Preventing and Managing Pre- and Postoperative Micronutrient Deficiencies: A Vital Component of Long-Term Success in Bariatric Surgery
Abstract
:1. Introduction
2. Common Postoperative Micronutrient Deficiencies
2.1. Iron Deficiency
2.2. Vitamin B12 and Folate Deficiencies
2.3. Calcium and Vitamin D Deficiencies
2.4. Other Micronutrient Deficiencies
- Zinc deficiency
- Thiamine (Vitamin B1) deficiency
- Vitamin A
- Vitamin E
- Vitamin K
3. Supplementation Strategies
3.1. Preoperative Supplementation
3.1.1. Assessment Tools and Biomarkers
3.1.2. Recommended Preoperative Supplementation
3.1.3. Preoperative Dietary Strategies
3.2. Immediate Postoperative Supplementation
3.3. Long-Term Supplementation
4. Continuous Monitoring of Micronutrient Levels in Bariatric Surgery Patients
4.1. Recommended Frequency of Blood Tests for Different Micronutrients
4.2. Role of Healthcare Teams in Patient Follow-Up and Individualized Management Plans
4.3. Integrating Nutritional Education to Ensure Sustainable Outcomes
4.4. Factors Affecting Patient Adherence to Supplementation Protocols: Behavioral and Socioeconomic Factors
4.5. Strategies to Improve Adherence: Patient Education, Counseling, and Support Programs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abraham, A.; Ikramuddin, S.; Jahansouz, C.; Arafat, F.; Hevelone, N.; Leslie, D. Trends in Bariatric Surgery: Procedure Selection, Revisional Surgeries, and Readmissions. Obes. Surg. 2016, 26, 1371–1377. [Google Scholar] [CrossRef]
- Mohapatra, S.; Gangadharan, K.; Pitchumoni, C.S. Malnutrition in obesity before and after bariatric surgery. Dis.-a-Month 2020, 66, 100866. [Google Scholar] [CrossRef] [PubMed]
- Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Laconelli, A.; Nanni, G.; Castagneto, M.; Bornstein, S.; Rubino, F. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 2015, 386, 964–973. [Google Scholar] [CrossRef]
- Courcoulas, A.P.; Daigle, C.R.; Arterburn, D.E. Long term outcomes of metabolic/bariatric surgery in adults. BMJ 2023, 383, e071027. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Vetrani, C.; Caprio, M.; El Groch, M.; Frias-Toral, E.; Mehta, R.; Mendez, V.; Moriconi, E.; Paschou, S.; Pazderska, A.; et al. Nutritional management of type 2 diabetes in subjects with obesity: An international guideline for clinical practice. Crit. Rev. Food Sci. Nutr. 2023, 63, 2873–2885. [Google Scholar] [CrossRef] [PubMed]
- Sierżantowicz, R.; Ładny, J.R.; Lewko, J. Quality of Life after Bariatric Surgery—A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 9078. [Google Scholar] [CrossRef] [PubMed]
- Sarno, G.; Frias-Toral, E.; Ceriani, F.; Montalván, M.; Quintero, B.; Suárez, R.; García Velásquez, E.; Muscogiuri, G.; Iannelli, A.; Pilone, V.; et al. The Impact and Effectiveness of Weight Loss on Kidney Transplant Outcomes: A Narrative Review. Nutrients 2023, 15, 2508. [Google Scholar] [CrossRef]
- Sarno, G.; Schiavo, L.; Calabrese, P.; Álvarez Córdova, L.; Frias-Toral, E.; Cucalón, G.; García-Velasquez, E.; Fuchs-Tarlovsky, V.; Pilone, V. The Impact of Bariatric-Surgery-Induced Weight Loss on Patients Undergoing Liver Transplant: A Focus on Metabolism, Pathophysiological Changes, and Outcome in Obese Patients Suffering NAFLD-Related Cirrhosis. J. Clin. Med. 2022, 11, 5293. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; De Luca, M.; Faria, S.L.; Goodpaster, K.P.S.; Haddad, A.; et al. 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): Indications for Metabolic and Bariatric Surgery. Surg. Obes. Relat. Dis. 2022, 18, 1345–1356. [Google Scholar] [CrossRef]
- Carriel-Mancilla, J.; Suárez, R.; Frias-Toral, E.; Bautista-Valarezo, E.; Andrade Zambrano, T.; Andrade García, A.; Muñoz Jaramillo, R.; Ferrín, M.; Martin, J.; Cardoso Ramos, A.; et al. Short-medium term complications of bariatric surgery: A pilot study. Minerva Endocrinol. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Iannelli, A.; Treacy, P.; Sebastianelli, L.; Schiavo, L.; Martini, F. Perioperative complications of sleeve gastrectomy: Review of the literature. J. Minim. Access Surg. 2019, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chapela, S.P.; Martinuzzi, A.L.N.; Llobera, N.D.; Ceriani, F.; Gonzalez, V.; Montalván, M.; Verde, L.; Frias Toral, E. Obesity and micronutrients deficit, when and how to suplement. Food Agric. Immunol. 2024, 35, 1–25. [Google Scholar] [CrossRef]
- Kobylińska, M.; Antosik, K.; Decyk, A.; Kurowska, K. Malnutrition in Obesity: Is It Possible? Obes. Facts 2022, 15, 19–25. [Google Scholar] [CrossRef]
