Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies
Abstract
:1. Introduction
2. Method of Search and Inclusion of Articles
3. How Does Milk Produced by Cows, Sheep, Goats, and Camels Compare to Human Milk and Infant Formula in Stimulating Infant Longitudinal Growth and Affecting Body Composition?
Milk Components | Human | Cow | Camel | Goat | Sheep |
---|---|---|---|---|---|
Protein (g/100 mL) | 1.0 | 3.4 | 3.4 | 3.6 | 5.6 |
Casein (g/100 mL) | 0.4 | 2.7 | 2.4 | 2.1 | 4.2 |
αs1-casein (w/w) | 0 | 1.0 | 0.5 | 0.1 | 0.5 |
αs2-casein (w/w) | 0 | 0.3 | 0.2 | 0.4 | 0.4 |
β-casein (w/w) | 0.3 | 1.0 | 1.6 | 1.2 | 3.2 |
κ-casein (w/w) | 0.1 | 0.4 | 0.1 | 0.4 | 0.1 |
Whey proteins (g/100 mL) | 0.7 | 0.6 | 0.7 | 0.6 | 1.1 |
Fat (g/100 mL) | 4 | 4.4 | 3.3 | 4.5 | 7.5 |
Saturated fatty acids (SFA) (w/w) | 2 | 3.2 | 2.4 | 2.7 | 4.6 |
Monosaturated (MUFA) (w/w) | 1.7 | 1.1 | 0.8 | 1.1 | 1.7 |
Polyunsaturated (PUFA) (w/w) | 0.5 | 0.2 | 0.1 | 0.2 | 0.3 |
Cholesterol (mg/100 mL) | 13 | 13 | 6 | 11 | 22 |
Emulsified fat globules (μm) (w/w) | 2.5 | 4 | 3 | 3 | 4 |
Carbohydrates: lactose (g/100 mL) | 6.7 | 5.5 | 4.3 | 4.3 | 4.6 |
Kilocalories/100 mL | 71 | 61 | 78 | 69 | 108 |
3.1. Properties of Human Milk
3.1.1. Colostrum
3.1.2. Milk Protein
3.1.3. Milk Fat
3.1.4. Milk Carbohydrates
3.1.5. Milk Vitamins and Minerals
3.1.6. Milk Hormones
3.1.7. Milk Enzymes
3.1.8. Milk and Infant Gastrointestinal Microbiota
3.2. Comparison of Infant Formula to Breast Milk
Matching Infant Formula to Bioactivities of Breast Milk
4. Discussion
4.1. Critical Nutritional Periods for Developmental Programming of Longitudinal Growth
4.2. Early Risk Factors for Developmental Programming for Obesity in Later Life
4.2.1. Uneven Infant Caloric Intake as a Source of Later-Life Obesity
4.2.2. The Role of Infant Birth Weight in Programming of Later-Life Obesity
4.3. Role of Gut Microbiome in Developmental Programming for Growth or Obsity
5. Conclusions
Funding
Conflicts of Interest
References
- Oftedal, O.T. The evolution of lactation in mammalian species. In Milk, Mucosal Immunity and the Microbiome: Impact on the Neonate; Ogra, P.L., Walker, W.A., Lőnnerdal, B., Eds.; Nestlė Nutrition Institute: Basel, Switzerland, 2020; Volume 94, pp. 1–10. [Google Scholar] [CrossRef]
- McNeilly, A.S.; Robinson, I.C.; Houston, M.J.; Howie, P.W. Release of oxytocin and prolactin in response to suckling. Br. Med. J. (Clin. Res. Ed.) 1983, 286, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Valtcheva, S.A.; Issa, H.; Bair-Marshall, C.J.; Martin, K.A.; Jung, K.; Zhang, Y.; Kwon, H.-B.; Froemke, R.C. Neural circuitry for maternal oxytocin release induced by infant cries. Nature 2023, 621, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Su, Y. A touch-scaffolded model of human prosociality. Neurosci. Biobeh. Rev. 2018, 92, 453–463. [Google Scholar] [CrossRef] [PubMed]
- McNeilly, A.S.; Tay, C.C.; Glasier, A. Physiological mechanism underlying lactational amenorrhea. Am. N. Y. Acad. Sci. 1994, 709, 145–155. [Google Scholar] [CrossRef]
- Office of the Surgeon General (US); Centers for Disease Control and Prevention (US); Office on Women’s Health (US). The Surgeon General’s Call to Action to Support Breastfeeding. In Publications and Reports of the Surgeon General; Office of the Surgeon General: Rockville, MD, USA, 2011. [Google Scholar]
- Gartner, L.M.; Morton, J.; Lawrence, R.A.; Naylor, A.J.; O’Hare, D.; Schanler, R.J.; Eidelman, A.I. American Academy of Pediatrics Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2005, 115, 496–506. [Google Scholar]
- WHO. Infant and Young Child Nutrition—Global Strategy on Infant and Young Child Feeding. Report by Secretariat. Available online: http://apps.who.int/gb/archive/pdf_files/WHA55/ea5515.pdf (accessed on 15 February 2025).
