The Role of Dietary Education in Cardiac Rehabilitation
Abstract
:1. Introduction
2. Assumptions of CR After Myocardial Infarction
3. Nutritional Recommendations in Patients After Myocardial Infarction
4. Dietetics in CR After Myocardial Infarction
4.1. Nutritional Effects of CR
4.2. Dietary Education Providers
4.3. Psychological Aspects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CVD | Cardiovascular disease |
CR | Cardiac rehabilitation |
DASH | Dietary Approaches to Stop Hypertension |
KOS-MI | Coordinated Specialist Care after Myocardial Infarction |
LDL-C | Low-density lipoprotein cholesterol |
References
- Movsisyan, N.K.; Vinciguerra, M.; Medina-Inojosa, J.R.; Lopez-Jimenez, F. Cardiovascular Diseases in Central and Eastern Europe: A Call for More Surveillance and Evidence-Based Health Promotion. Ann. Glob. Health 2020, 86, 21. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Daviglus, M.L.; Loria, C.M.; Colangelo, L.A.; Spring, B.; Moller, A.C.; Lloyd-Jones, D.M. Healthy lifestyle through young adulthood and the presence of low cardiovascular disease risk profile in middle age: The Coronary Artery Risk Development in (Young) Adults (CARDIA) study. Circulation 2012, 125, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, R.; Ludman, P.; Appelman, Y.; Brugaletta, S.; Budaj, A.; Bueno, H.; Huber, K.; Kunadian, V.; Leonardi, S.; Lettino, M.; et al. Cohort profile: The ESC EURObservational Research Programme Non-ST-segment elevation myocardial infraction (NSTEMI) Registry. Eur. Heart J.-Qual. Care Clin. Outcomes 2023, 9, 8–15. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. ESC Scientific Document Group Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef]
- Basta, G.; Chatzianagnostou, K.; Paradossi, U.; Botto, N.; Del Turco, S.; Taddei, A.; Berti, S.; Mazzone, A. The prognostic impact of objective nutritional indices in elderly patients with ST-elevation myocardial infarction undergoing primary coronary intervention. Int. J. Cardiol. 2016, 221, 987–992. [Google Scholar] [CrossRef]
- Dalal, H.M.; Doherty, P.; Taylor, R.S. Cardiac rehabilitation. BMJ 2015, 351, h5000. [Google Scholar] [CrossRef]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.E.; Schmid, J.-P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 28, 460–495. [Google Scholar] [CrossRef]
- Cowie, A.; Buckley, J.; Doherty, P.; Furze, G.; Hayward, J.; Hinton, S.; Jones, J.; Speck, L.; Dalal, H.; Mills, J.; et al. Standards and core components for cardiovascular disease prevention and rehabilitation. Heart Br. Card. Soc. 2019, 105, 510–515. [Google Scholar] [CrossRef]
- Abreu, A.; Frederix, I.; Dendale, P.; Janssen, A.; Doherty, P.; Piepoli, M.F.; Völler, H.; Davos, C.H.; Secondary Prevention and Rehabilitation Section of EAPC Reviewers. Standardization and quality improvement of secondary prevention through cardiovascular rehabilitation programmes in Europe: The avenue towards EAPC accreditation programme: A position statement of the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology (EAPC). Eur. J. Prev. Cardiol. 2021, 28, 496–509. [Google Scholar] [CrossRef]
- Turk-Adawi, K.; Sarrafzadegan, N.; Grace, S.L. Global availability of cardiac rehabilitation. Nat. Rev. Cardiol. 2014, 11, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Bjarnason-Wehrens, B.; McGee, H.; Zwisler, A.-D.; Piepoli, M.F.; Benzer, W.; Schmid, J.-P.; Dendale, P.; Pogosova, N.-G.V.; Zdrenghea, D.; Niebauer, J.; et al. Cardiac rehabilitation in Europe: Results from the European Cardiac Rehabilitation Inventory Survey. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Sobieszek, A.; Milewski, K. Koordynowana Opieka Specjalistyczna dla pacjenta po zawale serca—KOS-zawał. Kardiol. Inwazyjna 2017, 12, 4–6. [Google Scholar]