- Barakat, I.; Elfane, H.; El-Jamal, S.; Elayachi, M.; Belahsen, R. Sociodemographic, nutritional and anthropometric factors determining overweight and obesity in an adult moroccan population. Med. J. Nutr. Metab. 2024, 17, 165–178. [Google Scholar] [CrossRef]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Capuozzo, V.; Barbarisi, A. Micronutrient Deficiencies in Patients Candidate for Bariatric Surgery: A Prospective, Preoperative Trial of Screening, Diagnosis, and Treatment. Int. J. Vitam. Nutr. Res. 2015, 85, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, A.K.; Paz-Cruz, E.; Ruiz-Pozo, V.A.; Cadena-Ullauri, S.; Tamayo-Trujillo, R.; Guevara-Ramírez, P.; Zambrano-Villacres, R.; Simancas-Racines, D. Microbiota dynamics preceding bariatric surgery as obesity treatment: A comprehensive review. Front. Nutr. 2024, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krzizek, E.C.; Brix, J.M.; Stöckl, A.; Parzer, V.; Ludvik, B. Prevalence of Micronutrient Deficiency after Bariatric Surgery. Obes. Facts 2021, 14, 197–204. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 3066–3090. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Garvey, W.T.; Joffre, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Surg. Obes. Relat. Dis. 2020, 16, 175–247. [Google Scholar] [CrossRef]
- Lewis, C.A.; Osland, E.J.; de Jersey, S.; Hopkins, G.; Seymour, M.; Webb, L.; Chatfield, M.D.; Hickman, I.J. Monitoring for micronutrient deficiency after bariatric surgery—What is the risk? Eur. J. Clin. Nutr. 2023, 77, 1071–1083. [Google Scholar] [CrossRef]
- Côté, M.; Pelletier, L.; Nadeau, M.; Bouvet-Bouchard, L.; Julien, F.; Michaud, A.; Biertho, L.; Tchernof, A. Micronutrient status 2 years after bariatric surgery: A prospective nutritional assessment. Front. Nutr. 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Peana, M.; Dosa, A.; Piscopo, S.; Gasmi Benahmed, A.; Costea, D.O. Micronutrients deficiences in patients after bariatric surgery. Eur. J. Nutr. 2022, 61, 55–67. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, S.J.D.; Rakitt, T.; Ou, J.; El Hajj, I.; Blaney, E.; Vipperla, K.; Holst, J.J.; Rehlfeld, J. Pancreatic and Intestinal Function Post Roux-en-Y Gastric Bypass Surgery for Obesity. Clin. Transl. Gastroenterol. 2017, 8, e112. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, F.; Khorshidi, Y.; Moslehi, N.; Golzarand, M.; Asghari, G. Nutrient Deficiency After Bariatric Surgery in Adolescents: A Systematic Review and Meta-Analysis. Obes. Surg. 2024, 34, 206–217. [Google Scholar] [CrossRef]
- Schiavo, L.; Pilone, V.; Rossetti, G.; Barbarisi, A.; Cesaretti, M.; Iannelli, A. A 4-Week Preoperative Ketogenic Micronutrient-Enriched Diet Is Effective in Reducing Body Weight, Left Hepatic Lobe Volume, and Micronutrient Deficiencies in Patients Undergoing Bariatric Surgery: A Prospective Pilot Study. Obes. Surg. 2018, 28, 2215–2224. [Google Scholar] [CrossRef] [PubMed]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.L.; Ghosh, M.C.; Rouault, T.A. The physiological functions of iron regulatory proteins in iron homeostasis—An update. Front. Pharmacol. 2014, 5, 1–12. [Google Scholar] [CrossRef]
- Harigae, H. Iron metabolism and related diseases: An overview. Int. J. Hematol. 2018, 107, 5–6. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Visiedo-García, F.M.; Domínguez-Riscart, J.; González-Domínguez, R.; Mateos, R.M.; Lechuga-Sancho, A.M. Iron Metabolism in Obesity and Metabolic Syndrome. Int. J. Mol. Sci. 2020, 21, 5529. [Google Scholar] [CrossRef] [PubMed]
- Horinouchi, Y.; Ikeda, Y.; Tamaki, T. Body iron accumulation in obesity, diabetes and its complications, and the possibility of therapeutic application by iron regulation. Folia Pharmacol. Jpn. 2019, 154, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Frame-Peterson, L.A.; Megill, R.D.; Carobrese, S.; Schweitzer, M. Nutrient Deficiencies Are Common Prior to Bariatric Surgery. Nutr. Clin. Pract. 2017, 32, 463–469. [Google Scholar] [CrossRef]
- Mujica-Coopman, M.F.; Brito, A.; López de Romaña, D.; Pizarro, F.; Olivares, M. Body mass index, iron absorption and iron status in childbearing age women. J. Trace Elem. Med. Biol. 2015, 30, 215–219. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev. 2015, 16, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Pilone, V.; Rossetti, G.; Romano, M.; Pieretti, G.; Schneck, A.S.; Iannelli, A. Correcting micronutrient deficiencies before sleeve gastrectomy may be useful in preventing early postoperative micronutrient deficiencies. Int. J. Vitam. Nutr. Res. 2019, 89, 22–28. [Google Scholar] [CrossRef]
- Bjørklund, G.; Peana, M.; Pivina, L.; Dosa, A.; Aaseth, J.; Semenova, Y.; Chirumbolo, S.; Medici, S.; Dadar, M.; Costea, D.O. Iron deficiency in obesity and after bariatric surgery. Biomolecules 2021, 11, 613. [Google Scholar] [CrossRef]
- ten Broeke, R.; Bravenboer, B.; Smulders, F.J.F. Iron deficiency before and after bariatric surgery: The need for iron supplementation. Neth. J. Med. 2013, 71, 412–417. [Google Scholar]