- MacHugh, D.E.; Larson, G.; Orlando, L. Taming the past: Ancient DNA and the study of animal domestication. Annu. Rev. Anim. Biosci. 2017, 5, 329–351. [Google Scholar] [CrossRef]
- Osthoff, G. Milks of non-dairy animals. In Encyclopedia of Dairy Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 3, pp. 538–552. [Google Scholar] [CrossRef]
- Yi, D.Y.; Kim, S.Y. Human breast composition and function in human health: From nutritional components to microbiome and microRNAs. Nutrients 2021, 13, 3094. [Google Scholar] [CrossRef]
- Cerasani, J.; Ceroni, F.; De Cosmi, V.; Mazzocchi, A.; Morniroli, D.; Rogero, P.; Mosca, F.; Agostoni, C.; Gianni, M. Human milk feeding and preterm infants’ growth and body compositions: A literature review. Nutrients 2020, 12, 1155. [Google Scholar] [CrossRef]
- Guo, M. (Ed.) Human milk biochemistry and infant formula manufacturing technology (Chapter 10). In Functional Foods, 2nd ed.; Elsevier: Cambridge, UK, 2024; pp. 327–362. [Google Scholar]
- Almasri, R.S.; Bedir, A.S.; Ranneh, Y.K.; El-Tarabily, K.A.; Al Raish, S.M. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients 2024, 16, 3848. [Google Scholar] [CrossRef]
- Arain, M.A.; Salman, H.M.; Ali, M.; Khaskheli, G.B.; Barham, G.S.; Marghazani, I.B.; Ahmad, S. A review of camel milk composition, techno-functional properties and processing constraints. Food Sci. Anim. Resour. 2024, 44, 739–757. [Google Scholar] [CrossRef]
- Faye, B.; Bengoumi, M.; Al-Masaud, A.; Konuspayeva, G. Comparative milk and serum cholesterol content in dairy cow and camel. J. King Saud Univ. Sci. 2015, 27, 168–175. [Google Scholar] [CrossRef]
- Gorban, A.M.; Izzeldin, O.M. Fatty acids and lipids of camel milk and colostrum. Int. J. Food Sci. Nutr. 2001, 52, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Konuspayeva, G.; Faye, B.; Loiseau, G. The composition of camel milk: A meta-analysis of the literature data. J. Food Comp. Anal. 2009, 22, 95–101. [Google Scholar] [CrossRef]
- Cimino, F.; Catapano, A.; Villano, I.; Di Maio, G.; Petrella, L.; Traina, G.; Pizzella, A.; Tudisco, R.; Cavaliere, G. Invited review: Human, cow, and donkey milk comparison: Focus on metabolic effects. J. Dairy. Sci. 2023, 106, 3072–3085. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Guo, H. The nutritional ingredients and antioxidant activity of donkey milk and donkey milk powder. Food Sci. Biotechnol. 2018, 27, 393–400. [Google Scholar] [CrossRef]
- Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R.F. Comparative nutrient profiling of retail goat and cow milk. Nutrients 2019, 11, 2292. [Google Scholar] [CrossRef]
- Turkmen, N. The nutritional value and health benefits of goat milk components. In Nutrients in Dairy and Their Implications for Health and Disease; Academic Press: Cambridge, MA, USA, 2017; Chapter 35; pp. 441–449. [Google Scholar] [CrossRef]
- Miller, E.M. What is significant about a single nursing session? An exploratory study. Am. J. Hum. Biol. 2017, 29, e23004. [Google Scholar] [CrossRef]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Dore, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Fujita, M.; Roth, F.; Lo, Y.J.; Hurst, C.; Vollner, J.; Kendell, A. In poor families, mother’s milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 2012, 149, 52–59. [Google Scholar] [CrossRef]
