Impact of Nutritional Changes on the Prognosis in Pancreatic Cancer Patients Underwent Curative Surgery After Neoadjuvant Chemotherapy
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patients
2.2. Data Collection and Follow-Up Protocol
2.3. Statistical Analyses
3. Results
3.1. Clinicopathologic Characteristics
3.2. Survival Outcomes and Prognostic Factors for OS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open 2021, 4, e214708. [Google Scholar] [CrossRef] [PubMed]
- Gillen, S.; Schuster, T.; Meyer Zum Büschenfelde, C.; Friess, H.; Kleeff, J. Preoperative/neoadjuvant therapy in pancreatic cancer: A systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010, 7, e1000267. [Google Scholar] [CrossRef]
- Lee, D.H.; Jang, J.Y.; Kang, J.S.; Kim, J.R.; Han, Y.; Kim, E.; Kwon, W.; Kim, S.W. Recent treatment patterns and survival outcomes in pancreatic cancer according to clinical stage based on single-center large-cohort data. Ann. Hepato-Biliary-Pancreat. Surg. 2018, 22, 386–396. [Google Scholar] [CrossRef]
- Choi, Y.J.; Byun, Y.; Kang, J.S.; Kim, H.S.; Han, Y.; Kim, H.; Kwon, W.; Oh, D.Y.; Paik, W.H.; Lee, S.H.; et al. Comparison of Clinical Outcomes of Borderline Resectable Pancreatic Cancer According to the Neoadjuvant Chemo-Regimens: Gemcitabine versus FOLFIRINOX. Gut Liver 2021, 15, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Kim, H.S.; Kang, J.S.; Kang, Y.H.; Sohn, H.J.; Byun, Y.; Han, Y.; Yun, W.G.; Cho, Y.J.; Lee, M.; et al. Oncologic Benefits of Neoadjuvant Treatment versus Upfront Surgery in Borderline Resectable Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 4360. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation with Gemcitabine Versus Upfront Surgery in Patients with Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Nagakawa, Y.; Sahara, Y.; Hosokawa, Y.; Murakami, Y.; Yamaue, H.; Satoi, S.; Unno, M.; Isaji, S.; Endo, I.; Sho, M.; et al. Clinical Impact of Neoadjuvant Chemotherapy and Chemoradiotherapy in Borderline Resectable Pancreatic Cancer: Analysis of 884 Patients at Facilities Specializing in Pancreatic Surgery. Ann. Surg. Oncol. 2019, 26, 1629–1636. [Google Scholar] [CrossRef]
- Tashiro, M.; Yamada, S.; Sonohara, F.; Takami, H.; Suenaga, M.; Hayashi, M.; Niwa, Y.; Tanaka, C.; Kobayashi, D.; Nakayama, G.; et al. Clinical Impact of Neoadjuvant Therapy on Nutritional Status in Pancreatic Cancer. Ann. Surg. Oncol. 2018, 25, 3365–3371. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.; Norman, A.R.; Oates, J.; Cunningham, D. Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? Eur. J. Cancer 1998, 34, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.; Gianotti, L.; Nespoli, L.; Radaelli, G.; Di Carlo, V. Nutritional approach in malnourished surgical patients: A prospective randomized study. Arch. Surg. 2002, 137, 174–180. [Google Scholar] [CrossRef]
- Bond-Smith, G.; Banga, N.; Hammond, T.M.; Imber, C.J. Pancreatic adenocarcinoma. BMJ 2012, 344, e2476. [Google Scholar] [CrossRef] [PubMed]
- Hendifar, A.E.; Petzel, M.Q.B.; Zimmers, T.A.; Denlinger, C.S.; Matrisian, L.M.; Picozzi, V.J.; Rahib, L. Pancreas Cancer-Associated Weight Loss. Oncologist 2019, 24, 691–701. [Google Scholar] [CrossRef]
- Hendifar, A.E.; Chang, J.I.; Huang, B.Z.; Tuli, R.; Wu, B.U. Cachexia, and not obesity, prior to pancreatic cancer diagnosis worsens survival and is negated by chemotherapy. J. Gastrointest. Oncol. 2018, 9, 17–23. [Google Scholar] [CrossRef]
