Chrononutrition in Chronic Kidney Disease
Abstract
:1. Background
1.1. Circadian Physiology
1.2. Circadian Alignment and Chronodisruption
1.3. Chronodisruptors in Chronic Kidney Disease
1.3.1. Renal-Specific Alterations
1.3.2. Renal Replacement Therapy-Related Alterations
1.3.3. Psychological- and Social-Related Alterations
1.3.4. Environmental and Lifestyle Determinants
1.4. Chrononutrition
2. Methods
3. Results
3.1. Eating Windows
3.2. Meal Timing Across the Day/Night Cycle
3.3. Midpoint of Eating
3.4. Eating Jet Lag
3.5. CT-Based Nutrition Intervention
4. Discussion
4.1. Chrononutrition Interventions and Nutritional Challenges on CKD
4.2. Considering Potential Risk on Chrononutrition Interventions
4.3. Practical Recommendations
4.4. Interdisciplinary Perspective of Chrononutrition in CKD
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
SCN | Suprachiasmatic nucleus |
CT | Chronotype |
GFR | Glomerular filtration rate |
HD | Hemodialysis |
PD | Peritoneal dialysis |
TRF | Time-restricted feeding |
8 HW | 8 h window |
CD | Control diet |
PEW | Protein-energetic wasting |
BMI | Body Mass Index |
nPNA | Normalized protein equivalent of total nitrogen appearance |
References
- Postolache, T.T.; Raheja, U.K. Body rhythms/biological clocks. In Encyclopedia of Mental Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 193–203. [Google Scholar] [CrossRef]
- Kuhlman, S.J.; Craig, L.M.; Duffy, J.F. Introduction to chronobiology. Cold Spring Harb. Perspect. Biol. 2018, 10, a033613. [Google Scholar] [CrossRef]
- McHill, A.W.; Butler, M.P. Eating around the clock: Circadian rhythms of eating and metabolism. Annu. Rev. Nutr. 2024, 44, 25–50. [Google Scholar] [CrossRef] [PubMed]
- Pickel, L.; Sung, H.-K. Feeding rhythms and the circadian regulation of metabolism. Front. Nutr. 2020, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Mohd Azmi, N.A.S.; Juliana, N.; Mohd Fahmi Teng, N.I.; Azmani, S.; Das, S.; Effendy, N. Consequences of circadian disruption in shift workers on chrononutrition and their psychosocial well-being. Int. J. Environ. Res. Public Health 2020, 17, 2043. [Google Scholar] [CrossRef]
- Garaulet, M.; Madrid, J.A. Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv. Drug Deliv. Rev. 2010, 62, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Madrid, J.A. Chronobiology: Influences on metabolic syndrome and cardiovascular risk. Curr. Cardiovasc. Risk Rep. 2010, 4, 15–23. [Google Scholar] [CrossRef]
- Naber, T.; Purohit, S. Chronic kidney disease: Role of diet for a reduction in the severity of the disease. Nutrients 2021, 13, 3277. [Google Scholar] [CrossRef] [PubMed]
- Koch, B.C.P.; Nagtegaal, J.E.; Kerkhof, G.A.; Ter Wee, P.M. Circadian sleep–wake rhythm disturbances in end-stage renal disease. Nat. Rev. Nephrol. 2009, 5, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Huang, X.; Luo, Z.; Xu, X.; Zhao, X.; He, Q. Sleep quality, daytime sleepiness and health-related quality of life in maintenance haemodialysis patients. J. Int. Med. Res. 2016, 44, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.L.; Chan, Y.M.; Daud, Z.‘A.M. Dietary factors and sleep quality among hemodialysis patients in Malaysia. J. Ren. Nutr. 2022, 32, 251–260. [Google Scholar] [CrossRef]
- Huang, R.-C. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine. Biomed. J. 2018, 41, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Costello, H.M.; Johnston, J.G.; Juffre, A.; Crislip, G.R.; Gumz, M.L. Circadian clocks of the kidney: Function, mechanism, and regulation. Physiol. Rev. 2022, 102, 1669–1701. [Google Scholar] [CrossRef] [PubMed]