- Garcia-Mantrana, I.; Bertua, B.; Martinez-Costa, C.; Collado, M.C. Perinatal nutrition: How to take care of the gut microbiota? Clin. Nutr. Exp. 2016, 6, 3–16. [Google Scholar] [CrossRef]
- Jenness, R. The composition of human milk. Semin. Perinatol. 1979, 3, 225–239. [Google Scholar] [PubMed]
- Hytten, P.E. Clinical and chemical studies in human lactation. Br. Med. J. 1954, 1, 1181–1187. [Google Scholar] [CrossRef]
- Insull, W., Jr.; Hirsch, J.; James, T.; Ahrens, E.H., Jr. The fatty acids of human milk. II. Alterations produced by manipulations of caloric balance and exchange of dietary fats. J. Clin. Investig. 1959, 38, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, À. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011, 141, 1181–1187. [Google Scholar] [CrossRef]
- Martin, C.R.; Pei-Ra Ling Blackburn, G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- Romero-Velarde, E.; Delgado-Franco, D.; García-Gutiérrez, M.; Gurrola-Díaz, C.; Larrosa-Haro, A.; Montijo-Barrios, E.; Muskiet, F.A.J.; Vargas-Guerrero, B.; Geurts, J. The importance of lactose in the human diet: Outcomes of a Mexican consensus meeting. Nutrients 2019, 11, 2737. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Glycemic responses of milk and plant-based drinks: Food matriz effects. Foods 2023, 12, 453. [Google Scholar] [CrossRef]
- Rosenstein, D.; Oster, H. Differential facial responses to four basic tastes in newborns. Child. Dev. 1988, 59, 1555–1568. [Google Scholar] [CrossRef] [PubMed]
- Forestall, C.A. Flavor perception and preference development in human infants. Ann. Nutr. Metab. 2017, 70, 17–25. [Google Scholar] [CrossRef]
- Delaveau, P. L’obésité: Une épidémie á maitriser. Remarques sur l’alimentation. Ann. Pharm. Fr. 2004, 62, 103–110. [Google Scholar] [CrossRef]
- Tishkoff, S.A.; Reed, F.A.; Ranciaro, A.; Voight, B.F.; Babbitt, C.C.S.; Silverman, J.S.; Powell, K.; Mortensen, H.M.; Hirbo, J.B.; Osman, M.; et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007, 39, 31–40. [Google Scholar] [CrossRef]
- Durá-Travé, T.; Gallinas-Victoriano, F. Pregnancy, breastfeeding, and vitamin D. Int. J. Mol. Sci. 2023, 24, 11881. [Google Scholar] [CrossRef] [PubMed]
- Hermesch, A.C.; Kernberg, A.S.; Layoun, V.R.; Caughey, A.B. Oxytocin: Physiology, pharmacology, and clinical application for labor management. Am. J. Obstet. Gynecol. 2024, 230, S729–S739. [Google Scholar] [CrossRef] [PubMed]
- Sala, N.L.; Luther, E.C.; Arballo, J.C.; Cordero Funes, J.C. Oxytocin reproducing reflex milk ejection in lactating women. J. Appl. Physiol. 1974, 36, 154–158. [Google Scholar] [CrossRef]
- Insel, T.R. Oxytocin—A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 1992, 17, 3–35. [Google Scholar] [CrossRef] [PubMed]
- Freund-Mercier, M.J. How oxytocin became overtime the attachment-mediating hormone. Biol. Aujourdhui. 2022, 216, 113–123. (In French) [Google Scholar] [CrossRef]
- Çatlı, G.; Olgaç Dündar, N.; Dündar, B.N. Adipokines in breast milk. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 192–201. [Google Scholar] [CrossRef]
- Doneray, H.; Tavlas, G.; Ozden, A.; Ozturk, N. The role of breast milk beta-endorphin and relaxin-2 on infant colic. Pediatr. Res. 2023, 94, 1415–1421. [Google Scholar] [CrossRef]
- Häusler, S.; Lanzinger, E.; Sams, E.; Fazelnia, C.; Allmer, K.; Binder, C.; Reiter, R.J.; Felder, T.K. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients 2024, 16, 1422. [Google Scholar] [CrossRef]
