The Antioxidant Power of Bergamot Polyphenolic Fraction Gold Potentiates the Effects of L-Citrulline in Athlete Performance and Vasodilation in a Pilot Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of BPFG Alone or in Combination with L-Citrulline
2.2. Study Design
2.3. Endothelial Function Assessment
2.4. Blood Collection and Biochemical Analyses
2.5. NO and Nitrite/Nitrate Ratio Assay
2.6. Body Mass Index Assessment
2.7. Exercise Test
2.8. Statistical Analysis
3. Results
3.1. Protective Effect of BPFG and L-Citrulline Combination on NO Bioavailability and Endothelial Dysfunction
3.2. The Beneficial Effects of N.O. Max Supplementation on Exercise Performance for Athletes
3.3. N.O. Max Supplementation Decreases Oxidative Stress in Athletes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms
ADMA | Asymmetric Dimethylarginine |
BJ | Bergamot Juice |
BMI | Body Mass Index |
BPFG | Bergamot Polyphenolic Fraction Gold®) |
CO2 | Carbon Dioxide |
DBP | Diastolic Blood Pressure |
ECG | Echocardiographic |
EndoPAT | Endothelial Peripheral Arterial Tonometry |
HPLC | High-Performance Liquid Chromatography |
HR | Heart Rate |
RHI | Reactive Hyperemia Index |
IVSDd | Intraventricular Septum Diameter During Diastole |
KOH | Potassium Hydroxide |
LVEF | Left Ventricular Ejection Fraction |
LVM | Left Ventricular Mass |
LVMI | Left Ventricular Mass Index |
LVPWTd | Left Ventricular Posterior Wall Thickness During Diastole |
MDA | Malondialdehyde |
NAC | N-Acetylcysteine |
NO | Nitric Oxide |
NO2 | Nitrogen Dioxide |
OW | Over Weighing |
PAIx | Peripheral Augmentation Index |
PAT | Peripheral Arterial Tonometry |
RH–PAT | Reactive Hyperemia–Peripheral Arterial Tonometry |
SBP | Systolic Blood Pressure |
SD | Standard Deviation |
SV | Stroke Volume |
TBA | Acid Thiobarbituric |
VO2 | Volume of Oxygen |
VT1 | Ventilatory thresholds 1 |
VT2 | Ventilatory thresholds 2 |
References
- Spriet, L.L. Sports Nutrition Ingredients and Governance, Exercise Training, and Sport Technology. Sports Med. 2023, 53 (Suppl. S1), 1. [Google Scholar] [CrossRef]
- Martín-Rodríguez, A.; Belinchón-deMiguel, P.; Rubio-Zarapuz, A.; Tornero-Aguilera, J.F.; Martínez-Guardado, I.; Villanueva-Tobaldo, C.V.; Clemente-Suárez, V.J. Advances in Understanding the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes. Nutrients 2024, 16, 571. [Google Scholar] [CrossRef] [PubMed]
- Gough, L.A.; Sparks, S.A.; McNaughton, L.R.; Higgins, M.F.; Newbury, J.W.; Trexler, E.; Faghy, M.A.; Bridge, C.A. A critical review of citrulline malate supplementation and exercise performance. Eur. J. Appl. Physiol. 2021, 121, 3283–3295. [Google Scholar] [CrossRef]
- Devrim-Lanpir, A.; Ihász, F.; Demcsik, M.; Horváth, A.C.; Góczán, P.; Czepek, P.; Takács, J.; Kimble, R.; Zare, R.; Gunes, F.E.; et al. Effects of Acute Citrulline Malate Supplementation on CrossFit® Exercise Performance: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study. Nutrients 2024, 16, 3235. [Google Scholar] [CrossRef]
