals: potassium, phosphorus, magnesium, calcium, iron, zinc, and copper; phenolic compounds; bioactive peptides; carotenoids; tocopherols; phytosterols, lignan-amides and hydroxycinnamic acid | Antioxidative, antimicrobial, antihypertensive and cytomodulatory properties; reduced risk of CVD, cancers, rheumatoid arthritis, hypertension, inflammatory and autoimmune diseases | Requires minimal water and pesticide supply; reduces environmental pollution by absorbing large amounts of CO2 from the atmosphere; helps with mitigating climate change; low environmental footprint | Presence of antinutritional components such as phytic acid, tannins, cyanogenic glycosides, trypsin inhibitor and saponins; contains psychoactive compound—tetrahydrocannabinol (THC) |
[119,121,124,126,127,133,271] | Microalgae | 0 | 6–71 | Cultivation in water | 2–22 | Omega-3 fatty acids (DHA, EPA), vitamins B12 and D2, carotenoids, sulfated polysaccharides, sulfolipids, astaxanthin | Antioxidant; cholesterol-lowering, anti-inflammatory, antihypertensive and anticancer properties; eye and cardiovascular health support | Small cultivation area; production can utilize by-products from agriculture and industry and absorb 10 to 50 times more CO2 than land plants | Accumulation of heavy metals—arsenic, cadmium, lead, mercury; limited consumer acceptance—slightly fishy smell |
[137,141,142,143,145,272] | Macroalgae | 0.7 | 10–47 | Cultivation in water | 1–3 | Vitamins A, B12, C, β-carotene, pantothenate, folic acid, riboflavin, niacin, omega-3 fatty acids (DHA, EPA) | Prevention and control of T2D; reduction in postprandial glucose levels, HbA1c, and HOMA—IR; antioxidative properties; reduced risk of CVD | Autotrophic nutrition and rapid growth; do not need soil for cultivation; growth rate faster than land plants | Accumulation of heavy metals—arsenic, cadmium, lead, mercury |
[152,155,273] | Water lentils (duckweed) | 0.4 | 35–40 | Cultivation in water | 1–14 | High protein content; phytosterols; starch; soluble sugars; cell wall components, amino acids; phenols, and tannins | Nutritional value similar to common foods and safe as supplements; low allergy risk | The fastest growing flowering plant in the world produces vast biomass for food, biofuels, and biogas | Contains calcium oxalate raphides, which may increase the risk of kidney stones |
[159,160,162,164,166,167,274] | Insects | 1.43–13.16 | 67–72 | Terraria | 1–57 | Complete profile of essential amino acids; high in leucine; source of iron, zinc, copper, phosphorus and vitamins B2, B5, B7, and folic acid | High digestibility; less saturated fatty acids and more monounsaturated and polyunsaturated fats than meat; chitin, as a source of dietary fiber, may improve lipid profile | Requires much less water, generates significantly fewer greenhouse gases, and is more efficient at converting feed into protein than livestock farming | Low consumer acceptance; higher levels of toxic elements such as aluminum and lead |
[178,179,180,186,275,276,277] | Microbial protein | 1–2.23 | 30–65 | Bioreactor, fermentation, genetic engineering | 1–20 | High protein content; high lysine and methionine content; good source of B vitamins and polyunsaturated fatty acids | Precise fermentation enables the production of animal-derived proteins, high quality protein | Minimal land requirements and efficient resource utilization; reduced environmental footprint | High nucleic acid content, which may increase the risk of gout |
[190,191,192,194,195,202,203,204,241] | Mycoprotein | 1.14–4.15 | 45 | Fermentation, genetic engineering | 13 | Protein with high biological value; dietary fiber—β-glucan (up to 75%) and chitin; vitamin B12; folic acid; minerals: zinc, magnesium, calcium, and phosphorus; linoleic and linolenic acids | Improved appetite regulation through effects on metabolic and satiety hormones; positive effect on lipid profile and blood pressure; reduced risk of CVD; antihyperlipidemic, antioxidative and antimicrobial properties; stimulation of muscle protein synthesis | The environmental impact of mycoprotein production is still limited, and its environmental implications remain controversial | May potentially cause allergic and gastrointestinal symptoms such as anaphylaxis, hives, nausea, vomiting, and diarrhea; presence of mycotoxins |
[207,210,278,279,280] | Cultured meat | 1.69–22.1 | 76–90 | Bioreactor | 9–10 | The biological equivalent of traditional meat | Easy digestible; collagen rich in essential amino acids; reduced risk of foodborne illness and antibiotic resistance development | Reduced cruelty to animals; fast production; small land requirements; reduced greenhouse gas emissions; production in a closed system without manure; 100% edible meat (in comparison to 5–25% from traditional livestock) | High production costs; lower protein and micronutrient content in comparison to traditional meat |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choręziak, A.; Rosiejka, D.; Michałowska, J.; Bogdański, P. Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview. Nutrients 2025, 17, 1148. https://doi.org/10.3390/nu17071148
Choręziak A, Rosiejka D, Michałowska J, Bogdański P. Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview. Nutrients. 2025; 17(7):1148. https://doi.org/10.3390/nu17071148
Chicago/Turabian StyleChoręziak, Anna, Dawid Rosiejka, Joanna Michałowska, and Paweł Bogdański. 2025. "Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview" Nutrients 17, no. 7: 1148. https://doi.org/10.3390/nu17071148
APA StyleChoręziak, A., Rosiejka, D., Michałowska, J., & Bogdański, P. (2025). Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview. Nutrients, 17(7), 1148. https://doi.org/10.3390/nu17071148