- Kon, I.Y.; Shilina, N.M.; Gmoshinskaya, M.V.; Ivanushkina, T.A. The study of breast milk IGF-1, leptin. Ghrelin and adiponectin levels as possible reasons for high weight gain in breast-fed infants. Ann. Nutr. Metab. 2014, 65, 317–323. [Google Scholar] [CrossRef]
- Kratzsch, J.; Bae, Y.J.; Kiess, W. Adipokines in human breast milk. Best. Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Xiao, H.; Li, K.; Jiang, J.; Wu, K.; Li, D. Concentrations of estrogen and progesterone in breast milk and their relationship with the mother’s diet. Food Funct. 2017, 8, 3306–3310. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, H.; Amino, N.; Ichihara, K.; Harada, T.; Nose, O.; Tanizawa, O.; Miyai, K. Thyroid hormones in human milk and their influence on thyroid function of breast-fed babies. Pediatr. Res. 1983, 17, 468–471. [Google Scholar] [CrossRef]
- Mól, N.; Tomasik, P.; Klimasz, K.; Zasada, M.; Kwinta, P. Irisin concentration in infant formulas and breast milk. Minerva Pediatr. 2022, 74, 416–420. [Google Scholar] [CrossRef]
- Toorop, A.A.; van der Voorn, B.; Hollanders, J.J.; Dijkstra, L.R.; Dolman, K.M.; Heijboer, A.C.; Rotteveel, J.; Honig, A.; Finken, M.J.J. Diurnal rhythmicity in breast-milk glucocorticoids, and infant behavior and sleep at age 3 months. Endocrine 2020, 68, 660–668. [Google Scholar] [CrossRef]
- Farooqi, I.S. Monogenic human obesity. Front. Horm. Res. 2008, 36, 1–11. [Google Scholar] [CrossRef]
- Farooqi, S.; O’Rahilly, S. Genetics of obesity in humans. Endocr. Rev. 2006, 27, 710–718. [Google Scholar] [CrossRef]
- Flak, J.N.; Myers, M.G., Jr. Minireview: CNS mechanisms of leptin action. Mol. Endocrinol. 2016, 30, 3–12. [Google Scholar] [CrossRef]
- Perakakis, N.; Farr, O.M.; Mantzoros, C.S. Leptin in leanness and obesity: JACC State-of-the art review. J. Am. Coll. Cardiol. 2021, 77, 745–760. [Google Scholar] [CrossRef]
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism 2022, 129, 155142. [Google Scholar] [CrossRef]
- Borer, K.T. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World J. Diabetes 2014, 5, 606–629. [Google Scholar] [CrossRef] [PubMed]
- Sinkiewicz-Darol, E.; Adamczyk, I.; Łubiech, K.; Pilarska, G.; Twaružek, M. Leptin in human milk—One of the key regulators of nutritional programming. Molecules 2022, 27, 3581. [Google Scholar] [CrossRef] [PubMed]
- Palou, M.; Picó, C.; Palou, A. Leptin as a breast milk component for the prevention of obesity. Nutr. Rev. 2018, 76, 875–892. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, A.; Gianni, M.L.; Morniroli, D.; Leone, L.; Roggero, P.; Agostoni, C.; De Cosmi, V.; Mosca, F. Hormones in breast milk and effect on infant’s growth. Nutrients 2019, 11, 1845. [Google Scholar] [CrossRef]
- Dadres, G.S.; Whitaker, K.M.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R., Jr.; Kharbanda, E.O.; McGovern, P.M.; Schoenfuss, T.C.; et al. Relationship of maternal weight status before, during, and after pregnancy with breast milk hormone concentrations. Obesity 2019, 27, 621–628. [Google Scholar] [CrossRef]
- Nilsson, A.; Ohlson, C.; Isaksson, O.G.; Lindahl, A.; Isgaard, J. Hormonal regulation of longitudinal bone growth. Eur. J. Clin. Nutr. 1994, 48 (Suppl. 1), S150–S158. Discussion 158–160. [Google Scholar] [CrossRef]