- Wigmore, S.J.; Plester, C.E.; Richardson, R.A.; Fearon, K.C. Changes in nutritional status associated with unresectable pancreatic cancer. Br. J. Cancer 1997, 75, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, J.; Heiligensetzer, M.; Krakowski-Roosen, H.; Büchler, M.W.; Friess, H.; Martignoni, M.E. Cachexia worsens prognosis in patients with resectable pancreatic cancer. J. Gastrointest. Surg. 2008, 12, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Lee, D.H.; Jang, J.Y. Effects of Preoperative Malnutrition on Postoperative Surgical Outcomes and Quality of Life of Elderly Patients with Periampullary Neoplasms: A Single-Center Prospective Cohort Study. Gut Liver 2019, 13, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Jang, J.Y.; Kim, E.J.; Kang, M.J.; Kwon, W.; Chang, Y.R.; Han, I.W.; Kim, S.W. Effects of pancreatectomy on nutritional state, pancreatic function and quality of life. Br. J. Surg. 2013, 100, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.Y.; Kim, E.J.; Kim, H.; Byun, Y.; Han, Y.; Choi, Y.J.; Kang, J.S.; Kwon, W.; Jang, J.Y. Changes in postoperative long-term nutritional status and quality of life after total pancreatectomy. Ann. Surg. Treat. Res. 2021, 100, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kim, H.M.; Jeung, H.C.; Kang, S.A. Association between early nutritional risk and overall survival in patients with advanced pancreatic cancer: A single-center retrospective study. Clin. Nutr. ESPEN 2019, 30, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Davidson, W.; Ash, S.; Capra, S.; Bauer, J. Weight stabilisation is associated with improved survival duration and quality of life in unresectable pancreatic cancer. Clin. Nutr. 2004, 23, 239–247. [Google Scholar] [CrossRef]
- Richter, E.; Denecke, A.; Klapdor, S.; Klapdor, R. Parenteral nutrition support for patients with pancreatic cancer--improvement of the nutritional status and the therapeutic outcome. Anticancer Res. 2012, 32, 2111–2118. [Google Scholar] [PubMed]
- Lee, B.; Han, H.S.; Yoon, Y.S. Impact of Preoperative Malnutrition on Postoperative Long-Term Outcomes of Patients with Pancreatic Head Cancer. Ann. Surg. Open 2021, 2, e047. [Google Scholar] [CrossRef] [PubMed]
- Mękal, D.; Sobocki, J.; Badowska-Kozakiewicz, A.; Sygit, K.; Cipora, E.; Bandurska, E.; Czerw, A.; Deptała, A. Evaluation of Nutritional Status and the Impact of Nutritional Treatment in Patients with Pancreatic Cancer. Cancers 2023, 15, 3816. [Google Scholar] [CrossRef] [PubMed]
- Mantzorou, M.; Koutelidakis, A.; Theocharis, S.; Giaginis, C. Clinical Value of Nutritional Status in Cancer: What is its Impact and how it Affects Disease Progression and Prognosis? Nutr. Cancer 2017, 69, 1151–1176. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, Z.; Wang, Z.; Wu, C.; Huang, X.; Tian, B. Prognostic role of the prognostic nutritional index in patients with pancreatic cancer who underwent curative resection without preoperative neoadjuvant treatment: A systematic review and meta-analysis. Front. Surg. 2022, 9, 992641. [Google Scholar] [CrossRef] [PubMed]
- Kazi, M.; Gori, J.; Sasi, S.; Srivastava, N.; Khan, A.M.; Mukherjee, S.; Garg, V.; Singh, L.; Mundhada, R.; Patil, P.; et al. Prognostic Nutritional Index Prior to Rectal Cancer Resection Predicts Overall Survival. Nutr. Cancer 2022, 74, 3228–3235. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Chung, M.J.; Kim, B.; Lee, H.S.; Lee, H.J.; Heo, J.Y.; Kim, Y.J.; Park, J.Y.; Bang, S.; Park, S.W.; et al. The Significance of the Prognostic Nutritional Index for All Stages of Pancreatic Cancer. Nutr. Cancer 2017, 69, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, X.; Shi, G.; Sun, H.; Ge, G. Prognostic and clinical significance of modified glasgow prognostic score in pancreatic cancer: A meta-analysis of 4,629 patients. Aging 2021, 13, 1410–1421. [Google Scholar] [CrossRef] [PubMed]
