Consuming Tree Nuts Daily as Between-Meal Snacks Reduces Food Cravings and Improves Diet Quality in American Young Adults at High Metabolic Syndrome Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Intervention
2.3. Dietary Intakes and Adherence
2.4. Food Cravings
2.5. Diet Quality
2.6. Clinical Biomarkers
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazlan, N.; Horgan, G.; Whybrow, S.; Stubbs, J. Effects of increasing increments of fat- and sugar-rich snacks in the diet on energy and macronutrient intake in lean and overweight men. Br. J. Nutr. 2006, 96, 596–606. [Google Scholar] [CrossRef]
- Piernas, C.; Popkin, B.M. Snacking increased among U.S. adults between 1977 and 2006. J Nutr. 2010, 140, 325–332. [Google Scholar] [CrossRef]
- Hampl, J.S.; Heaton, C.L.; Taylor, C.A. Snacking patterns influence energy and nutrient intakes but not body mass index. J. Hum. Nutr. Diet. 2003, 16, 3–11. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni, V.L., 3rd. Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: National Health and Nutrition Examination Survey 2005–2010. Nutrients 2015, 7, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Zizza, C.A.; Xu, B. Snacking is associated with overall diet quality among adults. J. Acad. Nutr. Diet. 2012, 112, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Rehm, C.D.; Drewnowski, A. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: Results of an NHANES modeling study. Nutr. J. 2017, 16, 17. [Google Scholar] [CrossRef]
- Gilhooly, C.H.; Das, S.K.; Golden, J.K.; McCrory, M.A.; Dallal, G.E.; Saltzman, E.; Kramer, F.M.; Roberts, S.B. Food cravings and energy regulation: The characteristics of craved foods and their relationship with eating behaviors and weight change during 6 months of dietary energy restriction. Int. J. Obes. 2007, 31, 1849–1858. [Google Scholar] [CrossRef]
- Weingarten, H.P.; Elston, D. The phenomenology of food cravings. Appetite 1990, 15, 231–246. [Google Scholar] [CrossRef]
- Kalon, E.; Hong, J.Y.; Tobin, C.; Schulte, T. Psychological and neurobiological correlates of food addiction. Int. Rev. Neurobiol. 2016, 129, 85–110. [Google Scholar] [CrossRef] [PubMed]
- Pelchat, N.L. Food cravings in young and elderly adults. Appetite 1997, 28, 103–113. [Google Scholar] [CrossRef]
- Hill, A.J. The psychology of food craving. Proc. Nutr. Soc. 2007, 66, 277–285. [Google Scholar] [CrossRef]
- Richard, A.; Meule, A.; Reichenberger, J.; Blechert, J. Food cravings in everyday life: An EMA study on snack-related thoughts, cravings, and consumption. Appetite 2017, 113, 215–223. [Google Scholar] [CrossRef]
- Taetzsch, A.; Roberts, S.B.; Gilhooly, C.H.; Lichtenstein, A.H.; Krauss, A.J.; Bukhari, A.; Martin, E.; Hatch-McChesney, A.; Das, S.K. Food cravings: Associations with dietary intake and metabolic health. Appetite 2020, 152, 104711. [Google Scholar] [CrossRef]
- Newby, P.K.; Hu, F.B.; Rimm, E.B.; Smith-Warner, S.A.; Feskanich, D.; Sampson, L.; Willett, W.C. Reproducibility and validity of the Diet Quality Index Revised as assessed by use of a food-frequency questionnaire. Am. J. Clin. Nutr. 2003, 78, 941–949. [Google Scholar] [CrossRef]