- Trexler, E.T.; Keith, D.S.; Schwartz, T.A.; Ryan, E.D.; Stoner, L.; Persky, A.M.; Smith-Ryan, A.E. Effects of Citrulline Malate and Beetroot Juice Supplementation on Blood Flow, Energy Metabolism, and Performance During Maximum Effort Leg Extension Exercise. J. Strength. Cond. Res. 2019, 33, 2321–2329. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Yang, Y.; Mangine, G.T.; Pinzone, A.G.; Ghigiarelli, J.J.; Sell, K.M. Acute Effect of L-Citrulline Supplementation on Resistance Exercise Performance and Muscle Oxygenation in Recreationally Resistance Trained Men and Women. J. Funct. Morphol. Kinesiol. 2023, 8, 88. [Google Scholar] [CrossRef]
- Nyawose, S.; Naidoo, R.; Naumovski, N.; McKune, A.J. The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review. Beverages 2022, 8, 48. [Google Scholar] [CrossRef]
- Joyner, M.J.; Casey, D.P. Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiol. Rev. 2015, 95, 549–601. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Dulaney, C.S.; Heidorn, C.E.; Singer, T.J.; McDaniel, J. Mechanisms that underlie blood flow regulation at rest and during exercise. Adv. Physiol. Educ. 2022, 47, 26. [Google Scholar] [CrossRef]
- Khalaf, D.; Krüger, M.; Wehland, M.; Infanger, M.; Grimm, D. The Effects of Oral l-Arginine and l-Citrulline Supplementation on Blood Pressure. Nutrients 2019, 11, 1679. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Dillon, K.N.; Martinez, M.A.; Maharaj, A.; Fischer, S.M.; Figueroa, A. L-Citrulline Supplementation Improves Arterial Blood Flow and Muscle Oxygenation during Handgrip Exercise in Hypertensive Postmenopausal Women. Nutrients 2024, 16, 1935. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.; Hino, K.; Ebisu, G.; Fujita, S. Oral administration of l-citrulline alters the vascular delivery of substances to rat skeletal muscles. Biochem. Biophys. Rep. 2021, 28, 101149. [Google Scholar] [CrossRef]
- Flam, B.R.; Eichler, D.C.; Solomonson, L.P. Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide 2007, 17, 115–121. [Google Scholar] [CrossRef]
- Valaei, K.; Mehrabani, J.; Wong, A. Effects of L-citrulline supplementation on nitric oxide and antioxidant markers after high-intensity interval exercise in young men: A randomized controlled trial. Br. J. Nutr. 2021, 17, 1–23. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Trexler, E.T. Effects of Citrulline Supplementation on Exercise Performance in Humans: A Review of the Current Literature. J. Strength. Cond. Res. 2020, 34, 1480–1495. [Google Scholar] [CrossRef]
- Romero, M.J.; Platt, D.H.; Caldwell, R.B.; Caldwell, R.W. Therapeutic use of citrulline in cardiovascular disease. Cardiovasc. Drug Rev. 2006, 24, 275–290. [Google Scholar] [CrossRef]
- Aguayo, E.; Martínez-Sánchez, A.; Fernández-Lobato, B.; Alacid, F. L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. Appl. Sci. 2021, 11, 3293. [Google Scholar] [CrossRef]