- Rogala, M.; Buszman, P.P.; Donesch-Jezo, E.; Kowalska-Bobko, I.; Sagan, A. KOS heart infarction—Where are we going? Emerg. Med. Serv. 2019, 6, 285–292. [Google Scholar] [CrossRef]
- Kolarczyk-Haczyk, A.; Konopko, M.; Mazur, M.; Żurakowski, A.; Gąsior, M.; Rogala, M.; Jankowski, P.; Kaźmierczak, P.; Milewski, K.P.; Buszman, P.E.; et al. Long-term outcomes of the Coordinated Care Program in Patients after Myocardial Infarction (KOS-MI). Kardiol. Pol. 2023, 81, 587–596. [Google Scholar] [CrossRef]
- Schwaab, B.; Zeymer, U.; Jannowitz, C.; Pittrow, D.; Gitt, A. Improvement of low-density lipoprotein cholesterol target achievement rates through cardiac rehabilitation for patients after ST elevation myocardial infarction or non-ST elevation myocardial infarction in Germany: Results of the PATIENT CARE registry. Eur. J. Prev. Cardiol. 2019, 26, 249–258. [Google Scholar] [CrossRef]
- Andersson, A.; Sundel, K.L.; Undén, A.-L.; Schenck-Gustafsson, K.; Eriksson, I. A five-year rehabilitation programme for younger women after a coronary event reduces the need for hospital care. Scand. J. Public Health 2010, 38, 566–573. [Google Scholar] [CrossRef]
- Ohtera, S.; Kato, G.; Ueshima, H.; Mori, Y.; Nakatani, Y.; Ozasa, N.; Nakayama, T.; Kuroda, T. A nationwide survey on participation in cardiac rehabilitation among patients with coronary heart disease using health claims data in Japan. Sci. Rep. 2021, 11, 20096. [Google Scholar] [CrossRef]
- Shekar, M.; Kakietek, J.; D’Alimonte, M.R.; Rogers, H.E.; Eberwein, J.D.; Akuoku, J.K.; Pereira, A.; Soe-Lin, S.; Hecht, R. Reaching the global target to reduce stunting: An investment framework. Health Policy Plan. 2017, 32, 657–668. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tang, W.-G.; Yang, Y.; Zhang, Q.-L.; Zheng, J.-L.; Xiang, Y.-B. Association between whole grain intake and all-cause mortality: A meta-analysis of cohort studies. Oncotarget 2016, 7, 61996–62005. [Google Scholar] [CrossRef]
- Kalisz, G.; Popiolek-Kalisz, J. Polysaccharides: The Sweet and Bitter Impacts on Cardiovascular Risk. Polymers 2025, 17, 405. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, Y.; Ding, Y.; Shan, Z.; Chen, S.; Yu, M.; Hu, F.B.; Liu, L. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 256–269. [Google Scholar] [CrossRef]
- Chowdhury, R.; Kunutsor, S.; Vitezova, A.; Oliver-Williams, C.; Chowdhury, S.; Kiefte-de-Jong, J.C.; Khan, H.; Baena, C.P.; Prabhakaran, D.; Hoshen, M.B.; et al. Vitamin D and risk of cause specific death: Systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 2014, 348, g1903. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared with Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 2006, 354, 1601–1613. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Wu, Y.; Feng, X.; Zhang, R.; Zhang, Y.; Shi, J.; Zhang, J.; Tian, M.; Huang, L.; Li, Z.; et al. Effect of Salt Substitution on Cardiovascular Events and Death. N. Engl. J. Med. 2021, 385, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Przytuła, A.; Szymańska, M.; Popiołek-Kalisz, J. Dietary strategies for cardiovascular disease risk factors prevention. Curr. Probl. Cardiol. 2024, 49, 102746. [Google Scholar] [CrossRef]