- Hochberg, Z.; Phillip, M.; Youdim, M.B.; Amit, T. Regulation of the growth hormone (GH) receptor and GH binding protein by GH pulsatility. Metabolism 1993, 42, 1617–1623. [Google Scholar] [CrossRef]
- Ozgurtas, T.; Aydin, I.; Turan, O.; Koc, E.; Hirfanoglu, I.M.; Acikel, C.H.; Akyol, M.; Erbit, M.K. Vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor-1 and platelet-derived growth factor levels in human milk in mothers with term and preterm neonates. Cytokine 2010, 50, 192–194. [Google Scholar] [CrossRef]
- Milson, S.R.; Blum, W.F.; Gunn, A.J. Temporal changes in insulin-like growth factors I and II and in insulin-like growth factors 1,2, and 3 in human milk. Horm. Res. 2008, 69, 307–311. [Google Scholar] [CrossRef]
- Holton, T.A.; Vijayakumar, V.; Dallas, D.C.; Guerrero, A.; Borghese, R.A.; Lebrilla, C.B.; German, J.B.; Barile, D.; Underwood, M.A.; Shields, D.C.; et al. Following the digestion of milk proteins from mother to baby. J. Proteome Res. 2014, 13, 5777–5783. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Dallas, D.C. Milk proteins are predigested within the human mammary gland. J. Mammary Gland. Biol. Neoplasia 2017, 22, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Dallas, D.C.; Murray, N.M.; Gan, J. Proteolytic Systems in Milk: Perspectives on the Evolutionary Function within the Mammary Gland and the Infant. J. Mammary Gland. Biol. Neoplasia 2015, 20, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Hamosh, M. Digestion in the newborn. Clin. Perinatol. 1996, 23, 191–209. [Google Scholar] [CrossRef] [PubMed]
- He, X.; McClorry, S.M.; Hernell, O.; Lőnnerdal, B.; Slupsky, C.M. Digestion of human milk fat in healthy infants. Nutr. Res. 2020, 83, 15–29. [Google Scholar] [CrossRef]
- Khaldi, N.; Vijayakumar, V.; Dallas, D.C.; Guerrero, A.; Wickramasinghe, S.; Smilowitz, J.T.; Medrano, J.F.; Lebrilla, C.B.; Shields, D.C.; German, J.B. Predicting the important enzymes in human breast milk digestion. J. Agric. Food Chem. 2014, 62, 7225–7232. [Google Scholar] [CrossRef]
- Dallas, D.C.; German, J.B. Enzymes in human milk. Nestle Nutr. Inst. Workshop Ser. 2017, 88, 129–136. [Google Scholar] [CrossRef]
- Enjapoori, A.K.; Kukuljan, S.; Dwyer, K.M.; Sharp, J.A. In vivo endogenous proteolysis yielding beta-casein derived bioactive beta-casomorphin peptides in human breast milk for infant nutrition. Nutrition 2019, 57, 259–267. [Google Scholar] [CrossRef]
- Forsgård, R.A. Lactose digestion in humans: Intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am. J. Clin. Nutr. 2019, 110, 273–279. [Google Scholar] [CrossRef]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef]
- Stinson, L.F.; Payne, M.S.; Keelan, J.A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 2017, 43, 352–369. [Google Scholar] [CrossRef]
- Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017, 66, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.C.; Mendonça Pereira, B.F.; Leandro, K.C.; Costa, M.P.; Spisso, B.F.; Conte-Junior, C.A. Bioactive compounds in infant formula and their effects on infant nutrition and health: A systematic literature review. Int. J. Food Sci. 2021, 2021, 8850080. [Google Scholar] [CrossRef] [PubMed]