- Gesquiere, I.; Lannoo, M.; Augustijns, P.; Matthys, C.; Van der Schueren, B.; Foulon, V. Iron Deficiency After Roux-en-Y Gastric Bypass: Insufficient Iron Absorption from Oral Iron Supplements. Obes. Surg. 2014, 24, 56–61. [Google Scholar] [CrossRef]
- Montano-Pedroso, J.C.; Garcia, E.B.; Omonte, I.R.V.; Rocha, M.G.C.; Ferreira, L.M. Hematological Variables and Iron Status in Abdominoplasty After Bariatric Surgery. Obes. Surg. 2013, 23, 7–16. [Google Scholar] [CrossRef]
- Bailly, L.; Schiavo, L.; Sebastianelli, L.; Fabre, R.; Pradier, C.; Iannelli, A. Anemia and Bariatric Surgery: Results of a National French Survey on Administrative Data of 306,298 Consecutive Patients Between 2008 and 2016. Obes. Surg. 2018, 28, 2313–2320. [Google Scholar] [CrossRef]
- Monaco-Ferreira, D.V.; Leandro-Merhi, V.A. Status of Iron Metabolism 10 Years After Roux-En-Y Gastric Bypass. Obes. Surg. 2017, 27, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.J.S.; Salazar, D.A.; Neves, J.S.; Pires Pedro, J.M.; Guerreiro, V.A.; Viana, S.e.S.; Mendonca, S.M.M.; Belo, S.P.; Varela Sande, A.; Correia, F.; et al. Which Factors Are Associated with a Higher Prevalence of Anemia Following Bariatric Surgery? Results from a Retrospective Study Involving 1999 Patients. Obes. Surg. 2020, 30, 3496–3502. [Google Scholar] [CrossRef] [PubMed]
- Steenackers, N.; Van der Schueren, B.; Mertens, A.; Lannoo, M.; Grauwet, T.; Augustijns, P.; Matthys, C. Iron deficiency after bariatric surgery: What is the real problem? Proc. Nutr. Soc. 2018, 77, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Botella-Romero, F.; Gómez-Ramírez, S.; Campos, A.; García-Erce, J.A. Iron deficiency and anaemia in bariatric surgical patients: Causes, diagnosis and proper management. Nutr. Hosp. 2009, 24, 640–654. [Google Scholar] [PubMed]
- Lowry, B.; Hardy, K.; Vergis, A. Iron deficiency in bariatric surgery patients: A single-centre experience over 5 years. Can. J. Surg. 2020, 63, E365–E369. [Google Scholar] [CrossRef]
- Homan, J.; Schijns, W.; Aarts, E.O.; Janssen, I.M.C.; Berends, F.J.; de Boer, H. Treatment of Vitamin and Mineral Deficiencies After Biliopancreatic Diversion With or Without Duodenal Switch: A Major Challenge. Obes. Surg. 2018, 28, 234–241. [Google Scholar] [CrossRef]
- O’Kane, M.; Parretti, H.M.; Pinkney, J.; Welbourn, R.; Hughes, C.A.; Mok, J.; Walker, N.; Thomas, D.; Devin, J.; Coulman, K.D. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. Obes. Rev. 2020, 21, 1–23. [Google Scholar] [CrossRef]
- Lombardo, M.; Franchi, A.; Rinaldi, R.B.; Rizzo, G.; D’Adamo, M.; Guglielmi, V.; Bellia, A.; Padua, E.; Caprio, M.; Sbraccia, P. Long-term iron and vitamin b12 deficiency are present after bariatric surgery, despite the widespread use of supplements. Int. J. Environ. Res. Public Health 2021, 18, 4541. [Google Scholar] [CrossRef]
- Dogan, K.; Aarts, E.O.; Koehestanie, P.; Betzel, B.; Ploeger, N.; de Boer, H.; Aufenacker, T.J.; van Laarhoven, K.J.H.M.; Janssen, I.M.C.; Berends, F.J. Optimization of Vitamin Suppletion After Roux-En-Y Gastric Bypass Surgery Can Lower Postoperative Deficiencies. Medicine 2014, 93, e169. [Google Scholar] [CrossRef] [PubMed]
- Aarts, E.O.; Janssen, I.M.C.; Berends, F.J. The Gastric Sleeve: Losing Weight as Fast as Micronutrients? Obes. Surg. 2011, 21, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Sala, P.; Belarmino, G.; Torrinhas, R.S.; Machado, N.M.; Fonseca, D.C.; Ravacci, G.R.; Ishida, R.K.; Guarda, I.F.M.S.; de Moura, E.G.; Sakai, P.; et al. Gastrointestinal Transcriptomic Response of Metabolic Vitamin B12 Pathways in Roux-en-Y Gastric Bypass. Clin. Transl. Gastroenterol. 2017, 8, e212. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, H.R.; Chin, V.L.; Zitsman, J.L.; Zhang, C.; Williams, K.M.; Oberfield, S.; Fennoy, I. Bariatric Surgery in Adolescents: Is Routine Nutrient Supplementation Sufficient to Avoid Anemia Following Bariatric Surgery? Nutr. Clin. Pract. 2017, 32, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Ben-Porat, T.; Elazary, R.; Goldenshluger, A.; Sherf Dagan, S.; Mintz, Y.; Weiss, R. Nutritional deficiencies four years after laparoscopic sleeve gastrectomy—Are supplements required for a lifetime? Surg. Obes. Relat. Dis. 2017, 13, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Lo Menzo, E.; Cappellani, A.; Zanghì, A.; Di Vita, M.; Berretta, M.; Szomstein, S. Nutritional Implications of Obesity: Before and After Bariatric Surgery. Bariatr. Surg. Pract. Patient Care 2014, 9, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Visentin, M.; Diop-Bove, N.; Zhao, R.; Goldman, I.D. The Intestinal Absorption of Folates. Annu. Rev. Physiol. 2014, 76, 251–274. [Google Scholar] [CrossRef]
