Nutritional Support for Gastrointestinal Cancer Patients: New (and Old) Frontiers in Management, a Narrative Review
Abstract
1. Introduction
2. Methods
3. Nutritional Challenges Based on Cancer Site and Cancer Treatment
4. Therapeutic Strategies
4.1. Specialized Evaluation
- Adult oncology patients should undergo regular malnutrition risk screening and nutrition assessment should be completed by an RD.
- RD evaluation and personalized treatment plans for GI cancer patients can help improve nutrition-related outcomes.
- Continued RD assessment is required, as treatment side effects and cancer symptoms may change over time and nutrition recommendations should be adjusted as needed to improve patients’ outcomes [18].
- Incorporating other specialties, such as case management, social work, physical therapy, and genetics, among others, is necessary for completing a comprehensive evaluation and developing a management plan to address factors such as patients’ access to food, patients’ support system or lack thereof, individual dietary preferences, genetic concerns, and physical limitations, including challenges with activities of daily living.
4.2. Identifications of Barriers to Nutrition and Recommended Dietary Modifications
- Malabsorption/essential fatty acid deficiency [39]
- ○
- Patients who have undergone significant bowel resection, those on long term fat-restricted diets due to chyle leaks, or those who have pancreatic insufficiency are at risk of essential fatty acid deficiency [40]. Physical manifestations include a dry, scaly rash, hair loss, and poor wound healing [39]. Identifying the underlying cause is important for developing an appropriate nutrition plan.
- ○
- Providing at least 10% of total calories from fat prevents the development of this alteration [39].
- ○
- For patients with a fat-free diet, assuring supplementation of essential fatty acids is necessary.
- Exocrine pancreatic insufficiency (EPI)
- ○
- EPI is frequently seen in patients with chronic pancreatitis with atrophy, pancreatic duct obstruction, bypass surgery, or after major pancreatic surgeries. EPI may occur due to a decrease in exocrine cells to secrete digestive enzymes, inadequate bicarbonate production causing inactivation of enzymes by stomach acid, or a mismatch between enzyme release and chyme transit. Inadequate fat digestion can limit the absorption of fat-soluble vitamins A, D, E, and K, as well as influence malnutrition, osteopenia, and sarcopenia [40].
- ○
- Many EPI symptoms are heterogeneous and common with oncological treatment. Regular screening for at-risk patients and comparing symptoms with a diet recall can help identify EPI. A fecal elastase test or qualitative fecal fat test can provide insight. However, these tests may not identify EPI in patients with adequate enzyme production and mismatched timing with chyme.
- ○
- ○
- Poor appetite is routinely reported as a major side effect from cancer treatment and risk factors include chemotherapy and surgery.
- ○
- Anorexia can be multifactorial: contributing factors include tumor-related inflammatory markers and side effects of oncology treatment (i.e., chemotherapy, targeted therapies, immunotherapy and radiation).
- ○
- Alterations in the mood (i.e., depression and anxiety) related to cancer diagnosis can also cause suppression of the appetite [45]. Pharmacological agents such as progesterone analogs, corticosteroids, and antipsychotics may provide appetite stimulation. There is also new evidence to suggest that targeted therapy for stress-associated cytokines can provide benefits for weight gain [46].
- ○
- Taste changes are very individualistic and predominantly occur with chemotherapy or major surgical interventions such as cytoreductive surgery, pancreatic resection, extensive colorectal resections, or gastroesophageal interventions.
- ○
- Patients can experience a lack of taste, over-accentuated taste, or “off” flavors. Patients may prefer salty or sweet flavors or find that food has no flavor. Management involves an assessment of current acceptable flavors and individualized nutrition recommendations.
- ○
- Appropriate use of anti-emetics and diet modification can help manage symptoms.
- ○
- Foods that are warm, greasy, or high in fiber might exacerbate nausea.
- ○
- ○
- Diarrhea can be seen with chemotherapy, radiation therapy, immunotherapy, and following surgical resection of various parts of the GI tract. Excessive fluid losses may lead to renal injury, hypotension, and cardiovascular concerns. Pharmacologic approaches, along with dietary management, can lessen symptoms and improve quality of life (QOL).
- ○
- An accurate picture of the frequency and volume of stooling should be obtained to evaluate treatment effectiveness.
- ○
- Temporary lactose intolerance can be seen with many chemotherapy agents [53], including 5-FU regimens, and may be reversed upon discontinuation of treatment. Short-term avoidance or choosing low-lactose products can improve symptoms.
- ○
- Etiology of diarrhea can be vast and may be a direct result of treatment or due to side effects from treatment. Identifying the cause of diarrhea can help to target management of symptoms.
- ○
- Intake of oral rehydration solutions can improve fluid absorption in the setting of diarrhea. Patients should be instructed to sip electrolyte-balanced fluids throughout the day.
- Delayed gastric emptying [8]
- ○
- Delayed gastric emptying may be seen in oncology patients with diabetes mellitus or following pancreatic, gastric, or esophageal resections.
- ○
- Symptoms may include nausea, vomiting, bloating, early satiety, or abdominal pain.
- ○
- Dietitians should monitor weight changes in addition to dietary history to identify eating habits that may exacerbate symptoms of delayed emptying. This should include a review of symptoms, portion sizes of food and beverages, meal frequency, timing of food and fluids, and use of any supplements that may lead to delayed emptying.
- ○
- ○
- Dumping syndrome can be identified as early dumping or late dumping [8]. Early dumping syndrome is seen 10–30 min after eating and occurs when hyperosmolar chyme flows through the bowel; this results in excess luminal fluid secretion, which minimizes the osmolarity of chyme. This is followed by rapid intestinal transit that leads to symptoms which include diarrhea, bloating, nausea, abdominal pain, dehydration, and vasomotor symptoms. Late dumping syndrome occurs 1–3 h after eating. Symptoms are often due to excess insulin secretion from the rapid transit of concentrated carbohydrates through the small bowel. Symptomatic hypoglycemia is characterized by flushing, dizziness, heart palpitations, and sudden fatigue.
- ○
- Timely identification and intervention of dumping syndrome can alleviate discomfort and fear around eating.
- ○
- There are specific diagnostic criteria and algorithmic management strategies for this entity [56].
- Risk of bowel obstruction
- ○
- Intestinal strictures can occur from adhesions, bowel ischemia, or tumor proliferation and can increase the risk of bowel obstructions.
- ○
- Significant adhesions or recurrent obstructions indicate a need for a stricter low-fiber diet.
- ○
- Patients may overly restrict their diet out of fear of symptom recurrence, which may lead to malnutrition. Proper assessment and intervention by a registered dietitian can inform adequate oral intake.
- Micronutrient deficiency
- ○
- ○
- The dietitian should review typical intake and assessment of dietary quality.
- ○
- ○
- Iron deficiency can be seen in patients with small bowel resections involving the duodenum and proximal jejunum, which are primary sites for iron absorption [60]. As such, patients who have undergone a Roux-en-Y reconstruction after resections are at increased risk of iron deficiency anemia. Additionally, the loss of gastric acid after a partial or total gastrectomy may limit the bioavailability of iron for absorption [60].