- Fagiani, F.; Di Marino, D.; Romagnoli, A.; Travelli, C.; Voltan, D.; Di Cesare Mannelli, L.; Racchi, M.; Govoni, S.; Lanni, C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct. Target. Ther. 2022, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, J.; Montellier, E.; Sassone-Corsi, P. Molecular cogs: Interplay between circadian clock and cell cycle. Trends Cell Biol. 2018, 28, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.M.; Udoh, U.S.; Young, M.E. Circadian regulation of metabolism. J. Endocrinol. 2014, 222, R75–R96. [Google Scholar] [CrossRef] [PubMed]
- Montaruli, A.; Castelli, L.; Mulè, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological rhythm and chronotype: New perspectives in health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Alessandrelli, E.; Notarangelo, S.; Stuppia, L.; Vitacolonna, E. Chrono-nutrition: Circadian rhythm and personalized nutrition. Int. J. Mol. Sci. 2023, 24, 2571. [Google Scholar] [CrossRef]
- Carriazo, S.; Ramos, A.M.; Sanz, A.B.; Sanchez-Niño, M.D.; Kanbay, M.; Ortiz, A. Chronodisruption: A poorly recognized feature of CKD. Toxins 2020, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.; Takahashi, J.S. Circadian integration of metabolism and energetics. Science 2010, 330, 1349–1354. [Google Scholar] [CrossRef]
- Gutierrez Lopez, D.E.; Lashinger, L.M.; Weinstock, G.M.; Bray, M.S. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 2021, 33, 873–887. [Google Scholar] [CrossRef]
- Galinde, A.A.; Al-Mughales, F.; Oster, H.; Heyde, I. Different levels of circadian (de)synchrony—Where does it hurt? F1000Research 2022, 11, 1323. [Google Scholar] [CrossRef]
- Mukherji, A.; Kobiita, A.; Damara, M.; Misra, N.; Meziane, H.; Champy, M.-F.; Chambon, P. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc. Natl. Acad. Sci. USA 2015, 112, E6691–E6698. [Google Scholar] [CrossRef] [PubMed]
- Brum, M.C.B.; Filho, F.F.D.; Schnorr, C.C.; Bottega, G.B.; Rodrigues, T.C. Shift work and its association with metabolic disorders. Diabetol. Metab. Syndr. 2015, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Rivera, A.S.; Akanbi, M.; O’Dwyer, L.C.; McHugh, M. Shift work and long work hours and their association with chronic health conditions: A systematic review of systematic reviews with meta-analyses. PLoS ONE 2020, 15, e0231037. [Google Scholar] [CrossRef] [PubMed]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Vingeliene, S.; Gachon, F.; Voortman, T.; Palla, L.; Johnston, J.D.; Van Dam, R.M.; Darimont, C.; Karagounis, L.G. Chronotype: Implications for epidemiologic studies on chrono-nutrition and cardiometabolic health. Adv. Nutr. 2019, 10, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Longo-Silva, G.; Serenini, R.; Pedrosa, A.; Lima, M.; Soares, L.; Melo, J.; Menezes, R. Chrononutrition patterns and their association with body weight: Differences across multiple chronotypes. Endocrinol. Diabetes Nutr. 2024, 72, 4–13. [Google Scholar] [CrossRef]
- Oosterman, J.E.; Kalsbeek, A.; La Fleur, S.E.; Belsham, D.D. Impact of nutrients on circadian rhythmicity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R337–R350. [Google Scholar] [CrossRef]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef]
- Vetter, C.; Scheer, F.A.J.L. Circadian biology: Uncoupling human body clocks by food timing. Curr. Biol. 2017, 27, R656–R658. [Google Scholar] [CrossRef]