- Fehr, K.; Moossavi, S.; Sbihi, S.; Boutin, R.C.T.; Bode, L.; Robertson, B.; Yonemitsu, C.; Field, C.J.; Becker, A.B.; Mandhane, P.J.; et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mother’s milk and the infant gut: The CHILD Cohort Study. Cell Host Microbe 2020, 28, 285–297.e4. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Paswan, V.K.; Yadav, S.P.; Bhinchhar, B.K.; Kharkwal, S.; Rose, H.; Kanetkar, P.; Kumar, V.; Al-Zamani, Z.A.S.; Bunkar, D.S. A comprehensive review on infant formula: Nutritional and functional constituents, recent trends in processing and its impact on infants’ gut microbiota. Front. Nutr. 2023, 10, 1194679. [Google Scholar] [CrossRef]
- CFR—Code of Federal Regulations. Title 21. 21CFR107.100. eCFR. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-107/subpart-D/section-107.100 (accessed on 1 January 2025).
- Widdowson, E.M.; McCance, R.A. Some effects of accelerating growth. I. General somatic development. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1960, 152, 188–206. [Google Scholar] [CrossRef]
- Kennedy, G.C. The development with age of hypothalamic restraint upon the appetite of the rat. J. Endocrinol. 1957, 16, 9–17. [Google Scholar] [CrossRef]
- Kennedy, G.C. The effect of age on the somatic and visceral response to overnutrition in the rat. J. Endocrinol. 1957, 15, 19–34. [Google Scholar] [PubMed]
- Widdowson, E.M. Factors affecting the growth rate of laboratory animals. Food Cosmet. Toxicol. 1965, 3, 721–733. [Google Scholar] [CrossRef]
- Vickers, M.H.; Breier, B.H.; Cutfield, W.S.; Hofman, P.L.; Gluckman, P.D. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E83–E87. [Google Scholar] [CrossRef]
- Martorell, R.; Stein, A.D.; Schroeder, D.G. Early nutrition and later adiposity. J. Nutr. 2001, 131, 874S–880S. [Google Scholar] [CrossRef]
- Bleker, L.S.; de Rooij, S.R.; Painter, R.C.; Ravelli, A.C.; Roseboom, T.J. Cohort profile: The Dutch famine birth cohort (DFBC)—A prospective birth cohort study in the Netherlands. BMJ Open 2021, 11, e042078. [Google Scholar] [CrossRef] [PubMed]
- Painter, R.C.; Roseboom, T.J.; Bleker, O.P. Prenatal exposure to the Dutch famine and disease in later life. Reprod. Toxicol. 2005, 20, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef]
- Taeubert, M.J.; Kuipers, T.B.; Zhou, J.; Li, C.; Wang, S.; Wang, T.; Tobi, E.W.; BBMRI-NL Metabolomics Consortium; Belsky, D.W.; Lumey, L.H.; et al. Adults prenatally exposed to the Dutch Famine exhibit a metabolic signature associated with a broad spectrum of common diseases. BMC Med. 2024, 22, 309. [Google Scholar] [CrossRef]
- Fernandez-Twinn, D.S.; Hjort, L.; Novakovic, B.; Ozanne, S.E.; Saffery, R. Windows of vulnerability: Consequences of exposure timing during the Dutch Hunger winter. Popul. Dev. Rev. 2022, 48, 959–989. [Google Scholar] [CrossRef]
- Barker, D.J.P.; Eriksson, J.G.; Forsén, T.; Osmond, C. Fetal origins of adult disease: Strength of effects and biological basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef]
- Stewart, C.P.; Iannotti, L.; Dewey, K.G.; Michaelsen, K.F.; Onyango, A.W. Contextualizing complementary feeding in a broader framework for stunting prevention. Matern. Child Nutr. 2013, 9 (Suppl. S2), 27–45. [Google Scholar] [CrossRef]
- Victora, C.G.; de Onis, M.; Hallal, P.C.; Blossner, M.; Shrimpton, R. Worldwide timing of growth faltering: Revisiting implications for interventions. Pediatrics 2010, 125, e473–e480. [Google Scholar] [CrossRef]