- Suzuki, T.; Morita, M.; Kobayashi, Y.; Kamimura, A. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. J. Int. Soc. Sports Nutr. 2016, 13, 6. [Google Scholar] [CrossRef]
- Le Roux-Mallouf, T.; Pelen, F.; Vallejo, A.; Halimaoui, I.; Doutreleau, S.; Verges, S. Effect of chronic nitrate and citrulline supplementation on vascular function and exercise performance in older individuals. Aging 2019, 11, 3315–3332. [Google Scholar] [CrossRef]
- Mason, S.A.; Trewin, A.J.; Parker, L.; Wadley, G.D. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol. 2020, 35, 101471. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Bustamante-Sanchez, Á.; Mielgo-Ayuso, J.; Martínez-Guardado, I.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Antioxidants and Sports Performance. Nutrients 2023, 15, 2371. [Google Scholar] [CrossRef] [PubMed]
- Urso, M.L.; Clarkson, P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003, 189, 41–54. [Google Scholar] [CrossRef]
- Nobari, H.; Saedmocheshi, S.; Chung, L.H.; Suzuki, K.; Maynar-Mariño, M.; Pérez-Gómez, J. An Overview on How Exercise with Green Tea Consumption Can Prevent the Production of Reactive Oxygen Species and Improve Sports Performance. Int. J. Environ. Res. Public. Health 2021, 19, 218. [Google Scholar] [CrossRef]
- Li, S.; Fasipe, B.; Laher, I. Potential harms of supplementation with high doses of antioxidants in athletes. J. Exerc. Sci. Fit. 2022, 20, 269–275. [Google Scholar] [CrossRef]
- Mollace, R.; Gliozzi, M.; Tavernese, A.; Musolino, V.; Carresi, C.; Scicchitano, M.; Palma, E.; Nucera, S.; Bosco, F.; Scarano, F.; et al. Bergamot Polyphenolic Fraction supplementation improves metabolic balance, endothelial function and maximal oxygen uptake in athletes. J. Sports Med. Ther. 2018, 3, 053–061. [Google Scholar]
- Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; et al. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E782–E792. [Google Scholar] [CrossRef]
- López-Carreras, N.; Castillo, J.; Muguerza, B.; Aleixandre, A. Endothelium-dependent vascular relaxing effects of different citrus and olive extracts in aorta rings from spontaneously hypertensive rats. Food Res. Int. 2015, 77, 484–490. [Google Scholar] [CrossRef]
- Mollace, R.; Macrì, R.; Nicita, M.; Musolino, V.; Gliozzi, M.; Carresi, C.; Bava, I.; Maiuolo, J.; Tavernese, A.; Cardamone, A.; et al. Bergamot Polyphenolic Extract Combined with Albedo and Pulp Fibres Counteracts Changes in Gut Microbiota Associated with High-Fat Diet: Implications for Lipoprotein Size Re-Arrangement. Int. J. Mol. Sci. 2023, 24, 12967. [Google Scholar] [CrossRef]
- Mollace, A.; Macrì, R.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Nicita, M.; Caminiti, R.; et al. Effect of Ferric Carboxymaltose Supplementation in Patients with Heart Failure with Preserved Ejection Fraction: Role of Attenuated Oxidative Stress and Improved Endothelial Function. Nutrients 2022, 14, 5057. [Google Scholar] [CrossRef]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.M.; Wink, D.A.; Cook, J.C.; Grisham, M.B. Determination of nitric oxide using fluorescence spectroscopy. Methods Enzymol. 1996, 268, 105–120. [Google Scholar] [CrossRef] [PubMed]