- Borowicz-Bienkowska, S.; Deskur-Smielecka, E.; Maleszka, M.; Przywarska, I.; Wilk, M.; Pilaczynska-Szczesniak, L.; Dylewicz, P. The impact of short-term cardiac rehabilitation on changing dietary habits in patients after acute coronary syndrome. J. Cardiopulm. Rehabil. Prev. 2013, 33, 234–238. [Google Scholar] [CrossRef]
- Luisi, M.L.E.; Biffi, B.; Gheri, C.F.; Sarli, E.; Rafanelli, E.; Graziano, E.; Vidali, S.; Fattirolli, F.; Gensini, G.F.; Macchi, C. Efficacy of a nutritional education program to improve diet in patients attending a cardiac rehabilitation program: Outcomes of a one-year follow-up. Intern. Emerg. Med. 2015, 10, 671–676. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- George, E.S.; Kucianski, T.; Mayr, H.L.; Moschonis, G.; Tierney, A.C.; Itsiopoulos, C. A Mediterranean Diet Model in Australia: Strategies for Translating the Traditional Mediterranean Diet into a Multicultural Setting. Nutrients 2018, 10, 465. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Appel, L.J.; Sacks, F.M.; Carey, V.J.; Obarzanek, E.; Swain, J.F.; Miller, E.R.; Conlin, P.R.; Erlinger, T.P.; Rosner, B.A.; Laranjo, N.M.; et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005, 294, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Keys, A.; Menotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 1986, 124, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Angelino, D.; Rosi, A.; Dall’Asta, M.; Bresciani, L.; Ferraris, C.; Guglielmetti, M.; Godos, J.; Del Bo’, C.; et al. Effects of Popular Diets on Anthropometric and Cardiometabolic Parameters: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 815–833. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Liu, G.; Li, Y.; Sampson, L.; Manson, J.E.; Salas-Salvadó, J.; Martínez-González, M.A.; Stampfer, M.J.; Willett, W.C.; Sun, Q.; et al. Olive Oil Consumption and Cardiovascular Risk in U.S. Adults. J. Am. Coll. Cardiol. 2020, 75, 1729–1739. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejia, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Liu, X.; Malik, V.S.; Sun, Q.; Willett, W.C.; Manson, J.E.; Rexrode, K.M.; Li, Y.; Hu, F.B.; Bhupathiraju, S.N. Nut Consumption and Risk of Cardiovascular Disease. J. Am. Coll. Cardiol. 2017, 70, 2519–2532. [Google Scholar] [CrossRef]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. eClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef]
- Anguera-Tejedor, M.; Garrido, G.; Garrido-Suárez, B.B.; Ardiles-Rivera, A.; Bistué-Rovira, À.; Jiménez-Altayó, F.; Delgado-Hernández, R. Exploring the therapeutic potential of bioactive compounds from selected plant extracts of Mediterranean diet constituents for cardiovascular diseases: A review of mechanisms of action, clinical evidence, and adverse effects. Food Biosci. 2024, 62, 105487. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Fornal, E. Dietary Isorhamnetin Intake Is Inversely Associated with Coronary Artery Disease Occurrence in Polish Adults. Int. J. Environ. Res. Public Health 2022, 19, 12546. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). Blood Press. 2018, 27, 314–340. [Google Scholar] [CrossRef]
- Bąk-Sosnowska, M.; Białkowska, M.; Bogdanski, P.; Chomiuk, T.; Gałązka-Sobotka, M.; Holecki, M.; Jarosińska, A.; Jezierska-Kazberuk, M.; Kamiński, P.; Kłoda, K.; et al. Zalecenia kliniczne dotyczące postępowania u chorych na otyłość 2022. Stanowisko Polskiego Towarzystwa Leczenia Otyłości. Medycyna Praktyczna. 2022. Available online: https://ptlo.org.pl/resources/data/sections/114/ws_otylosc.pdf (accessed on 15 February 2025).