- Troeschel, A.N.; Hartman, T.J.; Flanders, W.D.; Wang, Y.; Hodge, R.A.; McCullough, L.E.; Mitchell, D.C.; Sampson, L.; Patel, A.V.; McCullough, M.L. The American Cancer Society Cancer Prevention Study-3 FFQ has reasonable validity and reproducibility for food groups and a diet quality score. J. Nutr. 2020, 150, 1566–1578. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Arciniega, A.A.; Mendez, M.A.; Baena-Díez, J.M.; Rovira Martori, M.A.; Soler, C.; Marrugat, J.; Covas, M.I.; Sanz, H.; Llopis, A.; Schröder, H. Concurrent and construct validity of Mediterranean diet scores as assessed by an FFQ. Public Health Nutr. 2011, 14, 2015–2021. [Google Scholar] [CrossRef]
- Yue, Y.; Yuan, C.; Wang, D.D.; Wang, M.; Song, M.; Shan, Z.; Hu, F.; Rosner, B.; Smith-Warner, S.A.; Willett, W.C. Reproducibility and validity of diet quality scores derived from food-frequency questionnaires. Am. J. Clin. Nutr. 2022, 115, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Wilson, M.M.; Lerman, J.L.; Tooze, J.A. Applications of the Healthy Eating Index for surveillance, epidemiology, and intervention research: Considerations and caveats. J. Acad. Nutr. Diet. 2018, 118, 1603–1621. [Google Scholar] [CrossRef]
- Yuguang, L.; Chang, Y.; Li, H.; Li, F.; Zou, Q.; Liu, X.; Chen, X.; Cui, J. Inflammation mediates the relationship between diet quality assessed by Healthy Eating Index-2015 and metabolic syndrome. Front. Endocrinol. 2024, 15, 1293850. [Google Scholar] [CrossRef]
- Morze, J.; Danielewicz, A.; Hoffmann, G.; Schwingshackl, L. Diet quality as assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension score, and health outcomes: A second update of a systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 2020, 120, 1998–2031.e15. [Google Scholar] [CrossRef]
- Taylor, R.M.; Haslam, R.L.; Herbert, J.; Whatnall, M.C.; Trijsburg, L.; de Vries, J.H.M.; Josefsson, M.S.; Koochek, A.; Nowicka, P.; Neuman, N.; et al. Diet quality and cardiovascular outcomes: A systematic review and meta-analysis of cohort studies. Nutr. Diet. 2024, 81, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Jacobs, D.R.; Van Horn, L.; Slattery, M.L.; Kartashov, A.I.; Ludwig, D.S. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: The CARDIA study. JAMA 2002, 287, 2081–2089. [Google Scholar] [CrossRef]
- Sumislawski, K.; Widmer, A.; Suro, R.R.; Robles, M.E.; Lillegard, K.; Olson, D.; Koethe, J.R.; Silver, H.J. Consumption of tree nuts as snacks reduces metabolic syndrome risk in young adults: A randomized trial. Nutrients 2023, 15, 5051. [Google Scholar] [CrossRef]
- Widmer, A.; Lillegard, K.; Wood, K.; Robles, M.; Fan, R.; Ye, F.; Koethe, J.R.; Silver, H.J. Consumption of tree nuts as snacks stimulates changes in plasma fatty acid profiles and adipose tissue gene expression in young adults at risk for metabolic syndrome. Clin. Nutr. 2025, 48, 25–34. [Google Scholar] [CrossRef]
- Gans, K.M.; Risica, P.M.; Wylie-Rosett, J.; Ross, E.M.; Strolla, L.O.; McMurray, J.; Eaton, C.B. Development and evaluation of the nutrition component of the Rapid Eating and Activity Assessment for Patients (REAP): A new tool for primary care providers. J. Nutr. Educ. Behav. 2006, 38, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Segal-Isaacson, C.J.; Wylie-Rosett, J.; Gans, K.M. Validation of a short dietary assessment questionnaire: The Rapid Eating and Activity Assessment for Participants short version (REAP-S). Diabetes Educ. 2004, 30, 774–781. [Google Scholar] [CrossRef] [PubMed]