- American College of Cardiology; American Heart Association Task Force on Practice Guidelines; Obesity Expert Panel. Executive Summary: Guidelines (2013) for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society Published by the Obesity Society and American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Based on a Systematic Review from the Obesity Expert Panel 2013. Obesity 2014, 22, S5–S39. [Google Scholar] [CrossRef]
- O’Malley, C.A.; Fullerton, C.L.; Mauger, A.R. Test-retest reliability of a 30-min fixed perceived effort cycling exercise. Eur. J. Appl. Physiol. 2023, 123, 721–735. [Google Scholar] [CrossRef]
- Anselmi, F.; Cavigli, L.; Pagliaro, A.; Valente, S.; Valentini, F.; Cameli, M.; Focardi, M.; Mochi, N.; Dendale, P.; Hansen, D. The importance of ventilatory thresholds to define aerobic exercise intensity in cardiac patients and healthy subjects. Scand. J. Med. Sci. Sports 2021, 31, 1796–1808. [Google Scholar] [CrossRef]
- Martini, A.D.; Dalleck, L.C.; Mejuto, G.; Larwood, T.; Weatherwax, R.M.; Ramos, J.S. Changes in the Second Ventilatory Threshold Following Individualised versus Standardised Exercise Prescription among Physically Inactive Adults: A Randomised Trial. Int. J. Environ. Res. Public. Health 2022, 19, 3962. [Google Scholar] [CrossRef]
- Yadav, A.K.; Bagi, J.G. A study to evaluate cardiovascular responses by using treadmill and ergometer bicycle exercise in young adults. Indian J. Health Sci. Biomed. Res. (KLEU) 2018, 11, 81–85. [Google Scholar] [CrossRef]
- Caminiti, R.; Carresi, C.; Mollace, R.; Macrì, R.; Scarano, F.; Oppedisano, F.; Maiuolo, J.; Serra, M.; Ruga, S.; Nucera, S.; et al. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front. Cardiovasc. Med. 2024, 11, 1345218. [Google Scholar] [CrossRef]
- Macrì, R.; Mollace, R.; Serra, M.; Scarano, F.; Ritorto, G.; Ussia, S.; Cardamone, A.; Coppoletta, A.R.; Carresi, C.; Gliozzi, M.; et al. Nutritional and Nutraceutical Support to the Failing Myocardium: A Possible Way of Potentiating the Current Treatment of Heart Failure. Int. J. Mol. Sci. 2024, 25, 12232. [Google Scholar] [CrossRef]
- Nucera, S.; Scarano, F.; Macrì, R.; Mollace, R.; Gliozzi, M.; Carresi, C.; Ruga, S.; Serra, M.; Tavernese, A.; Caminiti, R.; et al. The Effect of an Innovative Combination of Bergamot Polyphenolic Fraction and Cynara cardunculus L. Extract on Weight Gain Reduction and Fat Browning in Obese Mice. Int. J. Mol. Sci. 2024, 25, 191. [Google Scholar] [CrossRef]
- Mollace, R.; Scarano, F.; Bava, I.; Carresi, C.; Maiuolo, J.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Muscoli, S.; Palma, E.; et al. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol. Res. 2023, 196, 106931. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Carresi, C.; Gliozzi, M.; Musolino, V.; Macrì, R.; Scarano, F.; Coppoletta, A.; Cardamone, A.; Bosco, F.; et al. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int. J. Mol. Sci. 2022, 23, 15454. [Google Scholar] [CrossRef] [PubMed]