- ○
- ○
- Calcium is absorbed throughout the small intestine, with active absorption primarily occurring in the duodenum and proximal jejunum and passive absorption seen primarily in the jejunum [63]. Surgical resections, including ileostomy formation, Whipple, esophagectomy, and total gastrectomy, may affect calcium absorption. Vitamin D deficiency may also influence calcium deficiency, as vitamin D is involved in the intracellular transit of calcium.
- ○
- Research demonstrates an association between higher calcium intake and reduced incidences of colorectal cancer [64]. Moreover, vitamin D supplementation has been shown to improve survival in cancer patients [65] and specifically in colorectal cancer patients [66]. There is very limited high-quality data on micronutrient needs in patients with cancer diagnosis and undergoing oncologic management.
4.3. Medical Nutrition Interventions
5. Pharmacological Interventions
5.1. Historically Used Mediations: Megestrol and Corticosteroids
5.2. Antipsychotic Medications: Olanzapine
5.3. Targeted Therapy—Ponsegromab
6. Future Directions in Addressing Malnutrition in Cancer Patients
6.1. Prehabilitation—The Need for Standardization
6.2. Behavioral Science and Role of Psychosocial Care
6.3. Digital Health
6.4. Machine Learning
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- GI Cancer Alliance. Gastrointestinal Cancers: An Urgent Need; GI Cancer Alliance: Central Square, NY, USA, 2018. [Google Scholar]
- Sherman, R.L.; Firth, A.U.; Henley, S.J.; Siegel, R.L.; Negoita, S.; Sung, H.; Kohler, B.A.; Anderson, R.N.; Cucinelli, J.; Scott, S.; et al. Annual Report to the Nation on the Status of Cancer, featuring state-level statistics after the onset of the COVID-19 pandemic. Cancer 2025, 131, e35833. [Google Scholar] [CrossRef]
- Davies, S.J.; West, M.A.; Rahman, S.A.; Underwood, T.J.; Marino, L.V. Oesophageal cancer: The effect of early nutrition support on clinical outcomes. Clin. Nutr. ESPEN 2021, 42, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Garth, A.K.; Newsome, C.M.; Simmance, N.; Crowe, T.C. Nutritional status, nutrition practices and post-operative complications in patients with gastrointestinal cancer. J. Hum. Nutr. Diet. 2010, 23, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Lucia, S.; Farcomei, A.; Lorusso, V.; Saracino, V.; Barone, C.; Plastino, F.; Gori, S.; Magarotto, R.; Carteni, G.; et al. Prevalence of malnutrition in patients at first medical oncology visit: The PreMiO study. Oncotarget 2017, 8, 79884–79896. [Google Scholar] [CrossRef]
- Matsui, R.; Rifu, K.; Watanabe, J.; Inaki, N.; Fukunaga, T. Impact of malnutrition as defined by the GLIM criteria on treatment outcomes in patients with cancer: A systematic review and meta-analysis. Clin. Nutr. 2023, 42, 615–624. [Google Scholar] [CrossRef]
- Meissner, C.; Tiegges, S.; Broehl, M.; Otto, R.; Ridwelski, K. International study on the prevalence of malnutrition in centralized care for colorectal cancer patients. Innov. Surg. Sci. 2023, 8, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, R.; Gurd, E.N.; Pimiento, J.M. Long-term nutrition alterations after surgery for gastrointestinal cancers. Nutr. Clin. Pract. 2023, 38, 721–730. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Y.; Fang, Y. Nutritional status and related factors of patients with advanced gastrointestinal cancer. Br. J. Nutr. 2014, 111, 1239–1244. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Tang, X.; Zhang, S.; Man, C.; Gong, D.; Fan, Y. The Prevalence and Prognostic Impact of Cancer Cachexia on Overall Survival in Patients with Gastrointestinal Cancer: A Meta-Analysis. Nutr. Cancer 2025, 77, 590–599. [Google Scholar] [CrossRef]
- Saeed, S.M.; Fontaine, J.P.; Dam, A.N.; Hoffe, S.E.; Cameron, M.; Frakes, J.; Mehta, R.; Gurd, E.; Pimiento, J. Is Preoperative G-Tube Use Safe for Esophageal Cancer Patients? J. Am. Coll. Nutr. 2020, 39, 301–306. [Google Scholar] [CrossRef]
- Marín Caro, M.M.; Laviano, A.; Pichard, C. Impact of nutrition on quality of life during cancer. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Brudno, J.N.; Kochenderfer, J.N. Current understanding and management of CAR T cell-associated toxicities. Nat. Rev. Clin. Oncol. 2024, 21, 501–521. [Google Scholar] [CrossRef] [PubMed]
- Reece, L.; Dragicevich, H.; Lewis, C.; Rothwell, C.; Fisher, O.M.; Carey, S.; Alzahrani, N.A.; Liauw, W.; Morris, D.L. Preoperative Nutrition Status and Postoperative Outcomes in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2019, 26, 2622–2630. [Google Scholar] [CrossRef]
- Cucchiaro, B.; Davies, N.A.; Weekes, C.E.; O’Reilly, M.; Roddie, C.; Slee, A. Malnutrition and cachexia are associated with poor CAR T-cell therapy outcomes including survival. Clin. Nutr. ESPEN 2024, 62, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Konishi, T.; Kaneko, H.; Itoh, H.; Matsuda, S.; Kawakubo, H.; Uda, K.; Matsui, H.; Fushimi, K.; Daiko, H.; et al. Weight loss during neoadjuvant therapy and short-term outcomes after esophagectomy: A retrospective cohort study. Int. J. Surg. 2023, 109, 805–812. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Jiang, L.; Xue, Z.; Ma, Z.; Kang, W.; Ye, X.; Liu, Y.; Jin, Z.; Yu, J. Impact of body composition on clinical outcomes in people with gastric cancer undergoing radical gastrectomy after neoadjuvant treatment. Nutrition 2021, 85, 111135. [Google Scholar] [CrossRef]
- Pimiento, J.M.; Evans, D.C.; Tyler, R.; Barrocas, A.; Hernandez, B.; Araujo-Torres, K.; Guenter, P.; ASPEN Value Project Scientific Advisory Council. Value of nutrition support therapy in patients with gastrointestinal malignancies: A narrative review and health economic analysis of impact on clinical outcomes in the United States. J. Gastrointest. Oncol. 2021, 12, 864–873. [Google Scholar] [CrossRef]
- Alzoubi, Z.; Loman, B.R. Nutrition Interventions in the Treatment of Gastrointestinal Symptoms during Cancer Therapy: A Systematic Review and Meta-analysis. Adv. Nutr. 2025, 16, 100485. [Google Scholar] [CrossRef]
