Vitamin D Status Determines Cardiometabolic Effects of Testosterone Replacement Therapy in Men with Late-Onset Hypogonadism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Laboratory Assays
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldman, H.A.; Longcope, C.; Derby, C.A.; Johannes, C.B.; Araujo, A.B.; Coviello, A.D.; Bremner, W.J.; McKinlay, J.B. Age trends in the level of serum testosterone and other hormones in middle-aged men: Longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 2002, 87, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J. Symptoms of late-onset hypogonadism in men. Endocrinol. Metab. Clin. North Am. 2022, 51, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Bassil, N. Late-onset hypogonadism. Med. Clin. North Am. 2011, 95, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.M. Diagnosis of hypogonadism in ageing men. Rev. Endocr. Metab. Disord. 2022, 23, 1139–1150. [Google Scholar] [CrossRef]
- Corona, G.; Krausz, C. Late-onset hypogonadism a challenging task for the andrology field. Andrology 2020, 8, 1504–1505. [Google Scholar] [CrossRef]
- Farias, J.M.; Tinetti, M.; Khoury, M.; Umpierrez, G.E. Low testosterone concentration and atherosclerotic disease markers in male patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2014, 99, 4698–4703. [Google Scholar] [CrossRef]
- Brodin, E.; Vikan, T.; Hansen, J.B.; Svartberg, J. Testosterone, hemostasis, and cardiovascular diseases in men. Semin. Thromb. Hemost. 2011, 37, 87–94. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Monami, M.; Guay, A.; Buvat, J.; Sforza, A.; Forti, G.; Mannucci, E.; Maggi, M. Hypogonadism as a risk factor for cardiovascular mortality in men: A meta-analytic study. Eur. J. Endocrinol. 2011, 165, 687–701. [Google Scholar] [CrossRef]
- Corona, G.; Monami, M.; Rastrelli, G.; Aversa, A.; Tishova, Y.; Saad, F.; Lenzi, A.; Forti, G.; Mannucci, E.; Maggi, M. Testosterone and metabolic syndrome: A meta-analysis study. J. Sex. Med. 2011, 8, 272–283. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Cai, Z.; Li, H.; Yang, B. Association between testosterone with type 2 diabetes in adult males, a meta-analysis and trial sequential analysis. Aging Male 2020, 23, 607–618. [Google Scholar] [CrossRef]
- Lorigo, M.; Mariana, M.; Oliveira, N.; Lemos, M.C.; Cairrao, E. Vascular pathways of testosterone: Clinical implications. J. Cardiovasc. Transl. Res. 2020, 13, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Herald, A.K.; Alves-Lopes, R.; Montezano, A.C.; Ahmed, S.F.; Touyz, R.M. Genomic and non-genomic effects of androgens in the cardiovascular system: Clinical implications. Clin. Sci. 2017, 131, 1405–1418. [Google Scholar] [CrossRef]
- Wallis, C.J.; Lo, K.; Lee, Y.; Krakowsky, Y.; Garbens, A.; Satkunasivam, R.; Herschorn, S.; Kodama, R.T.; Cheung, P.; Narod, S.A.; et al. Survival and cardiovascular events in men treated with testosterone replacement therapy: An intention-to-treat observational cohort study. Lancet Diabetes Endocrinol. 2016, 4, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Cheetham, T.C.; An, J.; Jacobsen, S.J.; Niu, F.; Sidney, S.; Quesenberry, C.P.; Van Den Eeden, S.K. Association of testosterone replacement with cardiovascular outcomes among men with androgen deficiency. JAMA Intern. Med. 2017, 177, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Oni, O.A.; Gupta, K.; Chen, G.; Sharma, M.; Dawn, B.; Sharma, R.; Parashara, D.; Savin, V.J.; Ambrose, J.A.; et al. Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men. Eur. Heart J. 2015, 36, 2706–2715. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Bhasin, S.; Flevaris, P.; Mitchell, L.M.; Basaria, S.; Boden, W.E.; Cunningham, G.R.; Granger, C.B.; Khera, M.; Thompson, I.M., Jr.; et al. TRAVERSE Study Investigators. Cardiovascular safety of testosterone-replacement therapy. N. Engl. J. Med. 2023, 389, 107–117. [Google Scholar] [CrossRef]