- Jia-Min, Z.; Wei, D.; Ye, L.; Xiang-Tao, P. Correlation between C-reactive protein/albumin ratio and prognosis in patients with lung adenocarcinoma. J. Int. Med. Res. 2022, 50, 3000605221105372. [Google Scholar] [CrossRef]
- Fang, P.; Yang, Q.; Zhou, J.; Yang, Y.; Luan, S.; Xiao, X.; Li, X.; Gu, Y.; Shang, Q.; Zhang, H.; et al. The impact of geriatric nutritional risk index on esophageal squamous cell carcinoma patients with neoadjuvant therapy followed by esophagectomy. Front. Nutr. 2022, 9, 983038. [Google Scholar] [CrossRef]
- Yan, L.; Nakamura, T.; Casadei-Gardini, A.; Bruixola, G.; Huang, Y.L.; Hu, Z.D. Long-term and short-term prognostic value of the prognostic nutritional index in cancer: A narrative review. Ann. Transl. Med. 2021, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Kanda, M.; Fujii, T.; Kodera, Y.; Nagai, S.; Takeda, S.; Nakao, A. Nutritional predictors of postoperative outcome in pancreatic cancer. Br. J. Surg. 2011, 98, 268–274. [Google Scholar] [CrossRef]
- Kim, B.S. Prognostic Significance of Preoperative Controlling Nutritional Status Score in Patients Who Underwent Hepatic Resection for Hepatocellular Carcinoma. J. Liver Cancer 2020, 20, 106–112. [Google Scholar] [CrossRef]
- Chen, L.; Sun, H.; Zhao, R.; Huang, R.; Pan, H.; Zuo, Y.; Zhang, L.; Xue, Y.; Song, H.; Li, X. Controlling Nutritional Status (CONUT) Predicts Survival in Gastric Cancer Patients with Immune Checkpoint Inhibitor (PD-1/PD-L1) Outcomes. Front. Pharmacol. 2022, 13, 836958. [Google Scholar] [CrossRef]
- Toyokawa, G.; Kozuma, Y.; Matsubara, T.; Haratake, N.; Takamori, S.; Akamine, T.; Takada, K.; Katsura, M.; Shimokawa, M.; Shoji, F.; et al. Prognostic impact of controlling nutritional status score in resected lung squamous cell carcinoma. J. Thorac. Dis. 2017, 9, 2942–2951. [Google Scholar] [CrossRef]
- Fukui, Y.; Aomatsu, N.; Sai, K.; Naka, R.; Kurihara, S.; Kuroda, K.; Nishimura, J.; Sakurai, K.; Nishii, T.; Tachimori, A.; et al. Prognostic Analysis of Colorectal Cancer Patients by the Controlling Nutritional Status(CONUT)Score. Gan Kagaku Ryoho Cancer Chemother. 2021, 48, 1975–1977. [Google Scholar]
- Dang, C.; Wang, M.; Zhu, F.; Qin, T.; Qin, R. Controlling nutritional status (CONUT) score-based nomogram to predict overall survival of patients with pancreatic cancer undergoing radical surgery. Asian J. Surg. 2022, 45, 1237–1245. [Google Scholar] [CrossRef]
- Aronsson, L.; Bengtsson, A.; Torén, W.; Andersson, R.; Ansari, D. Intraductal papillary mucinous carcinoma versus pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Int. J. Surg. 2019, 71, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Sultana, Q.; Kar, J.; Verma, A.; Sanghvi, S.; Kaka, N.; Patel, N.; Sethi, Y.; Chopra, H.; Kamal, M.A.; Greig, N.H. A Comprehensive Review on Neuroendocrine Neoplasms: Presentation, Pathophysiology and Management. J. Clin. Med. 2023, 12, 5138. [Google Scholar] [CrossRef]
- Chaudhary, P. Acinar Cell Carcinoma of the Pancreas: A Literature Review and Update. Indian J. Surg. 2015, 77, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Hendifar, A.; Osipov, A.; Khanuja, J.; Nissen, N.; Naziri, J.; Yang, W.; Li, Q.; Tuli, R. Influence of Body Mass Index and Albumin on Perioperative Morbidity and Clinical Outcomes in Resected Pancreatic Adenocarcinoma. PLoS ONE 2016, 11, e0152172. [Google Scholar] [CrossRef] [PubMed]
- Pausch, T.; Hartwig, W.; Hinz, U.; Swolana, T.; Bundy, B.D.; Hackert, T.; Grenacher, L.; Büchler, M.W.; Werner, J. Cachexia but not obesity worsens the postoperative outcome after pancreatoduodenectomy in pancreatic cancer. Surgery 2012, 152, S81–S88. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Hyder, O.; Firoozmand, A.; Kneuertz, P.; Schulick, R.D.; Huang, D.; Makary, M.; Hirose, K.; Edil, B.; Choti, M.A.; et al. Impact of sarcopenia on outcomes following resection of pancreatic adenocarcinoma. J. Gastrointest. Surg. 2012, 16, 1478–1486. [Google Scholar] [CrossRef]