- Cencioni, C.; Trestini, I.; Piro, G.; Bria, E.; Tortora, G.; Carbone, C.; Spallotta, F. Gastrointestinal Cancer Patient Nutritional Management: From Specific Needs to Novel Epigenetic Dietary Approaches. Nutrients 2022, 14, 1542. [Google Scholar] [CrossRef]
- McQuade, R.M.; Stojanovska, V.; Abalo, R.; Bornstein, J.C.; Nurgali, K. Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Front. Pharmacol. 2016, 7, 414. [Google Scholar] [CrossRef]
- Stein, A.; Voigt, W.; Jordan, K. Review: Chemotherapy-induced diarrhea: Pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2010, 2, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Haratani, K.; Kurosaki, T.; Tanaka, K.; Nakagawa, K. Gastroparesis as a significant gastrointestinal adverse event during intensive chemotherapy for solid caner: A case report. Transl. Cancer Res. 2022, 11, 1824–1828. [Google Scholar] [CrossRef]
- Andreyev, H.J.; Norman, A.R.; Oates, J.; Cunningham, D. Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? Eur. J. Cancer 1998, 34, 503–509. [Google Scholar] [CrossRef]
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.e15. [Google Scholar] [CrossRef]
- Hendifar, A.E.; Petzel, M.Q.B.; Zimmers, T.A.; Denlinger, C.S.; Matrisian, L.M.; Picozzi, V.J.; Rahib, L. Precision Promise Consortium. Pancreas Cancer-Associated Weight Loss. Oncologist 2019, 24, 691–701. [Google Scholar] [CrossRef]
- Bartel, M.J.; Asbun, H.; Stauffer, J.; Raimondo, M. Pancreatic exocrine insufficiency in pancreatic cancer: A review of the literature. Dig. Liver Dis. 2015, 47, 1013–1020. [Google Scholar] [CrossRef]
- Tseng, D.S.; Molenaar, I.Q.; Besselink, M.G.; van Eijck, C.H.; Borel Rinkes, I.H.; van Santvoort, H.C. Pancreatic Exocrine Insufficiency in Patients with Pancreatic or Periampullary Cancer: A Systematic Review. Pancreas 2016, 45, 325–330. [Google Scholar] [CrossRef] [PubMed]
- National Guideline Alliance (UK). Oesophago-Gastric Cancer: Assessment and Management in Adults; National Institute for Health and Care Excellence: London, UK, 2018. [Google Scholar]
- Kang, M.K.; Lee, H.-J. Impact of malnutrition and nutritional support after gastrectomy in patients with gastric cancer. Ann. Gastroenterol. Surg. 2024, 8, 534–552. [Google Scholar] [CrossRef] [PubMed]
- Akad, F.; Filip, B.; Preda, C.; Zugun-Eloae, F.; Peiu, S.N.; Akad, N.; Crauciuc, D.V.; Vatavu, R.; Gavril, L.C.; Sufaru, R.F.; et al. Assessing Nutritional Status in Gastric Cancer Patients after Total versus Subtotal Gastrectomy: Cross-Sectional Study. Nutrients 2024, 16, 1485. [Google Scholar] [CrossRef]
- Dunne, R.F.; Crawford, J.; Smoyer, K.E.; McRae, T.D.; Rossulek, M.I.; Revkin, J.H.; Tarasenko, L.C.; Bonomi, P.D. The mortality burden of cachexia or weight loss in patients with colorectal or pancreatic cancer: A systematic literature review. J. Cachexia Sarcopenia Muscle 2024, 15, 1628–1640. [Google Scholar] [CrossRef]
- Beukers, K.; Franssen, R.F.W.; Beijaard, K.; van de Wouw, A.J.; Havermans, R.C.; Janssen-Heijnen, M.L.G. Nutritional intervention during a teleprehabilitation pilot study in high-risk patients with colorectal cancer: Adherence, motivators, and barriers. Support. Care Cancer 2024, 32, 710. [Google Scholar] [CrossRef]
- Ruiz-Margáin, A.; Román-Calleja, B.M.; Moreno-Guillén, P.; González-Regueiro, J.A.; Kúsulas-Delint, D.; Campos-Murguía, A.; Flores-García, N.C.; Macías-Rodríguez, R.U. Nutritional therapy for hepatocellular carcinoma. World J. Gastrointest. Oncol. 2021, 13, 1440–1452. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, E.B.; Kadakia, K.C.; Thomson, C.; Zhang, F.F.; Livinski, A.; Pollard, K.; Mattox, T.; Tucker, A.; Williams, V.; Walsh, D.; et al. Malnutrition risk screening in adult oncology outpatients: An ASPEN systematic review and clinical recommendations. J. Parenter. Enteral Nutr. 2024, 48, 874–894. [Google Scholar] [CrossRef]
- Kenny, E.; Touger-Decker, R.; August, D.A. Structured Review of the Value Added by the Registered Dietitian to the Care of Gastrointestinal Cancer Patients. Nutr. Clin. Pract. 2021, 36, 606–628. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, K.M. Essential Fatty Acid Deficiency. Pract. Gastroenterol. 2017, 41, 37–44. [Google Scholar]
- Murray, G.; Ramsey, M.L.; Hart, P.A.; Roberts, K.M. Fat malabsorption in pancreatic cancer: Pathophysiology and management. Nutr. Clin. Pract. 2024, 39, S46–S56. [Google Scholar] [CrossRef]
- Phillips, M.E.; McGeeney, L.M.; Griffin, O.; Freeman, K.; Dann, S.; Duggan, S.N.; Committee Members of the Nutrition Interest Group of the Pancreatic Society of Great Britain and Ireland. Training 1200 dietitians: An evaluation of a training course for non-specialist dietitians on the management of pancreatic exocrine insufficiency. Clin. Nutr. Open Sci. 2022, 44, 155–162. [Google Scholar] [CrossRef]
- Bruera, E. ABC of palliative care. Anorexia, cachexia, and nutrition. BMJ 1997, 315, 1219–1222. [Google Scholar] [CrossRef]
- Laviano, A.; Meguid, M.M.; Rossi-Fanelli, F. Cancer anorexia: Clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol. 2003, 4, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Ezeoke, C.C.; Morley, J.E. Pathophysiology of anorexia in the cancer cachexia syndrome. J. Cachexia Sarcopenia Muscle 2015, 6, 287–302. [Google Scholar] [CrossRef]
- Mercadante, S.; Napolitano, D.; Lo Cascio, A.; Mancin, S.; Casuccio, A. Poor Appetite and Survival in Patients Admitted to an Acute Palliative Care Unit for Comprehensive Palliative Care. Nutrients 2025, 17, 1882. [Google Scholar] [CrossRef]
- Roeland, E.J.; Bohlke, K.; Baracos, V.E.; Smith, T.J.; Loprinzi, C.L. Cancer Cachexia Expert Panel. Cancer Cachexia: ASCO Guideline Rapid Recommendation Update. J. Clin. Oncol. 2023, 41, 4178–4179. [Google Scholar] [CrossRef]
- Elterman, K.G.; Mallampati, S.R.; Kaye, A.D.; Urman, R.D. Postoperative alterations in taste and smell. Anesth. Pain Med. 2014, 4, e18527. [Google Scholar] [CrossRef]