- Vigen, R.; O’Donnell, C.I.; Barón, A.E.; Grunwald, G.K.; Maddox, T.M.; Bradley, S.M.; Barqawi, A.; Woning, G.; Wierman, M.E.; Plomondon, M.E.; et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA 2013, 310, 1829–1836. [Google Scholar] [CrossRef]
- Kapoor, D.; Goodwin, E.; Channer, K.S.; Jones, T.H. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. 2006, 154, 899–906. [Google Scholar] [CrossRef]
- Singh, A.B.; Hsia, S.; Alaupovic, P.; Sinha-Hikim, I.; Woodhouse, L.; Buchanan, T.A.; Shen, R.; Bross, R.; Berman, N.; Bhasin, S. The effects of varying doses of T on insulin sensitivity, plasma lipids, apolipoproteins, and C-reactive protein in healthy young men. J. Clin. Endocrinol. Metab. 2002, 87, 136–143. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, L.; Li, C.; Gai, Z.; Li, Y. Vitamin D and vitamin D receptor: New insights in the treatment of hypertension. Curr. Protein Pept. Sci. 2019, 20, 984–995. [Google Scholar] [CrossRef]
- Parker, J.; Hashmi, O.; Dutton, D.; Mavrodaris, A.; Stranges, S.; Kandala, N.B.; Clarke, A.; Franco, O.H. Levels of vitamin D and cardiometabolic disorders: Systematic review and meta-analysis. Maturitas 2010, 65, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Daraghmeh, A.H.; Bertoia, M.L.; Al-Qadi, M.O.; Abdulbaki, A.M.; Roberts, M.B.; Eaton, C.B. Evidence for the vitamin D hypothesis: The NHANES III extended mortality follow-up. Atherosclerosis 2016, 25, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Schleithoff, S.S.; Tenderich, G.; Berthold, H.K.; Korfer, R.; Stehle, P. Low vitamin D status: A contributing factor in the pathogenesis of congestive heart failure? J. Am. Coll. Cardiol. 2003, 41, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhao, C.; Li, J.; Li, Y. A systematic review and meta-analysis of the linkage between low vitamin D and the risk as well as the prognosis of stroke. Brain Behav. 2024, 14, e3577. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef]
- Kim, D.H.; Meza, C.A.; Clarke, H.; Kim, J.S.; Hickner, R.C. Vitamin D and endothelial function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef]
- Chen, F.H.; Liu, T.; Xu, L.; Zhang, L.; Zhou, X.B. Association of serum vitamin D level and carotid atherosclerosis: A systematic review and meta-analysis. J. Ultrasound Med. 2018, 37, 1293–1303. [Google Scholar] [CrossRef]
- Daniel, J.B.; de Farias Costa, P.R.; Pereira, M.; Oliveira, A.M. Vitamin D deficiency and cardiometabolic risk factors in adolescents: Systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2022, 23, 995–1010. [Google Scholar] [CrossRef]
- Lee, D.M.; Tajar, A.; Pye, S.R.; Boonen, S.; Vanderschueren, D.; Bouillon, R.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.F.; Finn, J.D.; et al. Association of hypogonadism with vitamin D status: The European Male Ageing Study. Eur. J. Endocrinol. 2012, 166, 77–85. [Google Scholar] [CrossRef]