- Schiesser, M.; Kirchhoff, P.; Müller, M.K.; Schäfer, M.; Clavien, P.A. The correlation of nutrition risk index, nutrition risk score, and bioimpedance analysis with postoperative complications in patients undergoing gastrointestinal surgery. Surgery 2009, 145, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Smale, B.F.; Mullen, J.L.; Buzby, G.P.; Rosato, E.F. The efficacy of nutritional assessment and support in cancer surgery. Cancer 1981, 47, 2375–2381. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- Sacks, G.S.; Dearman, K.; Replogle, W.H.; Cora, V.L.; Meeks, M.; Canada, T. Use of subjective global assessment to identify nutrition-associated complications and death in geriatric long-term care facility residents. J. Am. Coll. Nutr. 2000, 19, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Yeun, J.Y.; Kaysen, G.A. Factors influencing serum albumin in dialysis patients. Am. J. Kidney Dis. 1998, 32, S118–S125. [Google Scholar] [CrossRef]
- Fearon, K.C.; McMillan, D.C.; Preston, T.; Winstanley, F.P.; Cruickshank, A.M.; Shenkin, A. Elevated circulating interleukin-6 is associated with an acute-phase response but reduced fixed hepatic protein synthesis in patients with cancer. Ann. Surg. 1991, 213, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Moldawer, L.L.; Copeland, E.M., 3rd. Proinflammatory cytokines, nutritional support, and the cachexia syndrome: Interactions and therapeutic options. Cancer 1997, 79, 1828–1839. [Google Scholar] [CrossRef]
- Barber, M.D.; Fearon, K.C.; McMillan, D.C.; Slater, C.; Ross, J.A.; Preston, T. Liver export protein synthetic rates are increased by oral meal feeding in weight-losing cancer patients. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E707–E714. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.C.; Scott, H.R.; Watson, W.S.; Preston, T.; Milroy, R.; McArdle, C.S. Longitudinal study of body cell mass depletion and the inflammatory response in cancer patients. Nutr. Cancer 1998, 31, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Heys, S.D.; Walker, L.G.; Deehan, D.J.; Eremin, O.E. Serum albumin: A prognostic indicator in patients with colorectal cancer. J. R. Coll. Surg. Edinb. 1998, 43, 163–168. [Google Scholar] [PubMed]
- Deehan, D.J.; Heys, S.D.; Simpson, W.; Herriot, R.; Broom, J.; Eremin, O. Correlation of serum cytokine and acute phase reactant levels with alterations in weight and serum albumin in patients receiving immunotherapy with recombinant IL-2. Clin. Exp. Immunol. 1994, 95, 366–372. [Google Scholar] [CrossRef]
- McMillan, D.C.; Elahi, M.M.; Sattar, N.; Angerson, W.J.; Johnstone, J.; McArdle, C.S. Measurement of the systemic inflammatory response predicts cancer-specific and non-cancer survival in patients with cancer. Nutr. Cancer 2001, 41, 64–69. [Google Scholar] [CrossRef]
- van Wijk, L.; de Klein, G.W.; Kanters, M.A.; Patijn, G.A.; Klaase, J.M. The ultimate preoperative C-reactive protein-to-albumin ratio is a prognostic factor for survival after pancreatic cancer resection. Eur. J. Med. Res. 2020, 25, 46. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jasrotia, S.; Kumar, A. Effects of Chemotherapy on the Immune System: Implications for Cancer Treatment and Patient Outcomes. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 2551–2566. [Google Scholar] [CrossRef]