- Welchman, S.; Hiotis, P.; Pengelly, S.; Hughes, G.; Halford, J.; Christiansen, P.; Lewis, S. Changes in taste preference after colorectal surgery: A longitudinal study. Clin. Nutr. 2015, 34, 881–884. [Google Scholar] [CrossRef]
- Hesketh, P.J.; Kris, M.G.; Basch, E.; Bohlke, K.; Barbour, S.Y.; Clark-Snow, R.A.; Danso, M.A.; Dennis, K.; Dupuis, L.L.; Dusetzina, S.B.; et al. Antiemetics: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 2782–2797. [Google Scholar] [CrossRef]
- Herrstedt, J.; Clark-Snow, R.; Ruhlmann, C.H.; Molassiotis, A.; Olver, I.; Rapoport, B.L.; Aapro, M.; Dennis, K.; Hesketh, P.J.; Navari, R.M.; et al. 2023 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting. ESMO Open 2024, 9, 102195. [Google Scholar] [CrossRef]
- Benson, A.B., 3rd; Ajani, J.A.; Catalano, R.B.; Engelking, C.; Kornblau, S.M.; Martenson, J.A., Jr.; McCallum, R.; Mitchell, E.P.; O’Dorisio, T.M.; Vokes, E.E.; et al. Recommended Guidelines for the Treatment of Cancer Treatment-Induced Diarrhea. J. Clin. Oncol. 2004, 22, 2918–2926. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Paris, A.; Martinez-Trufero, J.; Lambea-Sorrosal, J.; Calvo-Gracia, F.; Milà-Villarroel, R. Clinical and Nutritional Effectiveness of a Nutritional Protocol with Oligomeric Enteral Nutrition in Patients with Oncology Treatment-Related Diarrhea. Nutrients 2020, 12, 1534. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Torres, E.; Garrido, A.; de Cabo, R.; Carretero, J.; Gómez-Cabrera, M.C. Molecular mechanisms of cancer cachexia. Role of exercise training. Mol. Aspects Med. 2024, 99, 101293. [Google Scholar] [CrossRef] [PubMed]
- Staller, K.; Parkman, H.P.; Greer, K.B.; Camilleri, M.; Altayar, O. AGA Clinical Practice Guideline on Management of Gastroparesis. Gastroenterology 2025, 169, 828–861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Wu, S.-P. Therapeutic effect of Wendan Decoction combined with mosapride on gastroesophageal reflux disease after esophageal cancer surgery. World J. Clin. Cases 2024, 12, 2194–2200. [Google Scholar] [CrossRef]
- Scarpellini, E.; Arts, J.; Karamanolis, G.; Laurenius, A.; Siquini, W.; Suzuki, H.; Ukleja, A.; Van Beek, A.; Vanuytsel, T.; Bor, S.; et al. International consensus on the diagnosis and management of dumping syndrome. Nat. Rev. Endocrinol. 2020, 16, 448–466. [Google Scholar] [CrossRef]
- Nejatinamini, S.; Kubrak, C.; Álvarez-Camacho, M.; Baracos, V.E.; Ghosh, S.; Wismer, W.V.; Mazurak, V.C. Head and Neck Cancer Patients Do Not Meet Recommended Intakes of Micronutrients without Consuming Fortified Products. Nutr. Cancer 2018, 70, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Pimiento, J.M. Feasibility of Oral Vitamin B12 Supplementation After Total Gastrectomy: Single Institution Cohort. J. Surg. Res. Pract. 2025, 6, 1–6. [Google Scholar] [CrossRef]
- Namikawa, T.; Maeda, M.; Yokota, K.; Iwabu, J.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; Hanazaki, K. Enteral Vitamin B12 Supplementation Is Effective for Improving Anemia in Patients Who Underwent Total Gastrectomy. Oncology 2021, 99, 225–233. [Google Scholar] [CrossRef]
- DeLoughery, T.G.; Jackson, C.S.; Ko, C.W.; Rockey, D.C. AGA Clinical Practice Update on Management of Iron Deficiency Anemia: Expert Review. Clin. Gastroenterol. Hepatol. 2024, 22, 1575–1583. [Google Scholar] [CrossRef]
- Franssen, R.F.W.; Bongers, B.C.; Vogelaar, F.J.; Janssen-Heijnen, M.L.G. Feasibility of a tele-prehabilitation program in high-risk patients with colon or rectal cancer undergoing elective surgery: A feasibility study. Perioper. Med. 2022, 11, 28. [Google Scholar] [CrossRef]
- Janssen, H.J.B.; Fransen, L.F.C.; Ponten, J.E.H.; Nieuwenhuijzen, G.A.P.; Luyer, M.D.P. Micronutrient Deficiencies Following Minimally Invasive Esophagectomy for Cancer. Nutrients 2020, 12, 778. [Google Scholar] [CrossRef]
- Emkey, R.D.; Emkey, G.R. Calcium Metabolism and Correcting Calcium Deficiencies. Endocrinol. Metab. Clin. N. Am. 2012, 41, 527–556. [Google Scholar] [CrossRef]
- Zouiouich, S.; Wahl, D.; Liao, L.M.; Hong, H.G.; Sinha, R.; Loftfield, E. Calcium Intake and Risk of Colorectal Cancer in the NIH-AARP Diet and Health Study. JAMA Netw. Open 2025, 8, e2460283. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Whitfield, K.; Krstic, G.; Wetterslev, J.; Gluud, C. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst. Rev. 2014, 2014, CD007469. [Google Scholar] [CrossRef] [PubMed]
- Vaughan-Shaw, P.G.; Buijs, L.F.; Blackmur, J.P.; Theodoratou, E.; Zgaga, L.; Din, F.V.N.; Farrington, S.M.; Dunlop, M.G. The effect of vitamin D supplementation on survival in patients with colorectal cancer: Systematic review and meta-analysis of randomised controlled trials. Br. J. Cancer 2020, 123, 1705–1712. [Google Scholar] [CrossRef]
- Yavuzsen, T.; Davis, M.P.; Walsh, D.; LeGrand, S.; Lagman, R. Systematic review of the treatment of cancer-associated anorexia and weight loss. J. Clin. Oncol. 2005, 23, 8500–8511. [Google Scholar] [CrossRef]
- Nielsen, R.L.; Houlind, M.B.; Andersen, A.L. Ponsegromab for the Treatment of Cancer Cachexia. N. Engl. J. Med. 2025, 392, 1035–1036. [Google Scholar] [PubMed]
- Sikic, B.I.; Scudder, S.A.; Ballon, S.C.; Soriero, O.M.; Christman, J.E.; Suey, L.; Ehsan, M.N.; Brandt, A.E.; Evans, T.L. High-dose megestrol acetate therapy of ovarian carcinoma: A phase II study by the Northern California Oncology Group. Semin. Oncol. 1986, 13, 26–32. [Google Scholar] [PubMed]
- Aisner, J.; Tchekmedyian, N.S.; Tait, N.; Parnes, H.; Novak, M. Studies of high-dose megestrol acetate: Potential applications in cachexia. Semin. Oncol. 1988, 15, 68–75. [Google Scholar]
- Roeland, E.J.; Bohlke, K.; Baracos, V.E.; Bruera, E.; Del Fabbro, E.; Dixon, S.; Fallon, M.; Herrstedt, J.; Lau, H.; Platek, M.; et al. Management of Cancer Cachexia: ASCO Guideline. J. Clin. Oncol. 2020, 38, 2438–2453. [Google Scholar] [CrossRef]