- Mallory, G.; Macgregor, A. Folate Status Following Gastric Bypass Surgery (The Great Folate Mystery). Obes. Surg. 1991, 1, 69–72. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, E.; Gulbis, B.; Cotton, F. Serum and red blood cell folate testing for folate deficiency: New features? Eur. J. Haematol. 2014, 92, 354–359. [Google Scholar] [CrossRef]
- Schiavo, L.; Di Rosa, M.; Tramontano, S.; Rossetti, G.; Iannelli, A.; Pilone, V. Long-Term Results of the Mediterranean Diet After Sleeve Gastrectomy. Obes. Surg. 2020, 30, 3792–3802. [Google Scholar] [CrossRef]
- Lupoli, R.; Lembo, E.; Saldalamacchia, G.; Avola, C.K.; Angrisani, L.; Capaldo, B. Bariatric surgery and long-term nutritional issues. World J. Diabetes. 2017, 8, 464. [Google Scholar] [CrossRef]
- Lewis, C.A.; de Jersey, S.; Seymour, M.; Hopkins, G.; Hickman, I.; Osland, E. Iron, Vitamin B12, Folate and Copper Deficiency After Bariatric Surgery and the Impact on Anaemia: A Systematic Review. Obes. Surg. 2020, 30, 4542–4591. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A.; Harrington, D.J. Laboratory assessment of folate (vitamin B9) status. J. Clin. Pathol. 2018, 71, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Frias-Toral, E.; Pugliese, G.; Garcia-Velasquez, E.; Carignano, M.D.L.A.; Savastano, S.; Colao, A.; Muscogiuri, G. Vitamin D in obesity and obesity-related diseases: An overview. Minerva Endocrinol. 2021, 46, 177–192. [Google Scholar] [CrossRef]
- Giustina, A.; di Filippo, L.; Facciorusso, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Casanueva, F.F.; Cavestro, G.M. Chakhtoura, M.; et al. Vitamin D status and supplementation before and after Bariatric Surgery: Recommendations based on a systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2023, 24, 1011–1029. [Google Scholar] [CrossRef]
- Chakhtoura, M.; Rahme, M.; El-Hajj Fuleihan, G. Vitamin D Metabolism in Bariatric Surgery. Endocrinol. Metab. Clin. N. Am. 2017, 46, 947–982. [Google Scholar] [CrossRef]
- Özen, H.; Emiroğlu, H.H.; Emiroğlu, M.; Akdam, N.; Yorulmaz, A. Serum Zinc in Patients with Protein-Energy Malnutrition Retrospective Assessment of Levels. Genel Tıp Dergisi 2023, 33, 274–277. [Google Scholar] [CrossRef]
- Abeywickrama, H.M.; Uchiyama, M.; Sumiyoshi, T.; Okuda, A.; Koyama, Y. The role of zinc on nutritional status, sarcopenia, and frailty in older adults: A scoping review. Nutr. Rev. 2024, 82, 988–1011. [Google Scholar] [CrossRef] [PubMed]
- Coupaye, M.; Rivière, P.; Breuil, M.C.; Castel, B.; Bogard, C.; Dupré, T.; Flamant, M.; Msika, S.; Ledoux, S. Comparison of Nutritional Status During the First Year After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obes. Surg. 2014, 24, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.; Frank, L.; Rabena, R.; Craggs-Dino, L.; Isom, K.A.; Greiman, L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surg. Obes. Relat. Dis. 2017, 13, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, A. Wernicke encephalopathy after obesity surgery. Neurology 2007, 68, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Frazier, T.; Cave, M. Micronutrient-Related Neurologic Complications Following Bariatric Surgery. Curr. Gastroenterol. Rep. 2010, 12, 288–295. [Google Scholar] [CrossRef] [PubMed]
- van Rutte, P.W.J.; Aarts, E.O.; Smulders, J.F.; Nienhuijs, S.W. Nutrient Deficiencies Before and After Sleeve Gastrectomy. Obes. Surg. 2014, 24, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Góes, É.; Cordeiro, A.; Bento, C.; Ramalho, A. Vitamin A Deficiency and Its Association with Visceral Adiposity in Women. Biomedicines 2023, 11, 991. [Google Scholar] [CrossRef]
- García, O.P. Effect of vitamin A deficiency on the immune response in obesity. Proc. Nutr. Soc. 2012, 71, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Sherf-Dagan, S.; Buch, A.; Ben-Porat, T.; Sakran, N.; Sinai, T. Vitamin E status among bariatric surgery patients: A systematic review. Surg. Obes. Relat. Dis. 2021, 17, 816–830. [Google Scholar] [CrossRef]
- Grosso, G.; Laudisio, D.; Frias-Toral, E.; Barrea, L.; Muscogiuri, G.; Savastano, S.; Colao, A. Anti-Inflammatory Nutrients and Obesity-Associated Metabolic-Inflammation: State of the Art and Future Direction. Nutrients 2022, 14, 1137. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, M.; Pelaz, L.; Pérez, C.; Torrejón, M.J.; Cabrerizo, L.; Matía, P.; Pérez-Ferre, N.; Sánchez-Pernaute, A.; Torres, A.; Rubio, M.A. Fat-soluble vitamin deficiencies after bariatric surgery could be misleading if they are not appropriately adjusted. Nutr. Hosp. 2014, 30, 118–123. [Google Scholar] [CrossRef]