- Currow, D.C.; Abernethy, A.P. Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome. Future Oncol. 2014, 10, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, W.; Wu, Y.; Luo, Y.; Wu, B.; Cheng, J.; Chen, J.; Liu, D.; Li, C. Prognostic role of pretreatment blood lymphocyte count in patients with solid tumors: A systematic review and meta-analysis. Cancer Cell Int. 2020, 20, 15. [Google Scholar] [CrossRef]
- Daya, T.; Breytenbach, A.; Gu, L.; Kaur, M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2025, 1870, 159578. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, Z. Prognostic role of the controlling nutritional status (CONUT) score in patients with biliary tract cancer: A meta-analysis. Ann. Med. 2023, 55, 2261461. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- Powell-Brett, S.; de Liguori Carino, N.; Roberts, K. Understanding pancreatic exocrine insufficiency and replacement therapy in pancreatic cancer. Eur. J. Surg. Oncol. 2021, 47, 539–544. [Google Scholar] [CrossRef]
- de la Iglesia-García, D.; Huang, W.; Szatmary, P.; Baston-Rey, I.; Gonzalez-Lopez, J.; Prada-Ramallal, G.; Mukherjee, R.; Nunes, Q.M.; Domínguez-Muñoz, J.E.; Sutton, R. Efficacy of pancreatic enzyme replacement therapy in chronic pancreatitis: Systematic review and meta-analysis. Gut 2017, 66, 1354–1355. [Google Scholar] [CrossRef] [PubMed]
- Iglesia, D.; Avci, B.; Kiriukova, M.; Panic, N.; Bozhychko, M.; Sandru, V.; de-Madaria, E.; Capurso, G. Pancreatic exocrine insufficiency and pancreatic enzyme replacement therapy in patients with advanced pancreatic cancer: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2020, 8, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Muñoz, J.E.; Nieto-Garcia, L.; López-Díaz, J.; Lariño-Noia, J.; Abdulkader, I.; Iglesias-Garcia, J. Impact of the treatment of pancreatic exocrine insufficiency on survival of patients with unresectable pancreatic cancer: A retrospective analysis. BMC Cancer 2018, 18, 534. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.J.; Bannister, C.A.; Schrem, H. Enzyme replacement improves survival among patients with pancreatic cancer: Results of a population based study. Pancreatology 2019, 19, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yoon, Y.S.; Han, Y.; Kwon, W.; Kim, S.W.; Han, H.S.; Yoon, D.S.; Park, J.S.; Park, S.J.; Han, S.S.; et al. Effects of Pancreatic Enzyme Replacement Therapy on Body Weight and Nutritional Assessments After Pancreatoduodenectomy in a Randomized Trial. Clin. Gastroenterol. Hepatol. 2020, 18, 926–934.e4. [Google Scholar] [CrossRef]
- Kurita, Y.; Kobayashi, N.; Tokuhisa, M.; Goto, A.; Kubota, K.; Endo, I.; Nakajima, A.; Ichikawa, Y. Sarcopenia is a reliable prognostic factor in patients with advanced pancreatic cancer receiving FOLFIRINOX chemotherapy. Pancreatology 2019, 19, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Dotan, E.; Tew, W.P.; Mohile, S.G.; Ma, H.; Kim, H.; Sun, C.L.; Caan, B.; Dale, W.; Gajra, A.; Klepin, H.D.; et al. Associations between nutritional factors and chemotherapy toxicity in older adults with solid tumors. Cancer 2020, 126, 1708–1716. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Hwang, H.K.; Kang, I.C.; Lee, W.J.; Kang, C.M. Oncologic impact of preoperative prognostic nutritional index change in resected pancreatic cancer following neoadjuvant chemotherapy. Pancreatology 2020, 20, 247–253. [Google Scholar] [CrossRef]
- Sui, C.; Lin, C.; Tao, T.; Huang, Y.; Zhang, H.; Yu, H.; Tao, L.; Wang, M.; Wang, F. Controlling Nutritional Status (CONUT) score as a prognostic marker for gastrointestinal stromal tumours. ANZ J. Surg. 2023, 93, 2125–2131. [Google Scholar] [CrossRef] [PubMed]