- Simons, J.P.; Aaronson, N.K.; Vansteenkiste, J.F.; ten Velde, G.P.; Muller, M.J.; Drenth, B.M.; Erdkamp, F.L.; Cobben, E.G.; Schoon, E.J.; Smeets, J.B.; et al. Effects of medroxyprogesterone acetate on appetite, weight, and quality of life in advanced-stage non-hormone-sensitive cancer: A placebo-controlled multicenter study. J. Clin. Oncol. 1996, 14, 1077–1084. [Google Scholar] [CrossRef]
- Beller, E.; Tattersall, M.; Lumley, T.; Levi, J.; Dalley, D.; Olver, I.; Page, J.; Abdi, E.; Wynne, C.; Friedlander, M.; et al. Improved quality of life with megestrol acetate in patients with endocrine-insensitive advanced cancer: A randomised placebo-controlled trial. Australasian Megestrol Acetate Cooperative Study Group. Ann. Oncol. 1997, 8, 277–283. [Google Scholar] [CrossRef]
- Ruiz-García, V.; Juan, O.; Pérez Hoyos, S.; Peiró, R.; Ramón, N.; Rosero, M.A.; García, M.A. [Megestrol acetate: A systematic review usefulness about the weight gain in neoplastic patients with cachexia]. Med. Clin. 2002, 119, 166–170. [Google Scholar] [CrossRef]
- Moertel, C.G.; Schutt, A.J.; Reitemeier, R.J.; Hahn, R.G. Corticosteroid therapy of preterminal gastrointestinal cancer. Cancer 1974, 33, 1607–1609. [Google Scholar] [CrossRef]
- Currow, D.C.; Glare, P.; Louw, S.; Martin, P.; Clark, K.; Fazekas, B.; Agar, M.R. A randomised, double blind, placebo-controlled trial of megestrol acetate or dexamethasone in treating symptomatic anorexia in people with advanced cancer. Sci. Rep. 2021, 11, 2421. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Kafantaris, V.; Sunday, S.; Sheridan, E.M.; Correll, C.U. Are antipsychotics effective for the treatment of anorexia nervosa? Results from a systematic review and meta-analysis. J. Clin. Psychiatry 2012, 73, e757–e766. [Google Scholar] [CrossRef]
- Navari, R.M.; Pywell, C.M.; Le-Rademacher, J.G.; White, P.; Dodge, A.B.; Albany, C.; Loprinzi, C.L. Olanzapine for the Treatment of Advanced Cancer–Related Chronic Nausea and/or Vomiting. JAMA Oncol. 2020, 6, 895. [Google Scholar] [CrossRef] [PubMed]
- Sandhya, L.; Devi Sreenivasan, N.; Goenka, L.; Dubashi, B.; Kayal, S.; Solaiappan, M.; Govindarajalou, R.; Kt, H.; Ganesan, P. Randomized Double-Blind Placebo-Controlled Study of Olanzapine for Chemotherapy-Related Anorexia in Patients with Locally Advanced or Metastatic Gastric, Hepatopancreaticobiliary, and Lung Cancer. J. Clin. Oncol. 2023, 41, 2617–2627. [Google Scholar] [CrossRef] [PubMed]
- Breit, S.N.; Tsai, V.W. Metabolic Messenger: Growth differentiation factor 15. Nat. Metab. 2025, 7, 1732–1744. [Google Scholar] [CrossRef]
- Filippini, D.M.; Romaniello, D.; Carosi, F.; Fabbri, L.; Carlini, A.; Giusti, R.; Di Maio, M.; Alfieri, S.; Lauriola, M.; Pantaleo, M.A.; et al. The Multifaceted Role of Growth Differentiation Factor 15 (GDF15): A Narrative Review from Cancer Cachexia to Target Therapy. Biomedicines 2025, 13, 1931. [Google Scholar] [CrossRef]
- van Exter, S.H.; Drager, L.D.; van Asseldonk, M.J.M.D.; Strijker, D.; van der Schoot, N.D.; van den Heuvel, B.; Verlaan, S.; van den Berg, M.G.A. Adherence to and Efficacy of the Nutritional Intervention in Multimodal Prehabilitation in Colorectal and Esophageal Cancer Patients. Nutrients 2023, 15, 2133. [Google Scholar] [CrossRef]
- Gillis, C.; Fenton, T.R.; Sajobi, T.T.; Minnella, E.M.; Awasthi, R.; Loiselle, S.È.; Liberman, A.S.; Stein, B.; Charlebois, P.; Carli, F. Trimodal prehabilitation for colorectal surgery attenuates post-surgical losses in lean body mass: A pooled analysis of randomized controlled trials. Clin. Nutr. 2019, 38, 1053–1060. [Google Scholar] [CrossRef]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of Exercise and Nutrition Prehabilitation on Functional Capacity in Esophagogastric Cancer Surgery: A Randomized Clinical Trial. JAMA Surg. 2018, 153, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Fenton, T.R.; Gramlich, L.; Keller, H.; Sajobi, T.T.; Culos-Reed, S.N.; Richer, L.; Awasthi, R.; Carli, F. Malnutrition modifies the response to multimodal prehabilitation: A pooled analysis of prehabilitation trials. Appl. Physiol. Nutr. Metab. 2022, 47, 141–150. [Google Scholar] [CrossRef]
- Allen, S.K.; Brown, V.; White, D.; King, D.; Hunt, J.; Wainwright, J.; Emery, A.; Hodge, E.; Kehinde, A.; Prabhu, P.; et al. Multimodal Prehabilitation During Neoadjuvant Therapy Prior to Esophagogastric Cancer Resection: Effect on Cardiopulmonary Exercise Test Performance, Muscle Mass and Quality of Life-A Pilot Randomized Clinical Trial. Ann. Surg. Oncol. 2022, 29, 1839–1850. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, C.J.; van Rooijen, S.J.; Fokkenrood, H.J.; Roumen, R.M.; Janssen, L.; Slooter, G.D. Prehabilitation versus no prehabilitation to improve functional capacity, reduce postoperative complications and improve quality of life in colorectal cancer surgery. Cochrane Database Syst. Rev. 2022, 5, CD013259. [Google Scholar]
- Gillis, C.; Davies, S.J.; Carli, F.; Wischmeyer, P.E.; Wootton, S.A.; Jackson, A.A.; Riedel, B.; Marino, L.V.; Levett, D.Z.H.; West, M.A. Current Landscape of Nutrition Within Prehabilitation Oncology Research: A Scoping Review. Front. Nutr. 2021, 8, 644723. [Google Scholar] [CrossRef]
- Dijksterhuis, W.P.M.; Latenstein, A.E.J.; van Kleef, J.J.; Verhoeven, R.H.A.; de Vries, J.H.M.; Slingerland, M.; Steenhagen, E.; Heisterkamp, J.; Timmermans, L.M.; de van der Schueren, M.A.E.; et al. Cachexia and Dietetic Interventions in Patients with Esophagogastric Cancer: A Multicenter Cohort Study. J. Natl. Compr. Cancer Netw. 2021, 19, 144–152. [Google Scholar] [CrossRef]
- Trestini, I.; Carbognin, L.; Sperduti, I.; Bonaiuto, C.; Auriemma, A.; Melisi, D.; Salvatore, L.; Bria, E.; Tortora, G. Prognostic impact of early nutritional support in patients affected by locally advanced and metastatic pancreatic ductal adenocarcinoma undergoing chemotherapy. Eur. J. Clin. Nutr. 2018, 72, 772–779. [Google Scholar] [CrossRef]