- Nett, P.; Borbély, Y.; Kröll, D. Micronutrient Supplementation after Biliopancreatic Diversion with Duodenal Switch in the Long Term. Obes. Surg. 2016, 26, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Sethi, M.; Chau, E.; Youn, A.; Jiang, Y.; Fielding, G.; Ren-Fielding, C. Long-term outcomes after biliopancreatic diversion with and without duodenal switch: 2-, 5-, and 10-year data. Surg. Obes. Relat. Dis. 2016, 12, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Sherf-Dagan, S.; Goldenshluger, A.; Azran, C.; Sakran, N.; Sinai, T.; Ben-Porat, T. Vitamin K–what is known regarding bariatric surgery patients: A systematic review. Surg. Obes. Relat. Dis. 2019, 15, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Gallieni, M.; Rizzo, M.A.; Stucchi, A.; Delanaye, P.; Cavalier, E.; Moysés, R.M.A.; Jorgetti, V.; Iervasi, G.; Giannini, S. Vitamin K plasma levels determination in human health. Clin. Chem. Lab. Med. (CCLM) 2017, 55, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Homan, J.; Betzel, B.; Aarts, E.O.; Dogan, K.; van Laarhoven, K.J.H.M.; Janssen, I.M.C.; Berends, F.J. Vitamin and Mineral Deficiencies After Biliopancreatic Diversion and Biliopancreatic Diversion with Duodenal Switch—The Rule Rather than the Exception. Obes. Surg. 2015, 25, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Strain, G.W.; Torghabeh, M.H.; Gagner, M.; Ebel, F.; Dakin, G.; Connolly, D.; Goldenberg, E.; Pomp, A. Nutrient Status 9 Years After Biliopancreatic Diversion with Duodenal Switch (BPD/DS): An Observational Study. Obes. Surg. 2017, 27, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Gazouli, A. Perioperative nutritional assessment and management of patients undergoing gastrointestinal surgery. Ann. Gastroenterol. 2024, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M. Consensus Statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition. J. Parenter. Enter. Nutr. 2012, 36, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.G.A.; Molinger, J.; Wischmeyer, P.E. The malnourished surgery patient. Curr. Opin. Anaesthesiol. 2019, 32, 405–411. [Google Scholar] [CrossRef]
- Schiavo, L.; Pilone, V.; Rossetti, G.; Iannelli, A. The Role of the Nutritionist in a Multidisciplinary Bariatric Surgery Team. Obes. Surg. 2019, 29, 1028–1030. [Google Scholar] [CrossRef]
- Yıldırım, R.; Candaş, B.; Usta, M.A.; Erkul, O.; Türkyılmaz, S.; Güner, A. Comparison of Nutritional Screening Tools in Patients Undergoing Surgery for Gastric Cancer. Med. Bull. Haseki 2020, 58, 153–161. [Google Scholar] [CrossRef]
- Detsky, A.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? J. Parenter. Enter. Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef]
- Oh, C.A. Nutritional risk index as a predictor of postoperative wound complications after gastrectomy. World J. Gastroenterol. 2012, 18, 673. [Google Scholar] [CrossRef]
- Sysal, P.; Veronese, N.; Arik, F.; Kalan, U.; Smith, L.; Isik, A.T. Mini Nutritional Assessment Scale-Short Form can be useful for frailty screening in older adults. Clin. Interv. Aging 2019, 14, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Aloy dos Santos, T.; Luft, V.C.; Souza, G.C.; de Albuquerque Santos, Z.; Keller Jochims, A.M.; Carnevale de Almeida, J. Malnutrition screening tool and malnutrition universal screening tool as a predictors of prolonged hospital stay and hospital mortality: A cohort study. Clin. Nutr. ESPEN 2023, 54, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Stratton, R.J.; Hackston, A.; Longmore, D.; Dixon, R.; Price, S.; Stroud, M.; King, C.; Elia, M. Malnutrition in hospital outpatients and inpatients: Prevalence, concurrent validity and ease of use of the ‘malnutrition universal screening tool’ (‘MUST’) for adults. Br. J. Nutr. 2004, 92, 799–808. [Google Scholar] [CrossRef]
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T.; Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.L.; Stanga, Z.; An ad hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Ioannis, N.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Sherf-Dagan, S.; Sinai, T.; Goldenshluger, A.; Globus, I.; Kessler, Y.; Schweiger, C.; Ben-Portat, T. Nutritional Assessment and Preparation for Adult Bariatric Surgery Candidates: Clinical Practice. Adv. Nutr. 2021, 12, 1020–1031. [Google Scholar] [CrossRef]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef]
- Kudsk, K.; Tolley, E.; DeWitt, R.C.; Janu, P.G.; Blackwell, A.P.; Yeary, S.; King, B.K. Preoperative albumin and surgical site identify surgical risk for major postoperative complications. J. Parenter. Enter. Nutr. 2003, 27, 1–9. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition: Laboratory markers vs nutritional assessment. Gastroenterol. Rep. 2016, 4, 272–280. [Google Scholar] [CrossRef]
- Sergi, G.; Coin, A.; Enzi, G.; Volpato, S.; Inelmen, E.M.; Buttarello, M.; Peloso, M.; Mulone, S.; Marin, S.; Bonometto, P. Role of visceral proteins in detecting malnutrition in the elderly. Eur. J. Clin. Nutr. 2006, 60, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Suarez Moreno, V.J. Niveles de hemoglobina para la determinación de la anemia: Nueva guía de la Organización Mundial de la Salud y adecuación de la norma nacional. Rev. Peru. Med. Exp. Salud Publica 2024, 41, 102–104. [Google Scholar] [CrossRef]