- Benjamin, J.I.; Pollock, D.M. Current perspective on circadian function of the kidney. Am. J. Physiol. Ren. Physiol. 2024, 326, F438–F459. [Google Scholar] [CrossRef] [PubMed]
- Bonny, O.; Vinciguerra, M.; Gumz, M.L.; Mazzoccoli, G. Molecular bases of circadian rhythmicity in renal physiology and pathology. Nephrol. Dial. Transplant. 2013, 28, 2421–2431. [Google Scholar] [CrossRef]
- Firsov, D.; Bonny, O. Circadian rhythms and the kidney. Nat. Rev. Nephrol. 2018, 14, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Kaye, M. Aging, circadian weight change, and nocturia. Nephron Physiol. 2008, 109, p11–p18. [Google Scholar] [CrossRef] [PubMed]
- Ando, D.; Yasuda, G. Circadian blood pressure rhythm is changed by improvement in hypoalbuminemia and massive proteinuria in patients with minimal change nephrotic syndrome. Cardiorenal Med. 2016, 6, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Martino, T.A.; Oudit, G.Y.; Herzenberg, A.M.; Tata, N.; Koletar, M.M.; Kabir, G.M.; Belsham, D.D.; Backx, P.H.; Ralph, M.R.; Sole, M.J. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R1675–R1683. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J.-K.; Nagai, K.; Plieth, D.; Tan, M.; Lee, T.-C.; Threadgill, D.W.; Neilson, E.G.; Harris, R.C. EGFR signaling promotes TGFβ-dependent renal fibrosis. J. Am. Soc. Nephrol. 2012, 23, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Di Daniele, N.; Fegatelli, D.A.; Rovella, V.; Castagnola, V.; Gabriele, M.; Scuteri, A. Circadian blood pressure patterns and blood pressure control in patients with chronic kidney disease. Atherosclerosis 2017, 267, 139–145. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Oveisi, F.; Reyes, G.A.; Jhou, X.-J. Dysregulation of melatonin metabolism in chronic renal insufficiency: Role of erythropoietin-deficiency anemia. Kidney Int. 1996, 50, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Benz, R.L.; Pressman, M.R.; Hovick, E.T.; Peterson, D.D. A preliminary study of the effects of correction of anemia with recombinant human erythropoietin therapy on sleep, sleep disorders, and daytime sleepiness in hemodialysis patients (The SLEEPO study). Am. J. Kidney Dis. 1999, 34, 1089–1095. [Google Scholar] [CrossRef]
- Zaoui, P.; Hakim, R.M. The effects of the dialysis membrane on cytokine release. J. Am. Soc. Nephrol. 1994, 4, 1711–1718. [Google Scholar] [CrossRef]
- Parker, K.P.; Bliwise, D.L.; Rye, D.B. Hemodialysis disrupts basic sleep regulatory mechanisms: Building hypotheses. Nurs. Res. 2000, 49, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.P.; Resende, C.M.; Barros Silva, E.D.; Piones Bastos, D.C.; Ramires Filho, M.L.M.; Leocadio-Miguel, M.A.; Pedrazzoli, M.; Sobreira-Neto, M.A.; De Andrade, T.G.; Góes Gitaí, L.L.; et al. Hemodialysis-induced chronodisruption and chronotype distribution in patients with chronic kidney disease. Chronobiol. Int. 2024, 41, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Rihem, D.; Hanen, C.; Salma, T.; Olfa, Z.; Fatma, M.; Khawla, K.; Soumaya, Y.; Mohamed, B.H. MO705 sleep disturbances in patients on peritoneal dialysis. Nephrol. Dial. Transplant. 2021, 36 (Suppl. S1), gfab101.0027. [Google Scholar] [CrossRef]
- Sharma, S.; Kalra, D.; Rashid, I.; Mehta, S.; Maity, M.K.; Wazir, K.; Gupta, S.; Ansari, S.A.; Alruqi, O.S.; Khan, R.; et al. Assessment of health-related quality of life in chronic kidney disease patients: A hospital-based cross-sectional study. Medicina 2023, 59, 1788. [Google Scholar] [CrossRef] [PubMed]