- Richards, J.; Arensberg, M.B.; Thomas, S.; Kerr, K.W.; Hegazi, R.; Bastasch, M. Impact of Early Incorporation of Nutrition Interventions as a Component of Cancer Therapy in Adults: A Review. Nutrients 2020, 12, 3403. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Takeda, K.; Kawasaki, Y.; Yamane, K.; Teruya, Y.; Kodani, M.; Igishi, T.; Yamasaki, A. Early Intensive Nutrition Intervention with Dietary Counseling and Oral Nutrition Supplement Prevents Weight Loss in Patients with Advanced Lung Cancer Receiving Chemotherapy: A Clinical Prospective Study. Yonago Acta Med. 2018, 61, 204–212. [Google Scholar] [CrossRef]
- Tweed, T.T.T.; Sier, M.A.T.; Van Bodegraven, A.A.; Van Nie, N.C.; Sipers, W.M.W.H.; Boerma, E.G.; Stoot, J.H.M.B. Feasibility and Efficiency of the BEFORE (Better Exercise and Food, Better Recovery) Prehabilitation Program. Nutrients 2021, 13, 3493. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, J.; Coca-Martinez, M.; Drummond, K.; Minnella, E.; Ramanakumar, A.V.; Ferri, L.; Carli, F.; Scheede-Bergdahl, C. Multimodal prehabilitation to enhance functional capacity of patients with esophageal cancer during concurrent neoadjuvant chemotherapies-a randomized feasibility trial. Dis. Esophagus 2024, 37, doae087. [Google Scholar] [CrossRef]
- Wang, Q.C.; Yuan, H.; Chen, Z.M.; Wang, J.; Xue, H.; Zhang, X.Y. Barriers and Facilitators of Adherence to Oral Nutritional Supplements Among People Living with Cancer: A Systematic Review. Clin. Nurs. Res. 2023, 32, 209–220. [Google Scholar] [CrossRef]
- Barnes, K.; Hladkowicz, E.; Dorrance, K.; Bryson, G.L.; Forster, A.J.; Gagné, S.; Huang, A.; Lalu, M.M.; Lavallée, L.T.; Saunders, C.; et al. Barriers and facilitators to participation in exercise prehabilitation before cancer surgery for older adults with frailty: A qualitative study. BMC Geriatr. 2023, 23, 356. [Google Scholar] [CrossRef]
- Watts, T.; Courtier, N.; Fry, S.; Gale, N.; Gillen, E.; McCutchan, G.; Patil, M.; Rees, T.; Roche, D.; Wheelwright, S. Access, acceptance and adherence to cancer prehabilitation: A mixed-methods systematic review. J. Cancer Surviv. 2024, 19, 1895–1923. [Google Scholar] [CrossRef] [PubMed]
- Piché, A.; Santa Mina, D.; Lambert, S.; Doré, I. Assessing real-world implementability of a multimodal group-based tele-prehabilitation program in cancer care: A pragmatic feasibility study. Front. Oncol. 2023, 13, 1271812. [Google Scholar] [CrossRef] [PubMed]
- Clemons, J.; Zhou, Z.; Hoy, S.A.; Gerber, S.; Nambiar, A.; Kwon, A.; Kin, C. No thanks and not for me: A qualitative study of barriers to prehabilitation participation. Surgery 2024, 176, 1697–1702. [Google Scholar] [CrossRef]
- Trujillo, E.B.; Claghorn, K.; Dixon, S.W.; Hill, E.B.; Braun, A.; Lipinski, E.; Platek, M.E.; Vergo, M.T.; Spees, C. Inadequate Nutrition Coverage in Outpatient Cancer Centers: Results of a National Survey. J. Oncol. 2019, 2019, 7462940. [Google Scholar] [CrossRef]
- Prado, C.M.; Laviano, A.; Gillis, C.; Sung, A.D.; Gardner, M.; Yalcin, S.; Dixon, S.; Newman, S.M.; Bastasch, M.D.; Sauer, A.C. Examining guidelines and new evidence in oncology nutrition: A position paper on gaps and opportunities in multimodal approaches to improve patient care. Support. Care Cancer 2022, 30, 3073–3083. [Google Scholar] [CrossRef]
- Grimmett, C.; Bradbury, K.; Dalton, S.O.; Fecher-Jones, I.; Hoedjes, M.; Varkonyi-Sepp, J.; Short, C.E. The Role of Behavioral Science in Personalized Multimodal Prehabilitation in Cancer. Front. Psychol. 2021, 12, 634223. [Google Scholar] [CrossRef]
- Voss, M.L.; Brick, R.; Padgett, L.S.; Wechsler, S.; Joshi, Y.; Ammendolia Tomé, G.; Arbid, S.; Campbell, G.; Campbell, K.L.; El Hassanieh, D.; et al. Behavior change theory and behavior change technique use in cancer rehabilitation interventions: A secondary analysis. Eur. J. Phys. Rehabil. Med. 2024, 60, 1036–1050. [Google Scholar] [CrossRef]
- Paterson, C.; Nguyen, J.; Fraser, G.; Pranavan, G.; Rammant, E. Effect of Prehabilitation Interventions in People Affected by Bladder Cancer on Long-Term Physical, Clinical, and Patient-Reported Outcome Measures: A Systematic Review. JCO Oncol. Pract. 2025, 21, 1583–1600. [Google Scholar] [CrossRef]
- Toohey, K.; Hunter, M.; McKinnon, K.; Casey, T.; Turner, M.; Taylor, S.; Paterson, C. A systematic review of multimodal prehabilitation in breast cancer. Breast Cancer Res. Treat. 2023, 197, 1–37. [Google Scholar] [CrossRef]
- Fong, M.; Kaner, E.; Rowland, M.; Graham, H.E.; McEvoy, L.; Hallsworth, K.; Cucato, G.; Gibney, C.; Nedkova, M.; Prentis, J. The effect of preoperative behaviour change interventions on pre- and post-surgery health behaviours, health outcomes, and health inequalities in adults: A systematic review and meta-analyses. PLoS ONE 2023, 18, e0286757. [Google Scholar] [CrossRef]
- Wade-Mcbane, K.; King, A.; Urch, C.; Jeyasingh-Jacob, J.; Milne, A.; Boutillier, C.L. Prehabilitation in the lung cancer pathway: A scoping review. BMC Cancer 2023, 23, 747. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Gu, L.; Li, N.; Wang, R.; Yang, X.; Chu, Z. Attitudes and perceptions of cancer patients and healthcare providers towards prehabilitation: A thematic synthesis. Br. J. Health Psychol. 2024, 29, 395–429. [Google Scholar] [CrossRef] [PubMed]
- Treanor, C.; Kyaw, T.; Donnelly, M. An international review and meta-analysis of prehabilitation compared to usual care for cancer patients. J. Cancer Surviv. 2018, 12, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Scriney, A.; Russell, A.; Loughney, L.; Gallagher, P.; Boran, L. The impact of prehabilitation interventions on affective and functional outcomes for young to midlife adult cancer patients: A systematic review. Psychooncology 2022, 31, 2050–2062. [Google Scholar] [CrossRef]
- Tsimopoulou, I.; Pasquali, S.; Howard, R.; Desai, A.; Gourevitch, D.; Tolosa, I.; Vohra, R. Psychological Prehabilitation Before Cancer Surgery: A Systematic Review. Ann. Surg. Oncol. 2015, 22, 4117–4123. [Google Scholar] [CrossRef]