- Benyi, E.; Sävendahl, L. The physiology of childhood growth: Hormonal regulation. Horm. Res. Paediatr. 2017, 88, 6–14. [Google Scholar] [CrossRef]
- Liimatta, J.; Jääskeläinen, J.; Mäntyselkä, A.; Häkkinen, M.R.; Auriola, S.; Voutilainen, S.; Flück, C.E.; Lakka, T.A. Accelerated early childhood growth is associated with the development of earlier adrenarche and puberty. J. Endocr. Soc. 2024, 8, 1–13. [Google Scholar] [CrossRef]
- Song, Y.; Kong, Y.; Xie, X.; Wang, Y.; Wang, N. Association between precocious puberty and obesity risk in children: A systematic review and meta-analysis. Front. Pediatr. 2023, 11, 1226933. [Google Scholar] [CrossRef]
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Espeland, M.A.; Clark, J.M.; Hazuda, H.P.; Knowler, W.C.; Pownall, H.; Unick, J.; Wadden, T.; Wagenknecht, L.; for the Action for Health in Diabetes (Look AHEAD) Study Group. Association of Weight Loss Maintenance and Weight Regain on 4-Year Changes in CVD Risk Factors: The Action for Health in Diabetes (Look AHEAD) Clinical Trial. Diabetes Care 2016, 39, 1345–1355. [Google Scholar] [PubMed]
- Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef]
- Aronne, L.J.; Sattar, N.; Horn, D.B.; Bays, H.E.; Wharton, S.; Lin, W.Y.; Ahmad, N.N.; Zhang, S.; Liao, R.; Bunck, M.C.; et al. Continued Treatment with Tirzepatide for Maintenance of Weight Reduction in Adults with Obesity: The SURMOUNT-4 Randomized Clinical Trial. JAMA 2024, 331, 38–48. [Google Scholar] [CrossRef]
- Borer, K.T. Why we eat too much, have an easier time gaining than losing weight, and expend too little energy: Suggestions for counteracting or mitigating these problems. Nutrients 2021, 13, 3812. [Google Scholar] [CrossRef]
- Hinte, L.; Castellano-Castillo, D.; Ghosh, A.; Melrose, K.; Gasser, E.; Noé, F.; Masier, L.; Dong, H.; Sun, W.; Hoffmann, A.; et al. Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature 2024, 636, 457. [Google Scholar] [CrossRef]
- Heinig, M.J.; Nommsen, L.A.; Peerson, J.M.; Lonnerdal, B.; Dewey, K.G. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: The DARLING Study. Am. J. Clin. Nutr. 1993, 58, 152–161. [Google Scholar] [CrossRef]
- Ziegler, E.E. Growth of breast-fed and formula-fed infants. Nestle Nutr. Workshop Ser. Pediatr. Program 2006, 58, 51–59. Discussion 59–63. [Google Scholar] [CrossRef]
- Cummings, D.E.; Frayo, R.S.; Marmonier, C.; Aubert, R.; Chapelot, D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E297–E304. [Google Scholar] [CrossRef]
- Borer, K.T.; Lin, P.-J.; Wuorinen, E. Timing of Meals and Exercise Affects Hormonal Control of Glucoregulation, Insulin Resistance, Substrate Metabolism, and Gastrointestinal Hormones, but Has Little Effect on Appetite in Postmenopausal Women. Nutrients 2021, 13, 4342. [Google Scholar] [CrossRef] [PubMed]
- Borer, K.T.; Wuorinen, E.; Ku, K.; Burant, C. Appetite responds to changes in meal content, whereas ghrelin, leptin, and insulin track changes in energy availability. J. Clin. Endocrinol. Metab. 2009, 94, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Borer, K.T. Are gastrointestinal signals the principal guides to human appetite and energy balance? Med. Res. Arch. 2023, 11, 3548. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.; Finlayson, G.; Axelsen, M.; Flint, A.; Gibbons, C.; Kvist, T.; Hjerpsted, J.B. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017, 19, 1242–1251. [Google Scholar] [CrossRef]