- Di Francescomarino, S.; Sciartilli, A.; Di Valerio, V.; Di Baldassarre, A.; Gallina, S. The effect of physical exercise on endothelial function. Sports Med. 2009, 39, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Padilla, J.; Simmons, G.H.; Bender, S.B.; Arce-Esquivel, A.A.; Whyte, J.J.; Laughlin, M.H. Vascular Effects of Exercise: Endothelial Adaptations Beyond Active Muscle Beds. Physiology 2011, 26, 132–145. [Google Scholar] [CrossRef]
- Bisconti, A.V.; Cè, E.; Longo, S.; Venturelli, M.; Coratella, G.; Shokohyar, S.; Ghahremani, R.; Rampichini, S.; Limonta, E.; Esposito, F. Evidence of Improved Vascular Function in the Arteries of Trained but Not Untrained Limbs After Isolated Knee-Extension Training. Front. Physiol. 2019, 10, 727. [Google Scholar] [CrossRef]
- Poole, D.C.; Behnke, B.J.; Musch, T.I. The role of vascular function on exercise capacity in health and disease. J. Physiol. 2021, 599, 889–910. [Google Scholar] [CrossRef]
- Poulios, A.; Papanikolaou, K.; Draganidis, D.; Tsimeas, P.; Chatzinikolaou, A.; Tsiokanos, A.; Jamurtas, A.Z.; Fatouros, I.G. The Effects of Antioxidant Supplementation on Soccer Performance and Recovery: A Critical Review of the Available Evidence. Nutrients 2024, 16, 3803. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Hopkins, W.G. Impact of Dietary Antioxidants on Sport Performance: A Review. Sports Med. 2015, 45, 939–955. [Google Scholar] [CrossRef]
- Cao, G.; Zuo, J.; Wu, B.; Wu, Y. Polyphenol supplementation boosts aerobic endurance in athletes: Systematic review. Front. Physiol. 2024, 15, 1369174. [Google Scholar] [CrossRef]
- Hernández-Landa, R.E.; Lazo, M.; Salado, D.D.; Sánchez-Almanzar, E.; Cepeda-Marte, J.L.; Zare, R.; Redha, A.A.; Clifford, T. Dietary Supplementation Strategies for Improving Training Adaptations, Antioxidant Status and Performance of Volleyball Players: A Systematic Review. J. Sci. In Sport. And. Exerc. 2024. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Domínguez-Ortega, C.; Busto, N.; Santamaría-Peláez, M.; Roche, E.; Gutiérez-Abejón, E.; Mielgo-Ayuso, J. Influence of N-Acetylcysteine Supplementation on Physical Performance and Laboratory Biomarkers in Adult Males: A Systematic Review of Controlled Trials. Nutrients 2023, 15, 2463. [Google Scholar] [CrossRef] [PubMed]
- Slattery, K.M.; Dascombe, B.; Wallace, L.K.; Bentley, D.J.; Coutts, A.J. Effect of N-acetylcysteine on cycling performance after intensified training. Med. Sci. Sports Exerc. 2014, 46, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T. Role of Na+, K+-pumps and transmembrane Na+, K+-distribution in muscle function. The FEPS lecture—Bratislava 2007. Acta Physiol. 2008, 192, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Bescós, R.; Ferrer-Roca, V.; Galilea, P.A.; Roig, A.; Drobnic, F.; Sureda, A.; Martorell, M.; Cordova, A.; Tur, J.A.; Pons, A. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med. Sci. Sports Exerc. 2012, 44, 2400–2409. [Google Scholar] [CrossRef]