- Henzel, J.; Kruk, M.; Kępka, C.; Makarewicz-Wujec, M.; Wardziak, Ł.; Trochimiuk, P.; Krysztofiak, H.; Dąbrowski, R.; Dzielińska, Z.; Maurovich-Horvat, P.; et al. Diet and Lifestyle Intervention-Induced Pattern of Weight Loss Related to Reduction in Low-Attenuation Coronary Plaque Burden. Diagnostics 2024, 14, 615. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Shafie, D.; Heidari Moghaddam, R.; Sadeghi, M.; Safavi, S.M. Investigation of adherence to DASH diet components and reduction of heart failure risk in adults: A case-control study. ARYA Atheroscler. 2024, 20, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Glibowski, P. Apple Peel Supplementation Potential in Metabolic Syndrome Prevention. Life 2023, 13, 753. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.A.; MacGregor, G.A. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. Lancet 2006, 367, 320–326. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Hämäläinen, H.; Paalosmaa-Puusa, P.; Seppänen, R.; Rastas, M.; Knuts, L.R.; Voipio-Pulkki, L.M. Feasibility of, and success in adopting a low-fat diet in coronary patients. Scand. J. Rehabil. Med. 2000, 32, 180–186. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J. Ketogenic diet and cardiovascular risk—State of the art review. Curr. Probl. Cardiol. 2024, 49, 102402. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Mullee, A.; Romaguera, D.; Pearson-Stuttard, J.; Viallon, V.; Stepien, M.; Freisling, H.; Fagherazzi, G.; Mancini, F.R.; Boutron-Ruault, M.-C.; Kühn, T.; et al. Association Between Soft Drink Consumption and Mortality in 10 European Countries. JAMA Intern. Med. 2019, 179, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, L.S.; Jose, M.M.; Sallam, H.; Serag, H.; Golovko, G.; Khanipov, K.; Hamilton, M.A.; Fonarow, G.C. High-protein vs. standard-protein diets in overweight and obese patients with heart failure and diabetes mellitus: Findings of the Pro-HEART trial. ESC Heart Fail. 2021, 8, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Liu, G.; Hu, F.B.; Bhupathiraju, S.N.; Sun, Q. Association Between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2019, 179, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Ueng, K.-C.; Chiang, C.-E.; Chao, T.-H.; Wu, Y.-W.; Lee, W.-L.; Li, Y.-H.; Ting, K.-H.; Su, C.-H.; Lin, H.-J.; Su, T.-C.; et al. 2023 Guidelines of the Taiwan Society of Cardiology on the Diagnosis and Management of Chronic Coronary Syndrome. Acta Cardiol. Sin. 2023, 39, 4–96. [Google Scholar] [CrossRef]
- Kaasenbrood, L.; Boekholdt, S.M.; van der Graaf, Y.; Ray, K.K.; Peters, R.J.G.; Kastelein, J.J.P.; Amarenco, P.; LaRosa, J.C.; Cramer, M.J.M.; Westerink, J.; et al. Distribution of Estimated 10-Year Risk of Recurrent Vascular Events and Residual Risk in a Secondary Prevention Population. Circulation 2016, 134, 1419–1429. [Google Scholar] [CrossRef]
- Butler, T.; Kerley, C.P.; Altieri, N.; Alvarez, J.; Green, J.; Hinchliffe, J.; Stanford, D.; Paterson, K. Optimum nutritional strategies for cardiovascular disease prevention and rehabilitation (BACPR). Heart Br. Card. Soc. 2020, 106, 724–731. [Google Scholar] [CrossRef]
- Thomas, R.J.; Beatty, A.L.; Beckie, T.M.; Brewer, L.C.; Brown, T.M.; Forman, D.E.; Franklin, B.A.; Keteyian, S.J.; Kitzman, D.W.; Regensteiner, J.G.; et al. Home-Based Cardiac Rehabilitation. JACC 2019, 74, 133–153. [Google Scholar] [CrossRef]
- Ritchey, M.D.; Maresh, S.; McNeely, J.; Shaffer, T.; Jackson, S.L.; Keteyian, S.J.; Brawner, C.A.; Whooley, M.A.; Chang, T.; Stolp, H.; et al. Tracking Cardiac Rehabilitation Participation and Completion Among Medicare Beneficiaries to Inform the Efforts of a National Initiative. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e005902. [Google Scholar] [CrossRef]
- Carnethon, M.R.; Pu, J.; Howard, G.; Albert, M.A.; Anderson, C.A.M.; Bertoni, A.G.; Mujahid, M.S.; Palaniappan, L.; Taylor, H.A.; Willis, M.; et al. Cardiovascular Health in African Americans: A Scientific Statement from the American Heart Association. Circulation 2017, 136, e393–e423. [Google Scholar] [CrossRef]