- Hayama, T.; Ozawa, T.; Okada, Y.; Tsukamoto, M.; Fukushima, Y.; Shimada, R.; Nozawa, K.; Matsuda, K.; Fujii, S.; Hashiguchi, Y. The pretreatment Controlling Nutritional Status (CONUT) score is an independent prognostic factor in patients undergoing resection for colorectal cancer. Sci. Rep. 2020, 10, 13239. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Lin, S.; Chen, W.; Chen, X.; Yi, X.; Lu, S.; Li, H.; Li, C.; Wang, D. Controlling Nutritional Status (CONUT) score is a prognostic marker for laryngeal cancer patients with curative resection. Head Neck 2022, 44, 2834–2841. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Mou, Y.; Wang, H.; Li, L.; Jin, T.; Wang, H.; Liu, M.; Jin, W. Causal effect between gut microbiota and pancreatic cancer: A two-sample Mendelian randomization study. BMC Cancer 2023, 23, 1091. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, H. The Microbiome and Its Implications in Cancer Immunotherapy. Molecules 2021, 26, 206. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN practical guideline: Clinical nutrition in surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef]
- Ngo-Huang, A.T.; Parker, N.H.; Xiao, L.; Schadler, K.L.; Petzel, M.Q.B.; Prakash, L.R.; Kim, M.P.; Tzeng, C.D.; Lee, J.E.; Ikoma, N.; et al. Effects of a Pragmatic Home-based Exercise Program Concurrent with Neoadjuvant Therapy on Physical Function of Patients with Pancreatic Cancer: The PancFit Randomized Clinical Trial. Ann. Surg. 2023, 278, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Ngo-Huang, A.; Parker, N.H.; Bruera, E.; Lee, R.E.; Simpson, R.; O’Connor, D.P.; Petzel, M.Q.B.; Fontillas, R.C.; Schadler, K.; Xiao, L.; et al. Home-Based Exercise Prehabilitation During Preoperative Treatment for Pancreatic Cancer Is Associated with Improvement in Physical Function and Quality of Life. Integr. Cancer Ther. 2019, 18, 1534735419894061. [Google Scholar] [CrossRef] [PubMed]
- Trépanier, M.; Minnella, E.M.; Paradis, T.; Awasthi, R.; Kaneva, P.; Schwartzman, K.; Carli, F.; Fried, G.M.; Feldman, L.S.; Lee, L. Improved Disease-free Survival After Prehabilitation for Colorectal Cancer Surgery. Ann. Surg. 2019, 270, 493–501. [Google Scholar] [CrossRef]
- Molenaar, C.J.L.; Minnella, E.M.; Coca-Martinez, M.; Ten Cate, D.W.G.; Regis, M.; Awasthi, R.; Martínez-Palli, G.; López-Baamonde, M.; Sebio-Garcia, R.; Feo, C.V.; et al. Effect of Multimodal Prehabilitation on Reducing Postoperative Complications and Enhancing Functional Capacity Following Colorectal Cancer Surgery: The PREHAB Randomized Clinical Trial. JAMA Surg. 2023, 158, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Waterland, J.L.; McCourt, O.; Edbrooke, L.; Granger, C.L.; Ismail, H.; Riedel, B.; Denehy, L. Efficacy of Prehabilitation Including Exercise on Postoperative Outcomes Following Abdominal Cancer Surgery: A Systematic Review and Meta-Analysis. Front. Surg. 2021, 8, 628848. [Google Scholar] [CrossRef] [PubMed]
Parameters | Malnutrition Degree | |||
---|---|---|---|---|
Normal | Light | Moderate | Severe | |
Serum albumin (g/dL) | ≥3.50 | 3.00–3.49 | 2.50–2.99 | <2.50 |
Serum albumin score | 0 | 2 | 4 | 8 |
Total lymphocyte count (/mm3) | ≥1600 | 1200–1599 | 800–1199 | <800 |
Total lymphocyte count score | 0 | 1 | 2 | 3 |
Total cholesterol (mg/dL) | ≥180 | 140–180 | 100–139 | <100 |
Total cholesterol score | 0 | 1 | 2 | 3 |
CONUT score = Serum albumin score + Total lymphocyte count score + Total cholesterol score | ||||
CONUT score | 0–1 | 2–4 | 5–8 | 9–12 |
Assessment | Normal | Light | Moderate | Severe |
Variables | Before NAC | After NAC | p-Value |
---|---|---|---|
CONUT * score parameters | |||
ALB *, mean (SD), g/dL | 4.02 (0.4) | 3.8 (0.4) | <0.001 |
TLC *, mean (SD), /mm3 | 1679.74 (801.6) | 1433.0 (698.9) | 0.20 |