- Adejumo, O.A.; Edeki, I.R.; Oyedepo, D.S.; Falade, J.; Yisau, O.E.; Ige, O.O.; Adesida, A.O.; Palencia, H.D.; Moussa, A.S.; Abdulmalik, J.; et al. Global prevalence of depression in chronic kidney disease: A systematic review and meta-analysis. J. Nephrol. 2024, 37, 2455–2472. [Google Scholar] [CrossRef]
- Schmitt, E.E.; Johnson, E.C.; Yusifova, M.; Bruns, D.R. The renal molecular clock: Broken by aging and restored by exercise. Am. J. Physiol. Renal Physiol. 2019, 317, F1087–F1093. [Google Scholar] [CrossRef] [PubMed]
- Pot, G.K. Chrono-nutrition—An emerging, modifiable risk factor for chronic disease? Nutr. Bull. 2021, 46, 114–119. [Google Scholar] [CrossRef]
- Dashti, H.S.; Scheer, F.A.J.L.; Saxena, R.; Garaulet, M. Timing of food intake: Identifying contributing factors to design effective interventions. Adv. Nutr. 2019, 10, 606–620. [Google Scholar] [CrossRef]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal timing regulates the human circadian system. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef]
- Zerón-Rugerio, M.; Hernáez, Á.; Porras-Loaiza, A.; Cambras, T.; Izquierdo-Pulido, M. Eating jet lag: A marker of the variability in meal timing and its association with body mass index. Nutrients 2019, 11, 2980. [Google Scholar] [CrossRef]
- Chawla, S.; Beretoulis, S.; Deere, A.; Radenkovic, D. The window matters: A systematic review of time-restricted eating strategies in relation to cortisol and melatonin secretion. Nutrients 2021, 13, 2525. [Google Scholar] [CrossRef] [PubMed]
- Farsijani, S.; Bayat, N.; Delpierre, C.; Ferrante, A.N.; Tison, G.H.; Thorndike, A.N.; St-Onge, M.-P. Comprehensive assessment of chrononutrition behaviors among nationally representative adults: Insights from National Health and Nutrition Examination Survey (NHANES) data. Clin. Nutr. 2023, 42, 1910–1921. [Google Scholar] [CrossRef]
- Adafer, R.; Messaadi, W.; Meddahi, M.; Patey, A.; Haderbache, A.; Bayen, S.; Messaadi, N. Food timing, circadian rhythm, and chrononutrition: A systematic review of time-restricted eating’s effects on human health. Nutrients 2020, 12, 3770. [Google Scholar] [CrossRef]
- Karatas, A.; Canakci, E.; Kasko Arici, Y.; Kaya, M.; Sayim, B. The effect of fasting during Ramadan on the kidney functions of stage III-IV chronic kidney disease patients. Pak. J. Med. Sci. 2021, 37, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Khan, H.; Lasker, S.S.; Chowdhury, T.A. Fasting outcomes in people with diabetes and chronic kidney disease in East London during Ramadan 2018: The East London Diabetes in Ramadan survey. Diabetes Res. Clin. Pract. 2019, 152, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.; Latief, M.; Manuel, S.; Shashikiran, K.; Dwivedi, R.; Prasad, D.; Golla, A.; Raju, S. Impact of fasting during Ramadan on renal functions in patients with chronic kidney disease. Indian J. Nephrol. 2022, 32, 262. [Google Scholar] [CrossRef] [PubMed]
- Bakhit, A.A.; Kurdi, A.M.; Wadera, J.J.; Alsuwaida, A.O. Effects of Ramadan fasting on moderate to severe chronic kidney disease: A prospective observational study. Saudi Med. J. 2017, 38, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Kara, E.; Sahin, O.; Kizilkaya, B.; Ozturk, B.; Pusuroglu, G.; Yildirim, S.; Sevinc, M.; Sahutoglu, T. Fasting in Ramadan is not associated with deterioration of chronic kidney disease: A prospective observational study. Saudi J. Kidney Dis. Transplant. 2017, 28, 68. [Google Scholar] [CrossRef] [PubMed]