- White, M.A.; Whisenhunt, B.L.; Williamson, D.A.; Greenway, F.L.; Netemeyer, R.G. Development and validation of the food-craving inventory. Obes. Res. 2002, 10, 107–114. [Google Scholar] [CrossRef]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633, Erratum in J. Acad. Nutr. Diet. 2019, 119, 1759. https://doi.org/10.1016/j.jand.2019.07.026. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602, Erratum in J. Acad. Nutr. Diet. 2019, 119, 1759. https://doi.org/10.1016/j.jand.2019.07.025. [Google Scholar] [CrossRef]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef]
- Lawton, C.L.; Delargy, H.J.; Smith, F.C.; Hamilton, V.; Blundell, J.E. A medium-term intervention study on the impact of high- and low-fat snacks varying in sweetness and fat content: Large shifts in daily fat intake but good compensation for daily energy intake. Br. J. Nutr. 1998, 80, 149–161. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yuan, S.; Jin, Y.; Lu, J. Nut consumption and risk of metabolic syndrome and overweight/obesity: A meta-analysis of prospective cohort studies and randomized trials. Nutr. Metab. 2018, 15, 46. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef]
- Akhlaghi, M. The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Crit. Rev. Food Sci. Nutr. 2024, 64, 3139–3150. [Google Scholar] [CrossRef]
- Akhlaghi, M.; Ghobadi, S.; Zare, M.; Foshati, S. Effect of nuts on energy intake, hunger, and fullness, a systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Mattes, R.D. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: A randomized controlled trial. Eur. J. Clin. Nutr. 2013, 67, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zaved Waise, T.M.; Toshinai, K.; Tsuchimochi, W.; Naznin, F.; Islam, M.N.; Tanida, R.; Sakoda, H.; Nakazato, M. Functional interaction between ghrelin and GLP-1 regulates feeding through the vagal afferent system. Sci. Rep. 2020, 10, 18415. [Google Scholar] [CrossRef]
- Muller, T.D.; Nogueiras, R.; Andermann, M.L.; Andrews, Z.B.; Anker, S.D.; Argente, J.; Batterham, R.L.; Benoit, S.C.; Bowers, C.Y.; Broglio, F.; et al. Ghrelin. Mol. Metab. 2015, 4, 437–460. [Google Scholar] [CrossRef]
- Marzullo, P.; Verti, B.; Savia, G.; Walker, G.E.; Guzzaloni, G.; Tagliaferri, M.; Di Blasio, A.; Liuzzi, A. The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure. J. Clin. Endocrinol. Metab. 2004, 89, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.M.; Jastreboff, A.M.; White, M.A.; Grilo, C.M.; Sinha, R. Stress, cortisol, and other appetite-related hormones: Prospective prediction of 6-month changes in food cravings and weight. Obesity 2017, 25, 713–720. [Google Scholar] [CrossRef]
- Beauchamp, G.K. Why do we like sweet taste: A bitter tale? Physiol. Behav. 2016, 164 Pt B, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, S.N.; Kruger, R.; Walsh, D.C.I.; Cao, G.; Rivers, S.; Richter, M.; Breier, B.H. Is sweet taste perception associated with sweet food liking and intake? Nutrients 2017, 9, 750. [Google Scholar] [CrossRef]
- Ventura, A.K.; Worobey, J. Early influences on the development of food preferences. Curr. Biol. 2013, 23, R401–R408. [Google Scholar] [CrossRef]
- Boswell, R.G.; Kober, H. Food cue reactivity and craving predict eating and weight gain: A meta-analytic review. Obes. Rev. 2016, 17, 159–177. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; December 2020. Available online: https://www.dietaryguidelines.gov/ (accessed on 23 November 2025).
- Pashaei, K.H.A.; Namkhah, Z.; Sobhani, S.R. Comparison of diet quality indices for predicting metabolic syndrome in Iran: Cross-sectional findings from the persian cohort study. Diabetol. Metab. Syndr. 2024, 16, 253. [Google Scholar] [CrossRef]