- Tirabassi, G.; Sudano, M.; Salvio, G.; Cutini, M.; Muscogiuri, G.; Corona, G.; Balercia, G. Vitamin D and male sexual function: A transversal and longitudinal study. Int. J. Endocrinol. 2018, 2018, 3720813. [Google Scholar] [CrossRef]
- Rudnicka, A.; Adoamnei, E.; Noguera-Velasco, J.A.; Vioque, J.; Cañizares-Hernández, F.; Mendiola, J.; Jørgensen, N.; Chavarro, J.E.; Swan, S.H.; Torres-Cantero, A.M. Vitamin D status is not associated with reproductive parameters in young Spanish men. Andrology 2020, 8, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Heijboer, A.C.; Pilz, S.; Obermayer-Pietsch, B. Effects of vitamin D supplementation on androgens in men with low testosterone levels: A randomized controlled trial. Eur. J. Nutr. 2019, 58, 3135–3146. [Google Scholar] [CrossRef] [PubMed]
- Heijboer, A.C.; Oosterwerff, M.; Schroten, N.F.; Eekhoff, E.M.; Chel, V.G.; de Boer, R.A.; Blankenstein, M.A.; Lips, P. Vitamin D supplementation and testosterone concentrations in male human subjects. Clin. Endocrinol. 2015, 83, 105–110. [Google Scholar] [CrossRef]
- Holt, R.; Yahyavi, S.K.; Kooij, I.; Poulsen, N.N.; Juul, A.; Jørgensen, N.; Blomberg Jensen, M. Vitamin D and sex steroid production in men with normal or impaired Leydig cell function. Andrology 2024, 12, 553–560. [Google Scholar] [CrossRef]
- Hofer, D.; Münzker, J.; Schwetz, V.; Ulbing, M.; Hutz, K.; Stiegler, P.; Zigeuner, R.; Pieber, T.R.; Müller, H.; Obermayer-Pietsch, B. Testicular synthesis and vitamin D action. J. Clin. Endocrinol. Metab. 2014, 99, 3766–3773. [Google Scholar] [CrossRef]
- Holt, R.; Juel Mortensen, L.; Harpelunde Poulsen, K.; Nielsen, J.E.; Frederiksen, H.; Jørgensen, N.; Jørgensen, A.; Juul, A.; Blomberg Jensen, M. Effects of vitamin D on sex steroids, luteinizing hormone, and testosterone to luteinizing hormone ratio in 307 infertile men. J. Steroid Biochem. Mol. Biol. 2020, 199, 105589. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. The impact of hypotestosteronemia on cardiometabolic effects of atorvastatin in men with hypercholesterolemia: A pilot study. Coron. Artery Dis. 2021, 32, 706–712. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. The effect of vitamin D on thyroid autoimmunity in euthyroid men with autoimmune thyroiditis and testosterone deficiency. Pharmacol. Rep. 2019, 71, 798–803. [Google Scholar] [CrossRef]
- Kinlay, S.; Egido, J. Inflammatory biomarkers in stable atherosclerosis. Am. J. Cardiol. 2006, 98, S2–S8. [Google Scholar] [CrossRef]
- McCully, K.S. Homocysteine, vitamins, and vascular disease prevention. Am. J. Clin. Nutr. 2007, 86, 1563S–1568S. [Google Scholar] [CrossRef]
- Krysiak, R.; Okopień, B.; Herman, Z. Effects of HMG-CoA reductase inhibitors on coagulation and fibrinolysis processes. Drugs 2003, 63, 1821–1854. [Google Scholar] [CrossRef] [PubMed]
- Kleinpeter, M.A. Early detection of renal disease/microalbuminuria in patients with the cardiometabolic syndrome. J. CardioMetab. Syndr. 2007, 2, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Park, C.Y.; Sweeney, G. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future. Crit. Rev. Clin. Lab. Sci. 2015, 52, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef]
- Redon, J. Global cardiovascular risk assessment: Strengths and limitations. High Blood Press Cardiovasc. Prev. 2016, 23, 87–90. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. The effect of spironolactone on thyroid autoimmunity in euthyroid men with Hashimoto’s thyroiditis. J. Clin. Pharm. Ther. 2020, 45, 152–159. [Google Scholar] [CrossRef]