- Adanan, N.I.H.; Md Ali, M.S.; Lim, J.H.; Zakaria, N.F.; Lim, C.T.S.; Yahya, R.; Abdul Gafor, A.H.; Karupaiah, T.; Daud, Z.‘A.M. Investigating physical and nutritional changes during prolonged intermittent fasting in hemodialysis patients: A prospective cohort study. J. Ren. Nutr. 2020, 30, e15–e26. [Google Scholar] [CrossRef] [PubMed]
- Lao, B.; Luo, J.; Xu, X.; Fu, L.; Tang, F.; Ouyang, W.; Xu, X.; Wei, M.; Xiao, B.; Chen, L.; et al. Time-restricted feeding’s effect on overweight and obese patients with chronic kidney disease stages 3–4: A prospective non-randomized control pilot study. Front. Endocrinol. 2023, 14, 1096093. [Google Scholar] [CrossRef] [PubMed]
- Stenvers, D.J.; Jonkers, C.F.; Fliers, E.; Bisschop, P.H.L.T.; Kalsbeek, A. Nutrition and the circadian timing system. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2012; Volume 199, pp. 359–376. [Google Scholar] [CrossRef]
- Garaulet, M.; Gómez-Abellán, P.; Alburquerque-Béjar, J.J.; Lee, Y.-C.; Ordovás, J.M.; Scheer, F.A.J.L. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37, 604–611. [Google Scholar] [CrossRef]
- Nie, Z.; Xu, J.; Cheng, Y.; Li, Z.; Zhang, R.; Zhang, W.; Zhao, L. Effects of time-restricted eating with different eating windows on human metabolic health: Pooled analysis of existing cohorts. Diabetol. Metab. Syndr. 2023, 15, 209. [Google Scholar] [CrossRef] [PubMed]
- Tokumaru, T.; Toyama, T.; Hara, A.; Kitagawa, K.; Yamamura, Y.; Nakagawa, S.; Oshima, M.; Miyagawa, T.; Sato, K.; Ogura, H.; et al. Association between unhealthy dietary habits and proteinuria onset in a Japanese general population: A retrospective cohort study. Nutrients 2020, 12, 2511. [Google Scholar] [CrossRef] [PubMed]
- Sato-Mito, N.; Shibata, S.; Sasaki, S.; Sato, K. Dietary intake is associated with human chronotype as assessed by both morningness–eveningness score and preferred midpoint of sleep in young Japanese women. Int. J. Food Sci. Nutr. 2011, 62, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Haghighatdoost, F.; Karimi, G.; Esmaillzadeh, A.; Azadbakht, L. Sleep deprivation is associated with lower diet quality indices and higher rate of general and central obesity among young female students in Iran. Nutrition 2012, 28, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Arora, T.; Taheri, S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int. J. Obes. 2015, 39, 39–44. [Google Scholar] [CrossRef]
- Bernardes Da Cunha, N.; Teixeira, G.P.; Madalena Rinaldi, A.E.; Azeredo, C.M.; Crispim, C.A. Late meal intake is associated with abdominal obesity and metabolic disorders related to metabolic syndrome: A chrononutrition approach using data from NHANES 2015–2018. Clin. Nutr. 2023, 42, 1798–1805. [Google Scholar] [CrossRef]
- Lu, C.; Cang, X.; Liu, W.; Wang, L.; Huang, H.; Wang, X.; Zhao, L.; Xu, F. A late eating midpoint is associated with increased risk of diabetic kidney disease: A cross-sectional study based on NHANES 2013–2020. Nutr. J. 2024, 23, 39. [Google Scholar] [CrossRef]
- Burrowes, J.D.; Larive, B.; Cockram, D.B.; Dwyer, J.; Kusek, J.W.; McLeroy, S.; Poole, D.; Rocco, M.V. Effects of dietary intake, appetite, and eating habits on dialysis and non-dialysis treatment days in hemodialysis patients: Cross-sectional results from the HEMO study. J. Ren. Nutr. 2003, 13, 191–198. [Google Scholar] [CrossRef]