- Chen, Y.; Ahmad, M. Effectiveness of adjunct psychotherapy for cancer treatment: A review. Future Oncol. 2018, 14, 1487–1496. [Google Scholar] [CrossRef]
- Mareschal, J.; Hemmer, A.; Douissard, J.; Dupertuis, Y.M.; Collet, T.H.; Koessler, T.; Toso, C.; Ris, F.; Genton, L. Surgical Prehabilitation in Patients with Gastrointestinal Cancers: Impact of Unimodal and Multimodal Programs on Postoperative Outcomes and Prospects for New Therapeutic Strategies—A Systematic Review. Cancers 2023, 15, 1881. [Google Scholar] [CrossRef]
- Briggs, L.G.; Parke, S.C.; Beck, K.L.; Sinha, D.; Gill, V.; Van Ligten, M.J.; Bain, P.A.; Tyson, M.D., 2nd; Abdul-Muhsin, H.M.; Quillen, J.K.; et al. A Prehabilitative/rehabilitative exercise, nutrition, and psychological support for bladder cancer: A scoping review of randomized clinical trials. Cancer 2025, 131, e35608. [Google Scholar] [CrossRef] [PubMed]
- Dhanis, J.; Keidan, N.; Blake, D.; Rundle, S.; Strijker, D.; van Ham, M.; Pijnenborg, J.M.A.; Smits, A. Prehabilitation to Improve Outcomes of Patients with Gynaecological Cancer: A New Window of Opportunity? Cancers 2022, 14, 3448. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Alizadeh-Tabari, S. Anxiety and depression prevalence in digestive cancers: A systematic review and meta-analysis. BMJ Support. Palliat. Care 2023, 13, e235–e243. [Google Scholar] [CrossRef]
- Kang, Y.E.; Yoon, J.H.; Park, N.H.; Ahn, Y.C.; Lee, E.J.; Son, C.G. Prevalence of cancer-related fatigue based on severity: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 12815. [Google Scholar] [CrossRef]
- Lin, Y.C.; Pimiento, J.M.; Milano, J.; Riccardi, D.; Mckinnie, N.; Hume, E.; Sprow, O.; Diaz-Carraway, S.; Budnetz, M.; Hagen, R.; et al. Feasibility trial of STRONG: A digital intervention to improve nutritional management for individuals with esophageal and gastroesophageal junction cancer. Contemp. Clin. Trials Commun. 2025, 43, 101421. [Google Scholar] [CrossRef] [PubMed]
- Waterland, J.L.; Chahal, R.; Ismail, H.; Sinton, C.; Riedel, B.; Francis, J.J.; Denehy, L. Implementing a telehealth prehabilitation education session for patients preparing for major cancer surgery. BMC Health Serv. Res. 2021, 21, 443. [Google Scholar] [CrossRef]
- Wu, F.; Rotimi, O.; Laza-Cagigas, R.; Rampal, T. The Feasibility and Effects of a Telehealth-Delivered Home-Based Prehabilitation Program for Cancer Patients during the Pandemic. Curr. Oncol. 2021, 28, 2248–2259. [Google Scholar] [CrossRef]
- Kim, J.Y.; Love, M.; Woo, Y.; Campos, B.; Yu, A.; Chang, J.; Erhunmwunsee, L.; Krouse, R.S.; Melstrom, L.; Sun, V. Pilot study of a telehealth intervention for personalized self-management for eating symptoms after gastroesophageal cancer surgery. J. Surg. Oncol. 2024, 129, 728–733. [Google Scholar] [CrossRef]
- Brennan, L.; Sadeghi, F.; O’Neill, L.; Guinan, E.; Smyth, L.; Sheill, G.; Smyth, E.; Doyle, S.L.; Timon, C.M.; Connolly, D.; et al. Telehealth Delivery of a Multi-Disciplinary Rehabilitation Programme for Upper Gastro-Intestinal Cancer: ReStOre@Home Feasibility Study. Cancers 2022, 14, 2707. [Google Scholar] [CrossRef]
- Driessen, E.J.; Peeters, M.E.; Bongers, B.C.; Maas, H.A.; Bootsma, G.P.; van Meeteren, N.L.; Janssen-Heijnen, M.L. Effects of prehabilitation and rehabilitation including a home-based component on physical fitness, adherence, treatment tolerance, and recovery in patients with non-small cell lung cancer: A systematic review. Crit. Rev. Oncol. Hematol. 2017, 114, 63–76. [Google Scholar] [CrossRef]
- Avancini, A.; Borsati, A.; Baldo, E.; Ciurnelli, C.; Trestini, I.; Tregnago, D.; Belluomini, L.; Sposito, M.; Insolda, J.; Auriemma, A.; et al. A Feasibility Study Investigating an Exercise Program in Metastatic Cancer Based on the Patient-Preferred Delivery Mode. Oncologist 2024, 29, e828–e836. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, K.; Halliday, L.J.; Noor, N.; Peters, C.J.; Wynter-Blyth, V.; Urch, C.E. Feasibility of Implementation and the Impact of a Digital Prehabilitation Service in Patients Undergoing Treatment for Oesophago-Gastric Cancer. Curr. Oncol. 2023, 30, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Steffens, D.; Denehy, L.; Solomon, M.; Koh, C.; Ansari, N.; McBride, K.; Carey, S.; Bartyn, J.; Lawrence, A.S.; Sheehan, K. Consumer Perspectives on the Adoption of a Prehabilitation Multimodal Online Program for Patients Undergoing Cancer Surgery. Cancers 2023, 15, 5039. [Google Scholar] [CrossRef] [PubMed]
- Timmers, T.G.; Groen, L.C.; Schreurs, H.; Bruns, E.R. Development and implementation of a home-based prehabilitation app for older patients undergoing elective colorectal cancer surgery. A Prospective Cohort Study. Digit. Health 2025, 11, 20552076251317760. [Google Scholar] [CrossRef]
- Tay, S.S.; Zhang, F.; Neo, E.J.R. The use of technology in cancer prehabilitation: A systematic review. Front. Oncol. 2024, 14, 1321493. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, K.; Jose, I.; Hoogenraad, N.J.; Osellame, L.D. Biomarkers for Cancer Cachexia: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4501. [Google Scholar] [CrossRef]
- Janssen, S.M.; Bouzembrak, Y.; Tekinerdogan, B. Artificial Intelligence in Malnutrition: A Systematic Literature Review. Adv. Nutr. 2024, 15, 100264. [Google Scholar] [CrossRef]
- Wu, H.F.; Yan, J.P.; Wu, Q.; Yu, Z.; Xu, H.X.; Song, C.H.; Guo, Z.Q.; Li, W.; Xiang, Y.J.; Xu, Z.; et al. Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm. Nutrition 2024, 119, 112317. [Google Scholar] [CrossRef]
- Yin, L.; Cui, J.; Lin, X.; Li, N.; Fan, Y.; Zhang, L.; Liu, J.; Chong, F.; Wang, C.; Liang, T.; et al. Identifying cancer cachexia in patients without weight loss information: Machine learning approaches to address a real-world challenge. Am. J. Clin. Nutr. 2022, 116, 1229–1239. [Google Scholar] [CrossRef]