TC *, mean (SD), mg/dL | 171.8 (43.9) | 167.0 (43.3) | <0.001 |
CONUT score, mean (SD) | 1.96 (1.5) | 2.5 (2.0) | <0.001 |
Total | Worsened Group | Maintained Group | Improved Group | ||
---|---|---|---|---|---|
Variables | (n = 148) | (n = 43) | (n = 84) | (n = 21) | p-Value |
Age, mean (SD *), years | 61.5 (8.8) | 62 (6.9) | 59 (9.7) | 62 (8.0) | 0.31 |
Sex (Male) (%) | 74 (50.0) | 19 (44.2) | 45 (53.6) | 10 (47.6) | 0.58 |
Hypertension (%) | 58 (39.2) | 20 (46.5) | 30 (35.7) | 8 (38.1) | 0.49 |
DM (%) | 77 (52.0) | 24 (55.8) | 45 (53.6) | 8 (38.1) | 0.37 |
ASA * (%) | 0.72 | ||||
I | 19 (12.8) | 6 (14.0) | 12 (14.3) | 1 (4.8) | |
II | 106 (71.6) | 32 (74.4) | 57 (67.9) | 17 (81.0) | |
III | 23 (15.5) | 5 (11.6) | 15 (17.9) | 3 (14.3) | |
Before NAC * | |||||
Body weight, mean (SD),kg | 61.5 (9.2) | 59.8 (8.9) | 61.7 (9.4) | 64.1 (8.3) | 0.27 |
BMI *, mean (SD), kg/m2 | 23.2 (2.6) | 22.6 (2.2) | 23.2 (2.8) | 24.6 (1.8) | 0.03 |
ALB *, mean (SD), g/dL | 4.0 (0.4) | 4.0 (0.4) | 4.0 (0.4) | 4.0 (0.4) | 0.94 |
TLC *, mean (SD), /mm3 | 1679.7 (801.6) | 2075.1 (747.1) | 1593.2 (789.2) | 1268.9 (661.2) | <0.001 |
TC *, mean (SD), mg/dL | 171.8 (43.9) | 181.2 (46.3) | 169.5 (43.7) | 163.7 (38.9) | 0.27 |
CONUT * score, mean (SD) | 1.9 (1.5) | 1.1 (1.2) | 2.1 (1.4) | 2.8 (1.6) | <0.001 |
PNI, mean (SD) | 48.6 (5.8) | 50.8 (5.5) | 48.1 (5.6) | 46.5 (6.2) | 0.01 |
After NAC | |||||
Body Weight, mean (SD), kg | 61.3 (9.9) | 59.0 (9.6) | 61.6 (9.9) | 65.0 (9.0) | 0.09 |
BMI, mean (SD), kg/m2 | 23.2 (3.0) | 22.4 (2.7) | 23.2 (2.8) | 25.1 (3.5) | <0.01 |
ALB, mean (SD), g/dL | 3.8 (0.4) | 3.6 (0.5) | 3.9 (2.9) | 4.0 (0.3) | <0.001 |
TLC, mean (SD), /mm3 | 1433.0 (698.9) | 1056.6 (477.5) | 1512.8 (691.8) | 1837.5 (813.2) | <0.001 |
TC, mean (SD), mg/dL | 167.0 (43.3) | 149.4 (40.0) | 168.2 (41.1) | 199.2 (44.7) | <0.001 |
CONUT score, mean (SD) | 2.5 (2.0) | 4.1 (2.2) | 2.1 (1.5) | 0.8 (1.4) | <0.001 |
PNI, mean (SD) | 45.9 (5.6) | 41.9 (5.8) | 46.9 (4.5) | 49.4 (6.2) | <0.001 |
Tumor location (%) | 0.84 | ||||
Head | 105 (71.9) | 28 (66.7) | 61 (73.5) | 16 (76.2) | |
Body/Tail | 37 (25.3) | 12 (28.6) | 20 (24.1) | 5 (23.8) | |
Diffuse | 4 (2.7) | 2 (4.8) | 2 (2.4) | 0 (0.0) | |
Resectability (%) | 0.04 | ||||
BRPC * | 118 (79.7) | 31 (72.1) | 73 (86.9) | 14 (66.7) | |
LAPC * | 30 (20.3) | 12 (27.9) | 11 (13.1) | 7 (33.3) | |
NAC Regimen (%) | 0.62 | ||||
FOLFIRINOX * | 114 (77.0) | 32 (74.4) | 64 (76.2) | 18 (85.7) | |
Gem + based | 34 (23.0) | 11 (25.6) | 20 (23.8) | 3 (14.3) | |
Duration of NAC, mean (SD), month | 3.8 (3.34) | 5.0 (3.9) | 3.3 (3.1) | 3.3 (1.9) | <0.001 |
Operation type (%) | 0.51 | ||||
PD/PPPD * | 100 (67.6) | 26 (60.5) | 58 (69.0) | 16 (76.2) | |
DP/SPDP*/STP * | 36 (24.3) | 13 (30.2) | 18 (21.4) | 5 (23.8) | |
TP * | 12 (8.1) | 4 (9.3) | 8 (9.5) | 0 (0.0) | |
Operation method (%) | 0.18 | ||||
OPEN | 146 (98.6) | 41 (95.3) | 84 (100.0) | 21 (100.0) | |
MIS * | 2 (1.4) | 2 (4.7) | 0 (0) | 0 (0) | |
Complication (%) (C-D * ≧ 3 grade) | 21 (14.2) | 7 (16.3) | 10 (11.9) | 4 (19.0) | 0.60 |
Lymphatic invasion (%) | 31 (20.9) | 10 (23.3) | 16 (19.0) | 5 (23.8) | 0.81 |
Venous invasion (%) | 40 (27.0) | 12 (27.9) | 26 (31.0) | 2 (9.5) | 0.14 |
Perineural invasion (%) | 106 (71.6) | 30 (69.8) | 63 (75.0) | 13 (61.9) | 0.46 |
R1 resection rate (%) | 16 (10.8) | 4 (9.3) | 8 (9.5) | 4 (19.0) | 0.45 |
yp T stage (%) | 0.92 | ||||
T0 | 4 (2.7) | 1 (2.4) | 3 (3.6) | 0 (0.0) | |
T1 | 40 (27.2) | 12 (28.6) | 21 (25.0) | 7 (33.3) | |
T2 | 39 (26.5) | 11 (26.2) | 24 (28.6) | 4 (19.0) | |
T3 | 58 (39.5) | 15 (35.7) | 33 (39.3) | 10 (47.6) | |
T4 | 6 (4.1) | 3 (7.1) | 3 (3.6) | 0 (0.0) | |
yp N positive (%) | 49 (33.1) | 16 (37.3) | 27 (32.2) | 6 (28.6) | 0.92 |