- Afsar, B.; Elsurer, R.; Kanbay, M. The relationship between breakfast, lunch and dinner eating patterns and hemodialysis sessions, quality of life, depression, and appetite in hemodialysis patients. Int. Urol. Nephrol. 2012, 44, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M.; Teixeira, B.S.; Wright, K.P.; Maia, Y.C.D.P.; Crispim, C.A. Time-related eating patterns are associated with the total daily intake of calories and macronutrients in day and night shift workers. Nutrients 2022, 14, 2202. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Akamatsu, R.; Fujiwara, Y.; Omori, M.; Sugawara, M.; Yamazaki, Y.; Matsumoto, S.; Iwakabe, S.; Kobayashi, T. Later chronotype is associated with unhealthful plant-based diet quality in young Japanese women. Appetite 2021, 166, 105468. [Google Scholar] [CrossRef]
- Galindo Muñoz, J.S.; Gómez Gallego, M.; Díaz Soler, I.; Barberá Ortega, M.C.; Martínez Cáceres, C.M.; Hernández Morante, J.J. Effect of a chronotype-adjusted diet on weight loss effectiveness: A randomized clinical trial. Clin. Nutr. 2020, 39, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Lotti, S.; Pagliai, G.; Napoletano, A.; Asensi, M.T.; Giangrandi, I.; Marcucci, R.; Amedei, A.; Colombini, B.; Sofi, F. Effects of a chronotype-adapted diet on weight loss, cardiometabolic health, and gut microbiota: Study protocol for a randomized controlled trial. Trials 2024, 25, 152. [Google Scholar] [CrossRef]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the International Society of Renal Nutrition and Metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, A.; Mannucci, I.; Verzola, D.; Sofia, A.; Saffioti, S.; Gianetta, E.; Garibotto, G. Protein-energy wasting and mortality in chronic kidney disease. Int. J. Environ. Res. Public Health 2011, 8, 1631–1654. [Google Scholar] [CrossRef] [PubMed]
- Narasaki, Y.; Rhee, C.M.; Kalantar-Zadeh, K.; Rastegar, M. Why protein-energy wasting leads to faster progression of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2024, 34, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Herrera, R.M.; Núñez-Murillo, G.K.; Ruíz-Gurrola, C.G.; Gómez-García, E.F.; Orozco-González, C.N.; Cortes-Sanabria, L.; Cueto-Manzano, A.M.; Rojas-Campos, E. Clinical taste perception test for patients with end-stage kidney disease on dialysis. J. Ren. Nutr. 2020, 30, 79–84. [Google Scholar] [CrossRef]
- Robles-Osorio, M.L.; Corona, R.; Morales, T.; Sabath, E. Enfermedad renal crónica y olfato. Nefrología 2020, 40, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Martín-del-Campo, F.; Avesani, C.M.; Stenvinkel, P.; Lindholm, B.; Cueto-Manzano, A.M.; Cortés-Sanabria, L. Gut microbiota disturbances and protein-energy wasting in chronic kidney disease: A narrative review. J. Nephrol. 2023, 36, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Orozco-González, C.N.; Cortés-Sanabria, L.; Cueto-Manzano, A.M.; Corona-Figueroa, B.; Martínez-Ramírez, H.R.; López-Leal, J.; Martín-del-Campo, F.; Rojas-Campos, E.; Gómez-Navarro, B. Prevalence of pica in patients on dialysis and its association with nutritional status. J. Ren. Nutr. 2019, 29, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Engen, P.A.; Keshavarzian, A. Circadian rhythm and the gut microbiome. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 131, pp. 193–205. [Google Scholar] [CrossRef]
- Costanzo, A. Temporal patterns in taste sensitivity. Nutr. Rev. 2024, 82, 831–847. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Porrini, E.; Delgado, P.; Torres, A. Metabolic syndrome, insulin resistance, and chronic allograft dysfunction. Kidney Int. 2010, 78 (Suppl. S119), S42–S46. [Google Scholar] [CrossRef] [PubMed]
- Alobaidi, S. Ramadan fasting and its impact on patients with chronic kidney disease: Insights and guidelines. Cureus 2024, 16, e57522. [Google Scholar] [CrossRef]