- Foresta, C.; Selice, R.; Di Mambro, A.; Strapazzon, G. Testiculopathy and vitamin D insufficiency. Lancet 2010, 376, 1301. [Google Scholar] [CrossRef]
- Foresta, C.; Selice, R.; De Toni, L.; Di Mambro, A.; Carraro, U.; Plebani, M.; Garolla, A. Altered bone status in unilateral testicular cancer survivors: Role of CYP2R1 and its luteinizing hormone-dependency. J. Endocrinol. Investig. 2013, 36, 379–384. [Google Scholar]
- Krysiak, R.; Gilowski, W.; Okopień, B. The effect of testosterone on cardiometabolic risk factors in atorvastatin-treated men with late-onset hypogonadism. Pharmacol. Rep. 2016, 68, 196–200. [Google Scholar] [CrossRef]
- Dati, E.; Baroncelli, G.I.; Mora, S.; Russo, G.; Baldinotti, F.; Parrini, D.; Erba, P.; Simi, P.; Bertelloni, S. Body composition and metabolic profile in women with complete androgen insensitivity syndrome. Sex. Dev. 2009, 3, 188–193. [Google Scholar] [CrossRef]
- Fagman, J.B.; Wilhelmson, A.S.; Motta, B.M.; Pirazzi, C.; Alexanderson, C.; De Gendt, K.; Verhoeven, G.; Holmäng, A.; Anesten, F.; Jansson, J.O.; et al. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice. FASEB J. 2015, 29, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen receptor structure, function and biology: From bench to bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar] [PubMed]
- Leman, E.S.; Arlotti, J.A.; Dhir, R.; Getzenberg, R.H. Vitamin D and androgen regulation of prostatic growth. J. Cell. Biochem. 2003, 90, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Ly, L.H.; Peehl, D.M.; Feldman, D. Induction of androgen receptor by 1alpha,25-dihydroxyvitamin D3 and 9-cis retinoic acid in LNCaP human prostate cancer cells. Endocrinology 1999, 140, 1205–1212. [Google Scholar] [CrossRef]
- Amini, S.; Jafarirad, S.; Abiri, B. Vitamin D, testosterone and depression in middle-aged and elderly men: A systematic review. Crit. Rev. Food Sci. Nutr. 2023, 63, 5194–5205. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4–8. [Google Scholar] [CrossRef]
- Lou, Y.R.; Murtola, T.; Tuohimaa, P. Regulation of aromatase and 5alpha-reductase by 25-hydroxyvitamin D(3), 1alpha,25-dihydroxyvitamin D(3), dexamethasone and progesterone in prostate cancer cells. J. Steroid Biochem. Mol. Biol. 2005, 94, 151–157. [Google Scholar] [CrossRef]
- Morselli, E.; Santos, R.S.; Criollo, A.; Nelson, M.D.; Palmer, B.F.; Clegg, D.J. The effects of oestrogens and their receptors on cardiometabolic health. Nat. Rev. Endocrinol. 2017, 13, 352–364. [Google Scholar] [CrossRef]
Variable | Group I | Group II | Group III |
---|---|---|---|
Number (n) | 22 | 22 | 21 |
Age (years) | 59 ± 8 | 60 ± 8 | 58 ± 9 |
Smokers (%)/number of cigarettes a day (n)/duration of smoking (years) | 45/11 ± 7/30 ± 15 | 41/10 ± 6/32 ± 17 | 43/9 ± 7/31 ± 14 |
Body mass index (kg/m2) | 28.8 ± 5.5 | 27.7 ± 5.3 | 27.5 ± 5.8 |
Waist circumference (cm) | 102 ± 10 | 99 ± 10 | 98 ± 8 |
Systolic blood pressure (mmHg) | 135 ± 18 | 131 ± 20 | 130 ± 22 |
Diastolic blood pressure (mmHg) | 87 ± 8 | 84 ± 8 | 84 ± 7 |
TyG index | 4.83 ± 0.17 | 4.82 ± 0.15 | 4.85 ± 0.18 |
Daily calciferol intake with food * (µg) | 10.4 ± 5.2 | 9.6 ± 4.8 | 11.8 ± 5.8 |
Variable | Group I | Group II | Group III |
---|---|---|---|
Total testosterone (nmol/L) | |||
Baseline | 8.3 ± 1.5 | 7.8 ± 1.9 | 8.1 ± 1.7 |
Follow-up | 16.2 ± 3.1 # | 15.9 ± 2.9 # | 16.9 ± 3.5 # |