- Ahsan, A.K.; Tebha, S.S.; Sangi, R.; Kamran, A.; Zaidi, Z.A.; Haque, T.; Hamza, M.S.A. Zinc Micronutrient Deficiency and Its Prevalence in Malnourished Pediatric Children as Compared to Well-Nourished Children: A Nutritional Emergency. Glob. Pediatr. Health 2021, 8, 1–6. [Google Scholar] [CrossRef]
- Berardi, G.; Vitiello, A.; Abu-Abeid, A.; Schiavone, V.; Franzese, A.; Velotti, N.; Musella, M. Micronutrients Deficiencies in Candidates of Bariatric Surgery: Results from a Single Institution over a 1-Year Period. Obes. Surg. 2023, 33, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Caprio, M.; Grassi, D.; Cicero, A.F.G.; Bagnato, C.; Paolini, B.; Muscogiuri, G. A New Nomenclature for the Very Low-Calorie Ketogenic Diet (VLCKD): Very Low-Energy Ketogenic Therapy (VLEKT). Ketodiets and Nutraceuticals Expert Panels: “KetoNut”, Italian Society of Nutraceuticals (SINut) and the Italian Association of Dietetics and Clinical Nutrition (ADI). Curr. Nutr. Rep. 2024, 13, 552–556. [Google Scholar] [CrossRef]
- Albanese, A.; Prevedello, L.; Markovich, M.; Busetto, L.; Vettor, R.; Foletto, M. Pre-operative Very Low Calorie Ketogenic Diet (VLCKD) vs. Very Low Calorie Diet (VLCD): Surgical Impact. Obes. Surg. 2019, 29, 292–296. [Google Scholar] [CrossRef]
- Colangeli, L.; Gentileschi, P.; Sbraccia, P.; Guglielmi, V. Ketogenic Diet for Preoperative Weight Reduction in Bariatric Surgery: A Narrative Review. Nutrients 2022, 14, 3610. [Google Scholar] [CrossRef]
- Pilone, V.; Tramontano, S.; Renzulli, M.; Romano, M.; Cobellis, L.; Berselli, T.; Schiavo, L. Metabolic effects, safety, and acceptability of very low-calorie ketogenic dietetic scheme on candidates for bariatric surgery. Surg. Obes. Relat. Dis. 2018, 14, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Sans, A.; Scalera, G.; Barbarisi, A.; Iannelli, A. Why Preoperative Weight Loss in Preparation for Bariatric Surgery Is Important. Obes. Surg. 2016, 26, 2790–2792. [Google Scholar] [CrossRef]
- Sarno, G.; Calabrese, P.; Frias-Toral, E.; Ceriani, F.; Fuchs-Tarlovsky, V.; Spagnuolo, M.; Cucalón, G.; Álvarez Córdova, L.; Schiavo, L.; Pilone, V. The relationship between preoperative weight loss and intra and post-bariatric surgery complications: An appraisal of the current preoperative nutritional strategies. Crit. Rev. Food Sci. Nutr. 2023, 63, 10230–10238. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; De Stefano, G.; Persico, F.; Gargiulo, S.; Di Spirito, F.; Griguolo, G.; Petrucciani, N.; Fontas, E.; Iannelli, A.; Pilone, V. A Randomized, Controlled Trial Comparing the Impact of a Low-Calorie Ketogenic vs a Standard Low-Calorie Diet on Fat-Free Mass in Patients Receiving an ElipseTM Intragastric Balloon Treatment. Obes. Surg. 2021, 31, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Schiavo, L.; Sarno, G.; Camajani, E.; Iannelli, A.; Caprio, M.; Pilone, V.; Colao, A.; Muscogiuri, G. Very Low-Calorie Ketogenic Diet (VLCKD) as Pre-Operative First-Line Dietary Therapy in Patients with Obesity Who Are Candidates for Bariatric Surgery. Nutrients 2023, 15, 1907. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Verde, L.; Frias-Toral, E.; Reytor-González, C.; Annunziata, G.; Proganò, M.; Savastano, S.; Simancas-Racines, D.; Colao, A.; Barrea, L. Weight loss, changes in body composition and inflammatory status after a very low-energy ketogenic therapy (VLEKT): Does gender matter? J. Transl. Med. 2024, 22, 949. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Pierro, R.; Asteria, C.; Calabrese, P.; Di Biasio, A.; Coluzzi, I.; Severino, L.; Giovanelli, A.; Pilone, V.; Silecchia, G. Low-Calorie Ketogenic Diet with Continuous Positive Airway Pressure to Alleviate Severe Obstructive Sleep Apnea Syndrome in Patients with Obesity Scheduled for Bariatric/Metabolic Surgery: A Pilot, Prospective, Randomized Multicenter Comparative Study. Obes. Surg. 2022, 32, 634–642. [Google Scholar] [CrossRef]
- Schiavo, L.; Santella, B.; Paolini, B.; Rahimi, F.; Giglio, E.; Martinelli, B.; Boschetti, S.; Bertolani, L.; Gennai, K.; Arolfo, S.; et al. Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy. Nutrients 2024, 16, 1448. [Google Scholar] [CrossRef]
- Slater, G.H.; Ren, C.J.; Siegel, N.; Williams, T.; Barr, D.; Wolfe, B.; Dolan, K.; Fielding, G.A. Serum fat-soluble vitamin deficiency andabnormal calcium metabolism after malabsorptivebariatric surgery. J. Gastrointest. Surg. 2004, 8, 48–55. [Google Scholar] [CrossRef]
- Aills, L.; Blankenship, J.; Buffington, C.; Furtado, M.; Parrott, J. ASMBS Allied Health Nutritional Guidelines for the Surgical Weight Loss Patient. Surg. Obes. Relat. Dis. 2008, 4, S73–S108. [Google Scholar] [CrossRef] [PubMed]