- Jarvie, B.C.; Knight, Z.A. Breaking down a gut-to-brain circuit that prevents malabsorption. Cell 2022, 185, 2393–2395. [Google Scholar] [CrossRef]
- Spiller, R.C.; Trotman, I.F.; Adrian, T.E.; Bloom, S.R.; Misiewicz, J.J.; Silk, D.B. Further characterisation of the ‘ileal brake’ reflex in man—Effect of ileal infusion of partial digests of fat, protein, and starch on jejunal motility and release of neurotensin, enteroglucagon, and peptide yy. Gut 1988, 29, 1042–1051. [Google Scholar] [CrossRef]
- Tucker, A.R.; Brown, H.L.; Dotters-Katz, S.K. Maternal weight gain and infant birth weight in women in class III obesity. Am. J. Perinatol. 2021, 38, 816–820. [Google Scholar] [CrossRef]
- Oken, E.; Gilman, M.W. Fetal origins of obesity. Obes. Res. 2003, 11, 496–506. [Google Scholar] [CrossRef]
- Kalra, S.; Kumar, A.; Gupta, Y. Prevention of lipohypertrophy. J. Pak. Med. Assoc. 2016, 66, 910–911. [Google Scholar] [PubMed]
- Jaquet, D.; Czernichow, P. Born small for gestational age: Increased risk of type 2 diabetes, hypertension and hyperlipidemia in adulthood. Horm. Res. 2003, 59 (Suppl. 1), 131–137. [Google Scholar] [CrossRef]
- Liew, G.; Wang, J.J.; Duncan, B.B.; Klein, R.; Sharrett, A.R.; Brancati, F.; Yeh, H.C.; Mitchell, P.; Wong, T.Y. Atherosclerosis risk in communities study: Low birthweight is associated with narrower arterioles in adults. Hypertension 2008, 51, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Huang, B.; Biro, F.; Feng, L.; Guo, Z.; Slap, G. Outcome of low birthweight in China: A 16-year longitudinal study. Acta Paediatr. 2005, 94, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.C.; Manges, A.R.; Finlay, B.B.; Prendergast, A.J. The Human Microbiome and Child Growth—First 1000 Days and Beyond. Trends Microbiol. 2019, 27, 131–147. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, W.; Zeng, Y.; Yan, C.; Zhao, Y.; Wang, P.; Shi, H.; Lu, W.; Zhang, Y. Intrauterine antibiotic exposure affected neonatal gut bacteria and infant growth speed. Environ. Pollut. 2021, 289, 117901. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.C.; Edens, T.J.; Carr, L.; Mutasa, K.; Gough, E.K.; Evans, C.; Geum, H.M.; Baharmand, I.; Gill, S.K.; Ntozini, R.; et al. The gut microbiome and early-life growth in a population with high prevalence of stunting. Nat. Commun. 2023, 14, 654. [Google Scholar] [CrossRef]
- Johnson, K.E.; Hernandez-Alvarado, N.; Blackstad, M.; Heisel, T.; Allert, M.; Fields, D.A.; Isganaitis, E.; Jacobs, K.M.; Knights, D.; Lock, E.F.; et al. Human cytomegalovirus in breast milk is associated with milk composition and the infant gut microbiome and growth. Nat. Commun. 2024, 15, 6216. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borer, K.T. Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies. Nutrients 2025, 17, 827. https://doi.org/10.3390/nu17050827
Borer KT. Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies. Nutrients. 2025; 17(5):827. https://doi.org/10.3390/nu17050827
Chicago/Turabian StyleBorer, Katarina T. 2025. "Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies" Nutrients 17, no. 5: 827. https://doi.org/10.3390/nu17050827
APA StyleBorer, K. T. (2025). Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies. Nutrients, 17(5), 827. https://doi.org/10.3390/nu17050827