25-hydroxyvitamin D (ng/mL) | |||
Baseline | 24.8 ± 2.5 * | 46.0 ± 7.3 | 45.2 ± 8.0 |
Follow-up | 25.2 ± 2.8 * | 46.8 ± 6.9 | 44.9 ± 7.5 |
Glucose (mg/dL) | |||
Baseline | 94 ± 12 | 92 ± 12 | 91 ± 11 |
Follow-up | 92 ± 11 | 88 ± 12 | 87 ± 12 |
HOMA1-IR | |||
Baseline | 3.4 ± 1.2 | 3.2 ± 0.9 | 3.0 ± 0.9 |
Follow-up | 3.2 ± 1.0 * | 2.1 ± 0.8 # | 1.9 ± 0.9 # |
Total cholesterol (mg/dL) | |||
Baseline | 205 ± 34 | 208 ± 35 | 213 ± 40 |
Follow-up | 202 ± 30 | 193 ± 32 | 196 ± 29 |
HDL cholesterol (mg/dL) | |||
Baseline | 48 ± 9 | 49 ± 9 | 51 ± 11 |
Follow-up | 40 ± 10 *, # | 50 ± 11 | 51 ± 12 |
LDL cholesterol (mg/dL) | |||
Baseline | 121 ± 27 | 122 ± 25 | 125 ± 21 |
Follow-up | 124 ± 23 * | 108 ± 22 # | 109 ± 24 # |
Triglycerides (mg/dL) | |||
Baseline | 168 ± 61 | 174 ± 70 | 180 ± 67 |
Follow-up | 179 ± 71 | 172 ± 64 | 175 ± 75 |
Uric acid (mg/dL) | |||
Baseline | 4.9 ± 1.7 | 4.7 ± 1.9 | 5.2 ± 2.0 |
Follow-up | 4.4 ± 1.6 * | 3.4 ± 1.6 # | 3.4 ± 1.4 # |
hsCRP (mg/L) | |||
Baseline | 3.9 ± 1.2 * | 3.2 ± 1.0 | 3.0 ± 1.1 |
Follow-up | 3.2 ± 0.9 *, # | 1.3 ± 0.8 # | 1.4 ± 0.7 # |
Homocysteine (μmol/L) | |||
Baseline | 34.1 ± 11.9 * | 23.6 ± 9.5 | 22.4 ± 8.8 |
Follow-up | 31.8 ± 10.2 * | 12.8 ± 7.5 # | 11.7 ± 8.4 # |
Fibrinogen (mg/dL) | |||
Baseline | 438 ± 85 * | 370 ± 78 | 358 ± 91 |
Follow-up | 420 ±95 * | 295 ± 101 # | 283 ± 79 # |
UACR (mg/g) | |||
Baseline | 32.8 ± 12.5 * | 22.8 ± 7.6 | 23.5 ± 8.0 |
Follow-up | 31.2 ± 10.9 * | 11.5 ± 7.1 # | 12.8 ± 6.9 # |
FRS (%) | |||
Baseline | 13.7 ± 2.8 * | 12.2 ± 2.9 | 11.9 ± 3.2 |
Follow-up | 14.2 ± 3.5 * | 10.5 ± 3.4 # | 10.0 ± 3.0 # |
Variable | Group I | Group II | Group III |
---|---|---|---|
Δ Total testosterone | 95 ± 35 | 104 ± 40 | 109 ± 46 |
Δ 25-hydroxyvitamin D | 2 ± 8 | 2 ± 7 | −1 ± 5 |
Δ Glucose | −2 ± 6 | −4 ± 7 | −4 ± 6 |
Δ HOMA1-IR | −6 ± 18 * | −34 ± 18 | −37 ± 16 |
Δ Total cholesterol | −1 ± 8 * | −7 ± 10 | −8 ± 11 |
Δ HDL cholesterol | −20 ± 9 * | 2 ± 8 | 0 ± 12 |
Δ LDL cholesterol | 2 ± 9 * | −11 ± 10 | −13 ± 12 |
Δ Triglycerides | 7 ± 20 | −1 ± 19 | −3 ± 24 |
Δ Uric acid | −10 ± 18 * | −28 ± 18 | −35 ± 24 |
Δ hsCRP | −18 ± 21 * | −59 ± 30 | −53 ± 28 |
Δ Homocysteine | −7 ± 20 * | −46 ± 25 | −48 ± 19 |
Δ Fibrinogen | −4 ± 16 * | −20 ± 20 | −21 ± 18 |
Δ UACR | −5 ± 15 * | −50 ± 23 | −46 ± 24 |
Δ FRS | 4 ± 12 * | −14 ± 16 | −16 ± 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, R.; Kowalcze, K.; Szkróbka, W.; Okopień, B. Vitamin D Status Determines Cardiometabolic Effects of Testosterone Replacement Therapy in Men with Late-Onset Hypogonadism. Nutrients 2025, 17, 1013. https://doi.org/10.3390/nu17061013
Krysiak R, Kowalcze K, Szkróbka W, Okopień B. Vitamin D Status Determines Cardiometabolic Effects of Testosterone Replacement Therapy in Men with Late-Onset Hypogonadism. Nutrients. 2025; 17(6):1013. https://doi.org/10.3390/nu17061013
Chicago/Turabian StyleKrysiak, Robert, Karolina Kowalcze, Witold Szkróbka, and Bogusław Okopień. 2025. "Vitamin D Status Determines Cardiometabolic Effects of Testosterone Replacement Therapy in Men with Late-Onset Hypogonadism" Nutrients 17, no. 6: 1013. https://doi.org/10.3390/nu17061013
APA StyleKrysiak, R., Kowalcze, K., Szkróbka, W., & Okopień, B. (2025). Vitamin D Status Determines Cardiometabolic Effects of Testosterone Replacement Therapy in Men with Late-Onset Hypogonadism. Nutrients, 17(6), 1013. https://doi.org/10.3390/nu17061013