- Topart, P.; Becouarn, G.; Sallé, A.; Ritz, P. Biliopancreatic diversion requires multiple vitamin and micronutrient adjustments within 2 years of surgery. Surg. Obes. Relat. Dis. 2014, 10, 936–941. [Google Scholar] [CrossRef]
- Heber, D.; Greenway, F.L.; Kaplan, L.M.; Livingston, E.; Salvador, J.; Still, C. Endocrine and Nutritional Management of the Post-Bariatric Surgery Patient: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2010, 95, 4823–4843. [Google Scholar] [CrossRef]
- Busetto, L.; Dicker, D.; Azran, C.; Batterham, R.L.; Farpour-Lambert, N.; Fried, M.; Hjelmesæth, J.; Kinzl, J.; Leitner, D.R.; Makaronidis, J.M.; et al. Obesity Management Task Force of the European Association for the Study of Obesity Released “Practical Recommendations for the Post-Bariatric Surgery Medical Management”. Obes. Surg. 2018, 28, 2117–2121. [Google Scholar] [CrossRef] [PubMed]
- Bahardoust, M.; Eghbali, F.; Shahmiri, S.S.; Alijanpour, A.; Yarigholi, F.; Valizadeh, R.; Madankan, A.; Pouraskari, A.B.; Ashtarinezhad, B.; Farokhi, H.; et al. B1 Vitamin Deficiency After Bariatric Surgery, Prevalence, and Symptoms: A Systematic Review and Meta-analysis. Obes. Surg. 2022, 32, 3104–3112. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, K.V.; Blom-Høgestøl, I.K.; Hewitt, S.; Risstad, H.; Moum, B.; Kristinsson, J.A.; Mala, T. Anemia following Roux-en-Y gastric bypass for morbid obesity; a 5-year follow-up study. Scand. J. Gastroenterol. 2018, 53, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Aguas-Ayesa, M.; Yárnoz-Esquíroz, P.; Olazarán, L.; Gómez-Ambrosi, J.; Frühbeck, G. Precision nutrition in the context of bariatric surgery. Rev. Endocr. Metab. Disord. 2023, 24, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Colquitt, J.L.; Pickett, K.; Loveman, E.; Frampton, G.K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 2014, 1–188. [Google Scholar] [CrossRef] [PubMed]
- Menser, T.; Muniz Castro, J.; Lopez, A.; Jones, S.L.; Kash, B.A.; Sherman, V.; Tariq, N. Post-bariatric surgery lab tests: Are they excessive and redundant? Surg. Endosc. 2020, 34, 4626–4631. [Google Scholar] [CrossRef] [PubMed]
- Budny, A.; Janczy, A.; Szymanski, M.; Mika, A. Long-Term Follow-Up After Bariatric Surgery: Key to Successful Outcomes in Obesity Management. Nutrients 2024, 16, 4399. [Google Scholar] [CrossRef]
- Nurczyk, K.; Chan, C.E.; Skoczylas, T.; Wallner, G. Follow-up after bariatric surgery: Are we effective enough? Videosurgery Other Miniinvasive Tech. 2021, 17, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Verde, L.; Frias-Toral, E.; Cardenas, D. Editorial: Environmental factors implicated in obesity. Front. Nutr. 2023, 10, 1171507. [Google Scholar] [CrossRef]
- Chao, G.F.; Ehlers, A.P.; Telem, D.A. Improving obesity treatment through telemedicine: Increasing access to bariatric surgery. Surg. Obes. Relat. Dis. 2021, 17, 9–11. [Google Scholar] [CrossRef]
- Moize, V.; Laferrère, B.; Shapses, S. Nutritional Challenges and Treatment After Bariatric Surgery. Annu. Rev. Nutr. 2024, 44, 289–312. [Google Scholar] [CrossRef] [PubMed]
- Qadhi, A.H.; Almuqati, A.H.; Alamro, N.S.; Azhri, A.S.; Azzeh, F.S.; Azhar, W.F.; Alyamani, R.A.; Almohmadi, N.H.; Alkholy, S.O.; Alhassani, W.E.; et al. The effect of bariatric surgery on dietary Behaviour, dietary recommendation Adherence, and micronutrient deficiencies one year after surgery. Prev. Med. Rep. 2023, 35, 102343. [Google Scholar] [CrossRef]
- Damien Hsu, C.H.; Kordunova, D.; Kim, C.; Kolbe, L.; Geliebter, A. Psychosocial Predictors of Weight Loss and Quality of Life at 1 Year Post-Bariatric Surgery: A Cohort Study. J. Obes. Chronic Dis. 2020, 4, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, E.; Näslund, I.; Persson, C.; Szabo, E.; Sundbom, M.; Ottosson, J.; Näslund, E. The association between socioeconomic factors and weight loss 5 years after gastric bypass surgery. Int. J. Obes. 2020, 44, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Sierżantowicz, R.; Ładny, J.R.; Lewko, J.; Hady, H.R. Assessment of education effects on patient involvement and bariatric treatment outcome: An observational study. Videosurgery Other Miniinvasive Technol. 2019, 15, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Crowder, S.L.; Frugé, A.D.; Douglas, K.G.; Chen, Y.T.; Moody, L.; Delk-Licata, A.; Erdman, J.W.; Black, M.; Carroll, W.R.; Spencer, S.A.; et al. Feasibility Outcomes of a Pilot Randomized Clinical Trial to Increase Cruciferous and Green Leafy Vegetable Intake in Posttreatment Head and Neck Cancer Survivors. J. Acad. Nutr. Diet. 2019, 119, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Tewksbury, C.; Isom, K.A. Behavioral Interventions After Bariatric Surgery. Curr. Treat. Options Gastroenterol. 2022, 20, 366–375. [Google Scholar] [CrossRef] [PubMed]