- Rana, A.; de Souza, R.J.; Kandasamy, S.; Lear, S.A.; Anand, S.S. Cardiovascular risk among South Asians living in Canada: A systematic review and meta-analysis. Can. Med. Assoc. Open Access J. 2014, 2, E183–E191. [Google Scholar] [CrossRef]
- Oldridge, N.B.; Ragowski, B.; Gottlieb, M. Factors Associated with Attendance. J. Cardiopulm. Rehabil. Prev. 1992, 12, 25. [Google Scholar] [CrossRef]
- Casey, E.; Hughes, J.W.; Waechter, D.; Josephson, R.; Rosneck, J. Depression predicts failure to complete phase-II cardiac rehabilitation. J. Behav. Med. 2008, 31, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Wyer, S.J.; Earll, L.; Joseph, S.; Harrison, J.; Giles, M.; Johnston, M. Increasing attendance at a cardiac rehabilitation programme: An intervention study using the Theory of Planned Behaviour. Coron. Health Care 2001, 5, 154–159. [Google Scholar] [CrossRef]
- Yohannes, A.M.; Yalfani, A.; Doherty, P.; Bundy, C. Predictors of drop-out from an outpatient cardiac rehabilitation programme. Clin. Rehabil. 2007, 21, 222–229. [Google Scholar] [CrossRef]
- Cannistra, L.B.; Balady, G.J.; O’Malley, C.J.; Weiner, D.A.; Ryan, T.J. Comparison of the clinical profile and outcome of women and men in cardiac rehabilitation. Am. J. Cardiol. 1992, 69, 1274–1279. [Google Scholar] [CrossRef]
- Taylor, G.H.; Wilson, S.L.; Sharp, J. Medical, Psychological, and Sociodemographic Factors Associated with Adherence to Cardiac Rehabilitation Programs: A Systematic Review. J. Cardiovasc. Nurs. 2011, 26, 202. [Google Scholar] [CrossRef]
- Britto, R.R.; Supervia, M.; Turk-Adawi, K.; Chaves, G.d.S.S.; Pesah, E.; Lopez-Jimenez, F.; Pereira, D.A.G.; Herdy, A.H.; Grace, S.L. Cardiac rehabilitation availability and delivery in Brazil: A comparison to other upper middle-income countries. Braz. J. Phys. Ther. 2020, 24, 167–176. [Google Scholar] [CrossRef]
- Froger-Bompas, C.; Laviolle, B.; Guillo, P.; Letellier, C.; Ligier, K.; Daubert, J.-C.; Paillard, F. Sustained positive impact of a coronary rehabilitation programme on adherence to dietary recommendations. Arch. Cardiovasc. Dis. 2009, 102, 97–104. [Google Scholar] [CrossRef]
- Hag, E.; Bäck, M.; Henriksson, P.; Wallert, J.; Held, C.; Stomby, A.; Leosdottir, M. Associations between cardiac rehabilitation structure and processes and dietary habits after myocardial infarction: A nationwide registry study. Eur. J. Cardiovasc. Nurs. 2025, 24, 253–263. [Google Scholar] [CrossRef]
- Novaković, M.; Rajkovič, U.; Košuta, D.; Tršan, J.; Fras, Z.; Jug, B. Effects of Cardiac Rehabilitation and Diet Counselling on Adherence to the Mediterranean Lifestyle in Patients after Myocardial Infarction. Nutrients 2022, 14, 4048. [Google Scholar] [CrossRef] [PubMed]
- Fard, N.M.; Zadegan, N.S.; Sajadi, F.; Rafiei, M.; Abdar, N. Effect of cardiac rehabilitation on lipid profile. J. Assoc. Physicians India 2003, 51, 12–15. [Google Scholar] [PubMed]
- Ślązak, A.; Przybylska, I.; Paprocka-Borowicz, M. Evaluation of Change in Body Composition, including Phase Angle, in Post-Myocardial Infarction Patients Rehabilitated under the KOS-Zawał (MC-AMI) Programme. J. Clin. Med. 2024, 13, 2784. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.L.; Sanderson, B.; Maisiak, R.; Brown, A.; Bittner, V. Dietitian services are associated with improved patient outcomes and the MEDFICTS dietary assessment questionnaire is a suitable outcome measure in cardiac rehabilitation. J. Am. Diet. Assoc. 2005, 105, 1533–1540, quiz 1549. [Google Scholar] [CrossRef] [PubMed]
- Plüss, C.E.; Billing, E.; Held, C.; Henriksson, P.; Kiessling, A.; Karlsson, M.R.; Wallen, H.N. Long-term effects of an expanded cardiac rehabilitation programme after myocardial infarction or coronary artery bypass surgery: A five-year follow-up of a randomized controlled study. Clin. Rehabil. 2011, 25, 79–87. [Google Scholar] [CrossRef]
- Rasmussen, R.A.; Sisson, S.B.; Baldwin, J.D.; Hord, N.; Eliot, K.; Anderson, L.; Gowin, M.J.; Scott, B.D.; Wortham, D. Comparison of Traditional and Intensive Cardiac Rehabilitation on Dietary Behavior and Clinical Risk Factor Outcomes: Secondary Analysis Research. J. Cardiopulm. Rehabil. Prev. 2025, 45, 95–102. [Google Scholar] [CrossRef]