Variables | Before NAC | After NAC | p-Value |
---|---|---|---|
Body weight, mean (SD), kg | 61.5 (9.2) | 61.3 (9.8) | 0.67 |
Variables | Before NAC | After NAC | p-Value |
---|---|---|---|
PNI *, mean (SD) | 48.7 (5.8) | 45.9 (5.6) | <0.001 |
Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|
Variables | Median OS [95% CI] | HR | [95% CI] | p-Value | HR | [95% CI] | p-Value |
Sex (Male) | 32 [25.80–38.19] | 0.84 | [0.55–1.28] | 0.43 | |||
Age (≥65) | 29 [13.09–44.90] | 1.48 | [0.96–2.29] | 0.07 | 1.41 | [0.87–2.28] | 0.16 |
DM (Yes) | 26 [14.75–37.24] | 1.58 | [1.03–2.43] | 0.03 | 1.60 | [1.03–2.48] | 0.03 |
Initial CA 19-9 >150 μ/mL | 36 [24.69–47.30] | 0.78 | [0.51–1.20] | 0.26 | |||
Nutritional change | 36 [29.29–42.70] | 0.01 | |||||
Maintained Group | 39 [24.17–53.82] | 0.23 | <0.01 | ||||
Improved Group | 66 [36.45–95.54] | 0.83 | [0.44–1.59] | 0.59 | 0.87 | [0.45–1.69] | 0.70 |
Worsened Group | 28 [17.00–38.99] | 1.81 | [1.13–2.89] | 0.01 | 2.11 | [1.31–3.40] | <0.01 |
Complication (C-D * ≧ 3 grade) | 18 [12.47–23.52] | 1.69 | [0.95–3.01] | 0.07 | 2.07 | [1.14–3.76] | 0.01 |
Adjuvant CTx * (Yes) | 36 [29.44–42.55] | 0.85 | [0.26–2.71] | 0.79 | |||
RTx * (Yes) | 38 [28.25–47.74] | 0.60 | [0.37–0.97] | 0.03 | 0.76 | [0.49–1.20] | 0.24 |
Lymphatic invasion (Yes) | 28 [8.32–47.67] | 1.45 | [0.89–2.35] | 0.13 | |||
Venous invasion (Yes) | 23 [9.51–36.48] | 1.68 | [1.06–2.66] | 0.02 | 1.65 | [1.03–2.66] | 0.03 |
Perineural invasion (Yes) | 30 [21.78–38.21] | 1.66 | [1.00–2.76] | 0.04 | 1.40 | [0.80–2.44] | 0.19 |
R1 resection (Yes) | 19 [9.20–28.80] | 1.97 | [1.09–3.56] | 0.02 | 2.67 | [1.44–4.94] | <0.01 |
yp T stage | 36 [29.16–42.83] | 0.18 | |||||
T0 | 55 [1.21–108.78] | 0.21 | 0.46 | ||||
T1 | 40 [30.41–49.58] | 1.77 | [0.41–7.62] | 0.44 | 1.01 | [0.21–4.73] | 0.98 |
T2 | 39 [22.47–55.52] | 1.76 | [0.41–7.57] | 0.44 | 0.76 | [0.15–3.56] | 0.70 |
T3 | 26 [15.08–36.91] | 2.42 | [0.58–10.05] | 0.22 | 1.18 | [0.25–5.44] | 0.83 |
T4 | 5 [0.00–12.20] | 4.84 | [0.88–26.53] | 0.06 | 1.77 | [0.23–13.29] | 0.57 |
yp N stage | 36 [29.29–42.70] | 0.00 | |||||
N0 | 40 [26.02–53.97] | 0.03 | 0.86 | ||||
N1 | 32 [19.83–44.16] | 1.38 | [0.87–2.18] | 0.16 | 1.07 | [0.65–1.77] | 0.77 |
N2 | 14 [7.55–20.44] | 3.82 | [1.50–9.68] | 0.00 | 1.34 | [0.43–4.20] | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Choi, G.-W.; Lee, I.; Seo, Y.; Chae, Y.S.; Yun, W.-G.; Han, Y.; Jung, H.-S.; Kwon, W.; Park, J.S.; et al. Impact of Nutritional Changes on the Prognosis in Pancreatic Cancer Patients Underwent Curative Surgery After Neoadjuvant Chemotherapy. Nutrients 2025, 17, 647. https://doi.org/10.3390/nu17040647
Park S, Choi G-W, Lee I, Seo Y, Chae YS, Yun W-G, Han Y, Jung H-S, Kwon W, Park JS, et al. Impact of Nutritional Changes on the Prognosis in Pancreatic Cancer Patients Underwent Curative Surgery After Neoadjuvant Chemotherapy. Nutrients. 2025; 17(4):647. https://doi.org/10.3390/nu17040647
Chicago/Turabian StylePark, Seulah, Go-Won Choi, Inhyuck Lee, Younsoo Seo, Yoon Soo Chae, Won-Gun Yun, Youngmin Han, Hye-Sol Jung, Wooil Kwon, Joon Seong Park, and et al. 2025. "Impact of Nutritional Changes on the Prognosis in Pancreatic Cancer Patients Underwent Curative Surgery After Neoadjuvant Chemotherapy" Nutrients 17, no. 4: 647. https://doi.org/10.3390/nu17040647
APA StylePark, S., Choi, G.-W., Lee, I., Seo, Y., Chae, Y. S., Yun, W.-G., Han, Y., Jung, H.-S., Kwon, W., Park, J. S., Jang, J.-Y., & Cho, Y. J. (2025). Impact of Nutritional Changes on the Prognosis in Pancreatic Cancer Patients Underwent Curative Surgery After Neoadjuvant Chemotherapy. Nutrients, 17(4), 647. https://doi.org/10.3390/nu17040647