Micronutrient | Deficiency Implications | Recommended Supplementation |
---|---|---|
Vitamin D [62,103] | Compromises bone health and immune function; affects over two-thirds of patients. | High-dose cholecalciferol (4000–6000 IU/day) preoperatively, followed by maintenance doses (2000 IU/day). Combined with calcium citrate (1200–1500 mg/day) to prevent secondary hyperparathyroidism. |
Calcium [62] | Risk of secondary hyperparathyroidism due to deficiency. | Calcium citrate (1200–1500 mg/day) combined with vitamin D for effective absorption and bone health support. |
Iron [46] | Frequently associated with anemia; impacts hemoglobin and oxygen transport. | 100–200 mg/day elemental iron with vitamin C (250–500 mg/day) to enhance absorption. Intravenous formulations recommended for patients intolerant to oral iron. |
Vitamin B12 [103] | Poor absorption leads to neurological and hematological complications. | Intramuscular injections of 1000 µg every two weeks or high-dose oral supplementation. |
Folate [103] | Essential for anemia prevention and hematological stability. | 2 mg/day supplementation to address deficiencies, particularly in anemic patients. |
Thiamine (Vitamin B1) [46,103] | Prevents severe neurological complications like Wernicke’s encephalopathy. | 100 mg/day for patients with poor intake or frequent vomiting. |
Fat-Soluble Vitamins (A, E, K) [103] | Deficiencies impact vision, immunity, and coagulation. | Supplementation tailored to individual needs with regular monitoring, especially in hypoabsorptive procedures. |
Nutrient | Recommended Dosage | Special Considerations |
---|---|---|
Thiamine [46,67] | 12 mg/day via multivitamins; increase to 200–300 mg/day in critical cases (e.g., Wernicke’s encephalopathy). | Vital for preventing neurological complications. |
Iron [37,46,67] | 200 mg/day ferrous sulfate (or equivalent); menstruating women may require double this dose. | Separate iron and calcium supplements for at least two hours to avoid absorption interference. Vitamin C enhances absorption. |
Zinc [46,67] | 15 mg/day for all patients; increase to 30 mg/day for BPD/DS patients. | Maintain appropriate zinc-to-copper ratio (15 mg zinc to 2 mg copper). |
Copper [46] | 2 mg/day | Included in multivitamin formulations; important for enzymatic functions. |
Vitamin D [46,63,118] | 2000–4000 IU/day | Adjust doses upward for BPD/DS patients to maintain serum levels > 75 nmol/L. |
Calcium [46,67] | 1200–1500 mg/day for SG and RYGB; 2400 mg/day for BPD/DS. | Use calcium citrate for better absorption; avoid concurrent iron supplementation. |
Vitamin B12 [46,67] | Intramuscular injections of 1 mg every 3 months; increase frequency if neurological symptoms develop. | Critical for neurological and hematological health. |
Vitamin A [45,46] | 10,000 IU/day; increase to 50,000 IU/day for BPD/DS patients if necessary. | Adjust doses based on clinical monitoring. |
Vitamin E [115] | 60 IU/day | Important antioxidant; more monitoring needed for BPD/DS patients. |
Vitamin K [115] | 300 µg/day for BPD/DS patients. | Use water-miscible formulations for better absorption in hypoabsorptive surgeries. |
Selenium [45,117] | Adjust based on deficiency detection through regular monitoring. | Universally recommended for all bariatric surgery patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reytor-González, C.; Frias-Toral, E.; Nuñez-Vásquez, C.; Parise-Vasco, J.M.; Zambrano-Villacres, R.; Simancas-Racines, D.; Schiavo, L. Preventing and Managing Pre- and Postoperative Micronutrient Deficiencies: A Vital Component of Long-Term Success in Bariatric Surgery. Nutrients 2025, 17, 741. https://doi.org/10.3390/nu17050741
Reytor-González C, Frias-Toral E, Nuñez-Vásquez C, Parise-Vasco JM, Zambrano-Villacres R, Simancas-Racines D, Schiavo L. Preventing and Managing Pre- and Postoperative Micronutrient Deficiencies: A Vital Component of Long-Term Success in Bariatric Surgery. Nutrients. 2025; 17(5):741. https://doi.org/10.3390/nu17050741
Chicago/Turabian StyleReytor-González, Claudia, Evelyn Frias-Toral, Cristina Nuñez-Vásquez, Juan Marcos Parise-Vasco, Raynier Zambrano-Villacres, Daniel Simancas-Racines, and Luigi Schiavo. 2025. "Preventing and Managing Pre- and Postoperative Micronutrient Deficiencies: A Vital Component of Long-Term Success in Bariatric Surgery" Nutrients 17, no. 5: 741. https://doi.org/10.3390/nu17050741
APA StyleReytor-González, C., Frias-Toral, E., Nuñez-Vásquez, C., Parise-Vasco, J. M., Zambrano-Villacres, R., Simancas-Racines, D., & Schiavo, L. (2025). Preventing and Managing Pre- and Postoperative Micronutrient Deficiencies: A Vital Component of Long-Term Success in Bariatric Surgery. Nutrients, 17(5), 741. https://doi.org/10.3390/nu17050741