- Duarte, C.K.; Silva, L.D.A.; Andrade, P.M.B.D.; Martins, T.M.M.; Ghisi, G.L.D.M. Barriers and facilitators to nutritional recommendations identified by participants of a cardiovascular rehabilitation program in a low resource context in Brazil. Nutrition 2024, 124, 112451. [Google Scholar] [CrossRef]
- Bertelsen, J.B.; Refsgaard, J.; Kanstrup, H.; Johnsen, S.P.; Qvist, I.; Christensen, B.; Christensen, K.L. Cardiac rehabilitation after acute coronary syndrome comparing adherence and risk factor modification in a community-based shared care model versus hospital-based care in a randomised controlled trial with 12 months of follow-up. Eur. J. Cardiovasc. Nurs. 2017, 16, 334–343. [Google Scholar] [CrossRef]
- James, E.; Butler, T.; Nichols, S.; Goodall, S.; O’Doherty, A.F. Provision of dietary education in UK-based cardiac rehabilitation: A cross-sectional survey conducted in conjunction with the British Association for Cardiovascular Prevention and Rehabilitation. Br. J. Nutr. 2024, 131, 880–893. [Google Scholar] [CrossRef]
- Twardella, D.; Merx, H.; Hahmann, H.; Wüsten, B.; Rothenbacher, D.; Brenner, H. Long term adherence to dietary recommendations after inpatient rehabilitation: Prospective follow up study of patients with coronary heart disease. Heart Br. Card. Soc. 2006, 92, 635–640. [Google Scholar] [CrossRef]
- Flanagan, S.; Damery, S.; Combes, G. The effectiveness of integrated care interventions in improving patient quality of life (QoL) for patients with chronic conditions. An overview of the systematic review evidence. Health Qual. Life Outcomes 2017, 15, 188. [Google Scholar] [CrossRef]
- Balady, G.J.; Williams, M.A.; Ades, P.A.; Bittner, V.; Comoss, P.; Foody, J.M.; Franklin, B.; Sanderson, B.; Southard, D. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2007, 115, 2675–2682. [Google Scholar] [CrossRef] [PubMed]
- Douma, E.R.; Kop, W.J.; Kupper, N. Associations Between Psychological Factors and Adherence to Health Behaviors After Percutaneous Coronary Intervention: The Role of Cardiac Rehabilitation. Ann. Behav. Med. Publ. Soc. Behav. Med. 2024, 58, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Gostoli, S.; Roncuzzi, R.; Urbinati, S.; Morisky, D.E.; Rafanelli, C. Unhealthy behaviour modification, psychological distress, and 1-year survival in cardiac rehabilitation. Br. J. Health Psychol. 2016, 21, 894–916. [Google Scholar] [CrossRef]
- Jinnette, R.; Narita, A.; Manning, B.; McNaughton, S.A.; Mathers, J.C.; Livingstone, K.M. Does Personalized Nutrition Advice Improve Dietary Intake in Healthy Adults? A Systematic Review of Randomized Controlled Trials. Adv. Nutr. 2020, 12, 657–669. [Google Scholar] [CrossRef]
- García-Conesa, M.-T.; Philippou, E.; Pafilas, C.; Massaro, M.; Quarta, S.; Andrade, V.; Jorge, R.; Chervenkov, M.; Ivanova, T.; Dimitrova, D.; et al. Exploring the Validity of the 14-Item Mediterranean Diet Adherence Screener (MEDAS): A Cross-National Study in Seven European Countries around the Mediterranean Region. Nutrients 2020, 12, 2960. [Google Scholar] [CrossRef]
- Alghamdi, M.M.; Burrows, T.; Barclay, B.; Baines, S.; Chojenta, C. Culinary Nutrition Education Programs in Community-Dwelling Older Adults: A Scoping Review. J. Nutr. Health Aging 2023, 27, 142–158. [Google Scholar] [CrossRef]
Study | Participants | Key Findings | Focus |
---|---|---|---|
Nadarajah et al. [3] | 3620 patients, 287 centers, 59 countries | Identified barriers to optimal management of non-ST segment elevation myocardial infarction. | Patient characteristics and treatment outcomes. |
Sobieszek et al. [13] | 68,000 patients (2017–2022) | 36% relative reduction in death risk, and improved access to and satisfaction with cardiac care. | Comprehensive cardiac care. |
Shwaab et al. [16] | Patients after myocardial infarction | Significant improvement in LDL-C control, from 2% to 42%, achieving target levels post-therapy. | Lipid control in CR. |