- Habas, E.; Errayes, M.; Habas, E.; Farfar, K.L.; Alfitori, G.; Habas, A.E.; Rayani, A.; Elzouki, A.-N.Y. Fasting Ramadan in chronic kidney disease (CKD), kidney transplant, and dialysis patients: Review and update. Cureus 2022, 14, e25269. [Google Scholar] [CrossRef]
- Chmielnicka, K.; Heleniak, Z.; Dębska-Ślizień, A. Dyslipidemia in renal transplant recipients. Transplantology 2022, 3, 188–199. [Google Scholar] [CrossRef]
- Biruete, A.; Shin, A.; Kistler, B.M.; Moe, S.M. Feeling gutted in chronic kidney disease (CKD): Gastrointestinal disorders and therapies to improve gastrointestinal health in individuals with CKD, including those undergoing dialysis. Semin. Dial. 2021, 37, 334–349. [Google Scholar] [CrossRef] [PubMed]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Layman, D.K. Impacts of protein quantity and distribution on body composition. Front. Nutr. 2024, 11, 1388986. [Google Scholar] [CrossRef] [PubMed]
- Satirapoj, B.; Apiyangkool, T.; Thimachai, P.; Nata, N.; Supasyndh, O. Intradialytic oral nutrition effects on malnourished hemodialysis patients: A randomized trial. Sci. Rep. 2024, 14, 21400. [Google Scholar] [CrossRef] [PubMed]
- González-Ortiz, A.; Ramos-Acevedo, S.; Santiago-Ayala, V.; Gaytan, G.; Valencia-Flores, M.; Correa-Rotter, R.; Carrero, J.J.; Xu, H.; Espinosa-Cuevas, Á. Sleep quality after intradialytic oral nutrition: A new benefit of this anabolic strategy? A pilot study. Front. Nutr. 2022, 9, 882367. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.H.; Carrero, J.J.; Lindholm, B. Causes of poor appetite in patients on peritoneal dialysis. J. Ren. Nutr. 2011, 21, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Torreggiani, M.; Piccoli, G.B.; Moio, M.R.; Conte, F.; Magagnoli, L.; Ciceri, P.; Cozzolino, M. Choice of the dialysis modality: Practical considerations. J. Clin. Med. 2023, 12, 3328. [Google Scholar] [CrossRef]
- Gustavsen, M.T.; Midtvedt, K.; Robertsen, I.; Woillard, J.; Debord, J.; Klaasen, R.A.; Vethe, N.T.; Bergan, S.; Åsberg, A. Fasting status and circadian variation must be considered when performing AUC-based therapeutic drug monitoring of tacrolimus in renal transplant recipients. Clin. Transl. Sci. 2020, 13, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Mentzelou, M.; Papadopoulou, S.K.; Psara, E.; Voulgaridou, G.; Pavlidou, E.; Androutsos, O.; Giaginis, C. Chrononutrition in the prevention and management of metabolic disorders: A literature review. Nutrients 2024, 16, 722. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Mata, P.C.; Cueto-Manzano, A.M.; Vizmanos, B.; González-Ortiz, A.; Betancourt-Núñez, A.; Martín-del-Campo, F. Chrononutrition in Chronic Kidney Disease. Nutrients 2025, 17, 389. https://doi.org/10.3390/nu17030389
Castro-Mata PC, Cueto-Manzano AM, Vizmanos B, González-Ortiz A, Betancourt-Núñez A, Martín-del-Campo F. Chrononutrition in Chronic Kidney Disease. Nutrients. 2025; 17(3):389. https://doi.org/10.3390/nu17030389
Chicago/Turabian StyleCastro-Mata, Pilar C., Alfonso M. Cueto-Manzano, Barbara Vizmanos, Ailema González-Ortiz, Alejandra Betancourt-Núñez, and Fabiola Martín-del-Campo. 2025. "Chrononutrition in Chronic Kidney Disease" Nutrients 17, no. 3: 389. https://doi.org/10.3390/nu17030389
APA StyleCastro-Mata, P. C., Cueto-Manzano, A. M., Vizmanos, B., González-Ortiz, A., Betancourt-Núñez, A., & Martín-del-Campo, F. (2025). Chrononutrition in Chronic Kidney Disease. Nutrients, 17(3), 389. https://doi.org/10.3390/nu17030389