You are currently viewing a new version of our website. To view the old version click .
Nutrients
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

17 December 2025

Ophiopogon japonicus Root Extract Attenuates Obesity-Induced Muscle Atrophy Through Regulation of the PI3K-AKT-mTOR/FoxO3a Signaling Pathway and Lipid Metabolism in Mice and C2C12 Myotubes

,
,
,
,
,
,
and
1
Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
2
Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Natural Products and Muscle Health

Abstract

Background: Obesity-associated skeletal muscle atrophy is characterized by reduced muscle mass with excessive adipose accumulation, and there is no approved pharmacological therapy targeting both muscle anabolism and lipid metabolism. The root part of Ophiopogon japonicus (OJ), an edible traditional medicine (Liriopis seu Ophiopogonis Tuber), exhibits anti-diabetic, anti-inflammatory, and cardioprotective properties, yet its impact on obesity-associated muscle atrophy remains unknown. Methods: This study investigated the therapeutic potential and mechanisms of OJ extract against muscle atrophy in high-fat diet (HFD)-induced obesity mice and palmitate (PA)-stimulated C2C12 myotubes. Results: In obese mice, the administration of OJ extract inhibited muscle loss, improved muscle strength, and attenuated hepatic steatosis and dyslipidemia. Furthermore, OJ treatment restored myotube diameter, increased the expression of MyHC and Myogenin, and suppressed the expression of Atrogin-1 and MuRF1 in C2C12 myotubes. At the molecular level, OJ extract activated the PI3K-AKT-mTOR/FoxO3a signaling pathway and reprogrammed lipid metabolism in gastrocnemius tissues and myotubes. Conclusions: OJ extract alleviates obesity-induced muscle atrophy through regulation of the PI3K-AKT-mTOR/FoxO3a signaling pathway and lipid metabolism in muscle, indicating its potential as a natural therapeutic agent for obesity-associated muscle atrophy.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.