- Wu, T.; Xu, H.; Li, W.; Zhou, F.; Guo, Z.; Wang, K.; Weng, M.; Zhou, C.; Liu, M.; Lin, Y.; et al. The potential of machine learning models to identify malnutrition diagnosed by GLIM combined with NRS-2002 in colorectal cancer patients without weight loss information. Clin. Nutr. 2024, 43, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, C.; Wang, Y.; Yu, Z.; Wang, S.; Yang, J.; Lu, S.; Zhou, C.; Wu, E.; Chen, J.; et al. Predicting malnutrition in gastric cancer patients using computed tomography(CT) deep learning features and clinical data. Clin. Nutr. 2024, 43, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, C.; Zheng, X.; Liu, T.; Xie, H.; Lin, S.Q.; Zhang, H.; Shi, J.; Liu, X.; Wang, Z.; et al. Machine learning to identify precachexia and cachexia: A multicenter, retrospective cohort study. Support. Care Cancer 2024, 32, 630. [Google Scholar] [CrossRef] [PubMed]
| Cancer Location | Incidence of Malnutrition | References |
|---|---|---|
| Esophageal | 22–73% | [3,4,5] |
| Gastric | 10–50% | [6] |
| Pancreatic | 9–52% | [5,6] |
| Liver | 7–20% | [5] |
| Colorectal | 23% | [7] |
| Disease Site | Nutrition Challenges | Nutrition Impact Symptoms |
|---|---|---|
| Pancreatic [26,27,28] | Exocrine insufficiency Fat-soluble vitamin deficiencies Protein and micronutrient deficiencies Weight loss, sarcopenia, cachexia Bone health complications Gastric outlet obstruction | Fatty stools (steatorrhea) Chronic diarrhea Abdominal pain and bloating Feeling full early (early satiety) Fatigue Loss of appetite (anorexia) Nausea Constipation Distress Cold dysesthesia |
| Esophageal and Gastric [8,29,30,31] | Esophageal obstruction Gastric outlet obstruction Vitamin deficiencies (folate, B12, iron) Pernicious anemia Malabsorption Dehydration Sarcopenia | Dysphagia Odynophagia Nausea Vomiting Early satiety Abdominal pain and bloating Reflux Anorexia Cold dysesthesia |
| Colorectal [8,32,33] | Malabsorption Diarrhea Iron deficiency anemia Malignant obstruction | Anorexia Abdominal pain and bloating Early satiety Nausea/vomiting Diarrhea Constipation Obstipation Cold dysesthesia |
| Liver [34] | Fat malabsorption in setting of hyperbilirubinemia Sarcopenia Malnutrition related to underlying cirrhosis or fatty liver disease Cachexia Dehydration and electrolyte imbalances in setting of hepatorenal syndrome | Anorexia Abdominal pain, bloating Ascites Early satiety |
| Barrier to Intake | Recommended Nutrition Strategy |
|---|---|
| Malabsorption—Fatty Acid Deficiency |
|
| Malabsorption—Exocrine Pancreatic Insufficiency |
|
| Poor Appetite |
|
| Dysgeusia/Hypogeusia |
|
| Nausea/Vomiting |
|
| Diarrhea |
|
| Delayed Emptying |
|
| Dumping Syndrome |
|
| Risk of Bowel Obstruction |
|
| Topic/Strength of Recommendation | Recommendation | Level of Evidence |
|---|---|---|
| Energy requirement/strong | Recommend that total energy expenditure of cancer patients, if not measured individually, be assumed to be similar to healthy subjects and generally range between 25 and 30 kcal/kg/day. | Low/Consensus |
| Protein requirement/strong | Recommend that protein intake should be above 1 g/kg/day and, if possible, up to 1.5 g/kg/day. | Moderate/Strong Consensus |
| Efficacy of nutrition intervention/strong | Nutritional intervention to increase oral intake in cancer patients who are able to eat but are malnourished or at risk of malnutrition. This includes dietary advice, the treatment of symptoms and derangements impairing food intake (nutrition impact symptoms), and offering oral nutritional supplements (ONS). | Moderate/Consensus |
| Specialized diets in cancer patients/strong | Recommend not to use dietary provisions that restrict energy intake in patients with or at risk of malnutrition. Recommendation B3-2; strength of recommendation is strong; level of evidence low; strong consensus. | Low/Strong Consensus |
| Mode of nutritional therapy when to escalate/strong | If a decision has been made to feed a patient, we recommend enteral nutrition (EN) if oral nutrition remains inadequate despite nutritional interventions (counseling, ONS), and parenteral nutrition (PN) if EN is not sufficient or feasible. | Moderate/Strong Consensus |
| Refeeding syndrome/strong | If oral food intake has been decreased severely for a prolonged period, we recommend increasing (oral, enteral, or parenteral) nutrition slowly over several days and to take additional precautions to prevent a refeeding syndrome. | Low/Consensus |
| Home artificial nutrition/strong | In patients with chronic insufficient dietary intake and/or uncontrollable malabsorption, we recommend home EN or PN for suitable patients. | Low/Strong Consensus |
| Role of immunonutrition/strong | In upper GI cancer patients undergoing surgical resection in the context of traditional perioperative care, we recommend oral/enteral immunonutrition. | High/Strong Consensus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khajoueinejad, N.; Santiago, C.; Turner, K.; Pimiento, J.M. Nutritional Support for Gastrointestinal Cancer Patients: New (and Old) Frontiers in Management, a Narrative Review. Nutrients 2025, 17, 3917. https://doi.org/10.3390/nu17243917
Khajoueinejad N, Santiago C, Turner K, Pimiento JM. Nutritional Support for Gastrointestinal Cancer Patients: New (and Old) Frontiers in Management, a Narrative Review. Nutrients. 2025; 17(24):3917. https://doi.org/10.3390/nu17243917
Chicago/Turabian StyleKhajoueinejad, Nazanin, Christina Santiago, Kea Turner, and Jose M. Pimiento. 2025. "Nutritional Support for Gastrointestinal Cancer Patients: New (and Old) Frontiers in Management, a Narrative Review" Nutrients 17, no. 24: 3917. https://doi.org/10.3390/nu17243917
APA StyleKhajoueinejad, N., Santiago, C., Turner, K., & Pimiento, J. M. (2025). Nutritional Support for Gastrointestinal Cancer Patients: New (and Old) Frontiers in Management, a Narrative Review. Nutrients, 17(24), 3917. https://doi.org/10.3390/nu17243917