Andersson et al. [17] | 130 women under 65 | Reduced emergency visits and hospitalization in intervention group, no change in sickness absence. | Impact of lifestyle modifications. |
Ohtera et al. [18] | 87,829 patients in Japan | 32% participation in CR, higher rates in certain regions, inadequate implementation noted. | Participation rates in CR. |
Type of Food | Example Products | Role in CVD Risk Modulation |
---|---|---|
Fruit and vegetables | Tomatoes, citrus, spinach | Source of fiber, vitamins, and minerals; antioxidant and anti-inflammatory effects [23] |
Olive oil | Extra-virgin olive oil | Rich in monounsaturated fatty acids; improves blood lipid profile [44] |
Wholegrain products | Wholemeal bread, pasta | Source of fiber, vitamins, and minerals; beneficial effects on glucose and cholesterol levels [24] |
Legumes | Chickpeas, lentils | High in protein and fiber; improve insulin sensitivity [45] |
Nuts and seeds | Walnuts, almonds | Source of omega-3 fatty acids [46] |
Fatty fish | Sardines, salmon | Source of omega-3 fatty acids; anti-inflammatory effects [47] |
Herbs and spices | Oregano, basil | Anti-inflammatory and antioxidant effects; improve flavor of food without adding salt [48,49] |
Study | Participants | Key Findings | Focus |
---|---|---|---|
Froger-Bompas et al. [79] | Patients with coronary artery disease | Increased adherence to dietary recommendations post-CR. | Dietary adherence. |
Novaković et al. [81] | 121 post-myocardial infarction patients | Improved glucose and lipid levels; better results in those with limited initial adherence. | Lifestyle adherence. |
Fard et al. [82] | Participants in a CR program | Significant reduction in LDL-C and increase in HDL-C levels. | Lipid management. |
Ślązak et al. [83] | Participants of KOS-MI program | Reduction in visceral fat levels and levels of adipose tissue in the lower and upper limbs. | Body composition. |
Holmes et al. [84] | Patients in a CR program | Dietary services associated with improved outcomes in CR. | Effectiveness of the Meats, Eggs, Dairy, Fried foods, fat In baked goods, Convenience foods, Table fats, Snacks (MEDFICTS) diagnostic test. |
Plüss et al. [85] | 224 post-myocardial infarction patients | Long-term CR reduced cardiac events; additional counseling improved outcomes. | Long-term effects of CR. |
Rasmussen et al. [86] | Traditional CR group (n = 420) and the Pritikin intensive CR group (n = 1005) | Patients participating in intensive Pritikin rehabilitation achieved significantly better cardiometabolic health outcomes. | Differences in feeding behavior and clinical outcomes. |
Duarte et al. [87] | Participants in a CR program in Brazil | Identified barriers to dietary recommendations; support and motivation were facilitators. | Barriers to dietary adherence. |
Bertelsen et al. [88] | Shared care CR and hospital-based CR groups | Patients in the hospital-based CR group adhered better to dietary and health education recommendations. | Role of individualized CR care in recommendation adherence. |
Borowicz-Bienkowska et al. [35] | 44 CR patients after acute coronary syndrome vs. 18 patients who did not participate in CR | Significant reduction in calorie and cholesterol intake in the intervention group. | Impact of the intervention on eating habits. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiolek-Kalisz, J.; Mazur, M.; Perone, F. The Role of Dietary Education in Cardiac Rehabilitation. Nutrients 2025, 17, 1082. https://doi.org/10.3390/nu17061082
Popiolek-Kalisz J, Mazur M, Perone F. The Role of Dietary Education in Cardiac Rehabilitation. Nutrients. 2025; 17(6):1082. https://doi.org/10.3390/nu17061082
Chicago/Turabian StylePopiolek-Kalisz, Joanna, Michal Mazur, and Francesco Perone. 2025. "The Role of Dietary Education in Cardiac Rehabilitation" Nutrients 17, no. 6: 1082. https://doi.org/10.3390/nu17061082
APA StylePopiolek-Kalisz, J., Mazur, M., & Perone, F. (2025). The Role of Dietary Education in Cardiac Rehabilitation. Nutrients, 17(6), 1082. https://doi.org/10.3390/nu17061082