- Lu, Y.; Wiltshire, H.D.; Baker, J.S.; Wang, Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology 2021, 10, 1272. [Google Scholar] [CrossRef]
- Meng, Q.; Su, C.-H. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants 2024, 13, 573. [Google Scholar] [CrossRef]
- Thirupathi, A.; Pinho, R.A.; Ugbolue, U.C.; He, Y.; Meng, Y.; Gu, Y. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 2021, 11, 610112. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019, 49, 3–23. [Google Scholar] [CrossRef]
- Hertzog, M.A. Considerations in determining sample size for pilot studies. Res. Nurs. Health 2008, 31, 180–191. [Google Scholar] [CrossRef]
Groups | Age (years) | Body Weight (kg) | Body Height (cm) | BMI (kg/m2) |
---|---|---|---|---|
Group 1 (n = 10) | 32 ± 4 | 70.5 ± 1.9 | 180.2 ± 2.3 | 23 ± 1.6 |
Group 2 (n = 10) | 32.5 ± 2.8 | 71.2 ± 2 | 180 ± 1.6 | 22.8 ± 2.1 |
Group 3 (n = 10) | 31.9 ± 3 | 72.1 ± 3 | 181.2 ± 3.1 | 24 ± 1.8 |
Group 4 (n = 10) | 32 ± 3.6 | 71.8 ± 2.4 | 180 ± 1.9 | 23 ± 1.4 |
Group 5 (n = 10) | 33 ± 4.1 | 71.3 ± 2.3 | 181.1 ± 2.5 | 23.7 ± 1.7 |
Group 6 (n = 10) | 32 ± 3.5 | 72 ± 2.8 | 180.5 ± 2.4 | 22.8 ± 1.4 |
Group 7 (n = 10) | 31.9 ± 3.2 | 70.7 ± 2 | 180.1 ± 2.2 | 22.9 ± 1.3 |
Group 8 (n = 10) | 31.9 ± 3.1 | 72.1 ± 2.8 | 179.5 ± 1.7 | 23.1 ± 1.5 |
Group 9 (n = 10) | 32 ± 3.4 | 71 ± 2.5 | 179.3 ± 1.5 | 23.5 ± 1.6 |
Groups | LVM (g) | LVMI (g/m2) | IVSDd (mm) | LVPWTd (mm) | LVEF (%) | SV (mL) |
---|---|---|---|---|---|---|
Group 1 (n = 10) | 222 ± 12.2 | 124 ± 11.7 | 11 ± 1.1 | 9 ± 1 | 62 ± 2.1 | 80 ± 3.9 |
Group 2 (n = 10) | 221.5 ± 11.9 | 125 ± 12.5 | 10.5 ± 1.2 | 8.8 ± 0.2 | 62.5 ± 2.2 | 80.2 ± 4.2 |
Group 3 (n = 10) | 223 ± 12.6 | 123.6 ± 11.4 | 11.5 ± 1.3 | 9 ± 1 | 62.8 ± 2.2 | 81 ± 4.5 |
Group 4 (n = 10) | 222 ± 12.1 | 123.7 ± 11.8 | 12 ± 1.4 | 8.9 ± 0.6 | 62 ± 2.1 | 79.2 ± 3.7 |
Group 5 (n = 10) | 223.1 ± 12.5 | 124 ± 12 | 11.1 ± 1.8 | 10.3 ± 2 | 61.5 ± 1.9 | 80 ± 4 |
Group 6 (n = 10) | 221.7 ± 12 | 124.5 ± 12.1 | 10.8 ± 1.3 | 9.1 ± 1.2 | 61.2 ± 1.8 | 79.6 ± 3.8 |
Group 7 (n = 10) | 221.8 ± 12 | 124.3 ± 12 | 12 ± 1 | 9.4 ± 1.4 | 63 ± 2.4 | 80.7 ± 4.3 |
Group 8 (n = 10) | 222.2 ± 12.3 | 125.3 ± 12.5 | 11 ± 1 | 10.3 ± 1.6 | 61.8 ± 2.1 | 80.2 ± 4.1 |
Group 9 (n = 10) | 222.7 ± 12.4 | 125.3 ± 13 | 10.9 ± 1.9 | 9.8 ± 1.8 | 62.2 ± 2.2 | 81.1 ± 4.5 |
VO2 Max (mL/kg/min) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Group 9 | |
Basal | 68 ± 2.8 | 68 ± 2.4 | 66 ± 2.5 | 65 ± 2.3 | 67 ± 2.6 | 68 ± 3.3 | 65 ± 2.5 | 66 ± 2.7 | 68 ± 3.1 |
Post- treatment | 67 ± 2.2 | 74 ± 3.4 § | 76 ± 2.5 § | 74 ± 2.6 § | 76 ± 2.8 § | 81 ± 2.1 §§ | 89 ± 3.1 §§§ | 84 ± 2.9 §§ | 96 ± 3.2 §§ |
Peak Power (watt) | |||||||||
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Group 9 | |
Basal | 415 ± 6.0 | 420 ± 5.2 | 416 ± 6.2 | 422 ± 10 | 412 ± 6.5 | 419 ± 5.4 | 421 ± 5.2 | 415 ± 5.2 | 425 ± 6.3 |
Post- treatment | 425 ± 6.3 | 445 ± 7.4 § | 425 ± 14 § | 432 ± 4.6 § | 438 ± 13 § | 472 ± 15 §§ | 486 ± 4.8 §§§ | 474 ± 6.5 §§ | 492 ± 5.9 §§§ |
HR Max (beats/min) | |||||||||
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Group 9 | |
Basal | 160 ± 2.5 | 162 ± 3.3 | 158 ± 3.0 | 157 ± 3.1 | 160 ± 3.2 | 155 ± 2.2 | 160 ± 3.2 | 160 ± 3.2 | 160 ± 3.3 |
Post- treatment | 158 + 2.2 | 156 ± 2.6 § | 155 ± 3.1 § | 154 ± 2.5 § | 152 ± 3.1 § | 150 ± 2.5 §§ | 148 ± 3.0 §§ | 148 ± 3.0 §§ | 144 ± 3.2 §§ |
VT1 (mL/Kg/min) | |||||||||
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Group 9 | |
Basal | 16.7 ± 1.8 | 17.1 ± 2.1 | 16.2 ± 1.6 | 16.2 ± 2 | 16.1 ± 2.3 | 17.2 ± 1.8 | 16.5 ± 1.9 | 15.9 ± 2.2 | 16.8 ± 1.6 |
Post- treatment | 16.4 ± 1.9 | 20.2 ± 1.8 § | 20.9 ± 2.1 § | 21.3 ± 2.2 § | 22.2 ± 2.1 § | 23.1 ± 2.4 §§ | 23.9 ± 2.4 §§ | 24.4 ± 1.9 §§ | 25.8 ± 2.7 §§ |
VT2 (mL/Kg/min) | |||||||||
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Group 9 | |
Basal | 27.2 ± 2.5 | 26.9 ± 2.1 | 27.3 ± 2.6 | 27.4 ± 2.7 | 26.8 ± 2.4 | 27.3 ± 2.7 | 27.2 ± 2.5 | 2.75 ± 2.4 | 27.0 ± 2.6 |
Post- treatment | 27.4 ± 2.8 | 30.8 ± 2.8 § | 31.6 ± 2.7 § | 31.8 ± 2.4 § | 32.5 ± 2.7 § | 32.4 ± 2.6 §§ | 33.5 ± 2.9 §§ | 34.5 ± 2.8 §§ | 36.7 ± 2.2 §§§ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollace, R.; Macrì, R.; Serra, M.; Ritorto, G.; Ussia, S.; Scarano, F.; Cardamone, A.; Musolino, V.; Coppoletta, A.R.; Gliozzi, M.; et al. The Antioxidant Power of Bergamot Polyphenolic Fraction Gold Potentiates the Effects of L-Citrulline in Athlete Performance and Vasodilation in a Pilot Study. Nutrients 2025, 17, 1106. https://doi.org/10.3390/nu17071106
Mollace R, Macrì R, Serra M, Ritorto G, Ussia S, Scarano F, Cardamone A, Musolino V, Coppoletta AR, Gliozzi M, et al. The Antioxidant Power of Bergamot Polyphenolic Fraction Gold Potentiates the Effects of L-Citrulline in Athlete Performance and Vasodilation in a Pilot Study. Nutrients. 2025; 17(7):1106. https://doi.org/10.3390/nu17071106
Chicago/Turabian StyleMollace, Rocco, Roberta Macrì, Maria Serra, Giovanna Ritorto, Sara Ussia, Federica Scarano, Antonio Cardamone, Vincenzo Musolino, Anna Rita Coppoletta, Micaela Gliozzi, and et al. 2025. "The Antioxidant Power of Bergamot Polyphenolic Fraction Gold Potentiates the Effects of L-Citrulline in Athlete Performance and Vasodilation in a Pilot Study" Nutrients 17, no. 7: 1106. https://doi.org/10.3390/nu17071106
APA StyleMollace, R., Macrì, R., Serra, M., Ritorto, G., Ussia, S., Scarano, F., Cardamone, A., Musolino, V., Coppoletta, A. R., Gliozzi, M., Scipione, G., Carresi, C., Pozharova, K., Muscoli, C., Barillà, F., Volterrani, M., & Mollace, V. (2025). The Antioxidant Power of Bergamot Polyphenolic Fraction Gold Potentiates the Effects of L-Citrulline in Athlete Performance and Vasodilation in a Pilot Study. Nutrients, 17(7), 1106. https://doi.org/10.3390/nu17071106