- Konikowska, K.; Bombala, W.; Szuba, A.; Rozanska, D.; Regulska-Ilow, B. Metabolic syndrome is associated with low diet quality assessed by the Healthy Eating Index-2015 and low concentrations of high-density lipoprotein cholesterol. Biomedicines 2022, 10, 2487. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Esfahani, F.; Daei, S.; Ildarabadi, A.; Koochakpoor, G.; Mirmiran, P.; Azizi, F. Associations between global diet quality score and risk of metabolic syndrome and its components: Tehran lipid and glucose study. J. Obes. Metab. Syndr. 2024, 33, 240–250. [Google Scholar] [CrossRef] [PubMed]
| Tree Nuts Snack Group (N = 40) | High-Carbohydrate Snack Group (N = 44) | |||||
|---|---|---|---|---|---|---|
| Baseline | End of Study | p-Value | Baseline | End of Study | p-Value | |
| Cake | 0.90 ± 0.78 | 0.75 ± 0.67 | 0.29 | 0.98 ± 0.94 | 0.86 ± 0.83 | 0.45 |
| Cookies | 1.78 ± 1.17 | 1.15 ± 0.92 | <0.001 | 1.38 ± 1.17 | 1.21 ± 1.09 | 0.28 |
| Brownies | 0.95 ± 0.85 | 0.50 ± 0.72 | <0.001 | 1.09 ± 1.02 | 1.07 ± 1.23 | 0.88 |
| Ice Cream | 1.73 ± 1.04 | 1.18 ± 1.13 | 0.003 | 1.58 ± 1.20 | 1.33 ± 1.16 | 0.19 |
| Candy | 1.00 ± 0.96 | 0.68 ± 0.97 | 0.03 | 1.05 ± 1.15 | 1.16 ± 1.04 | 0.49 |
| Chocolate | 1.78 ± 1.29 | 1.55 ± 1.13 | 0.25 | 1.63 ±1.22 | 1.63 ± 1.00 | 0.99 |
| Cinnamon Rolls | 0.63 ± 0.74 | 0.45 ± 0.64 | 0.18 | 0.84 ± 0.92 | 0.53 ± 0.88 | 0.07 |
| Donuts | 0.88 ± 0.85 | 0.48 ± 0.64 | 0.008 | 0.90 ± 0.92 | 0.98 ± 0.98 | 0.62 |
| High Sweets Subscale | 9.7 ± 4.5 | 6.7 ± 4.7 | <0.001 | 9.9 ± 5.0 | 8.8 ± 5.3 | 0.20 |
| Chips | 1.64 ± 1.27 | 1.31 ± 1.17 | 0.05 | 1.60 ± 1.11 | 1.63 ± 1.05 | 0.88 |
| Hamburger | 1.50 ± 1.04 | 1.25 ± 1.10 | 0.11 | 1.09 ± 1.06 | 1.16 ± 1.09 | 0.66 |
| French Fries | 1.75 ± 1.13 | 1.55 ± 1.13 | 0.12 | 1.49 ± 1.12 | 1.70 ± 1.15 | 0.14 |
| Pizza | 1.80 ± 0.79 | 1.48 ± 0.75 | <0.001 | 1.79 ± 1.04 | 1.51 ± 0.96 | 0.06 |
| Fast Food Subscale | 6.7 ± 3.0 | 5.5 ± 3.0 | 0.001 | 6.0 ± 3.0 | 6.0 ± 3.2 | 0.95 |
| Pancakes/Waffles | 0.95 ± 0.78 | 0.78 ± 0.77 | 0.21 | 1.11 ± 1.14 | 0.79 ± 0.97 | 0.06 |
| Cereal | 0.85 ± 0.95 | 0.70 ± 0.97 | 0.36 | 0.86 ± 1.21 | 0.67 ± 0.92 | 0.24 |
| Sandwich Bread | 0.80 ± 1.02 | 0.80 ± 1.07 | 0.99 | 0.72 ± 0.98 | 0.79 ± 0.97 | 0.61 |
| Baked Potato | 1.03 ± 1.19 | 0.83 ± 1.06 | 0.10 | 0.58 ± 0.91 | 0.49 ± 0.88 | 0.49 |
| Rolls | 0.60 ± 1.01 | 0.55 ± 1.04 | 0.64 | 0.53 ± 0.93 | 0.67 ± 1.13 | 0.29 |
| Biscuits | 0.58 ± 0.71 | 0.40 ± 0.59 | 0.16 | 1.07 ± 1.16 | 0.84 ± 1.11 | 0.14 |
| Pasta | 1.53 ± 1.13 | 1.58 ± 1.01 | 0.77 | 1.27 ± 1.18 | 1.05 ± 0.89 | 0.21 |
| Rice | 1.10 ± 1.15 | 1.03 ± 1.05 | 0.62 | 0.93 ± 1.18 | 1.21 ± 1.12 | 0.08 |
| High Starch Subscale | 6.9 ± 5.4 | 6.7 ± 3.0 | 0.67 | 6.4 ± 4.5 | 6.5 ± 4.6 | 0.82 |
| Corn Bread | 0.35 ± 0.62 | 0.23 ± 0.48 | 0.13 | 0.33 ± 0.52 | 0.40 ± 0.79 | 0.54 |
| Fried Chicken | 1.13 ± 1.04 | 1.05 ± 1.06 | 0.61 | 1.26 ± 1.18 | 1.07 ± 1.08 | 0.24 |
| Fried Fish | 0.58 ± 0.68 | 0.50 ± 0.75 | 0.56 | 0.51 ± 0.77 | 0.53 ± 0.85 | 0.81 |
| Bacon | 1.25 ± 1.10 | 1.33 ± 1.16 | 0.64 | 1.23 ± 1.25 | 1.11 ± 1.26 | 0.40 |
| Hot Dog | 0.63 ± 0.87 | 0.33 ± 0.62 | 0.006 | 0.56 ± 0.77 | 0.70 ± 0.99 | 0.36 |
| Sausage | 0.58 ± 0.87 | 0.75 ± 1.01 | 0.19 | 0.88 ± 0.98 | 0.84 ± 1.19 | 0.77 |
| Steak | 1.15 ± 1.17 | 1.15 ± 1.08 | 0.99 | 1.21 ± 1.26 | 1.21 ± 1.25 | 0.99 |
| Gravy | 0.23 ± 0.54 | 0.28 ± 0.56 | 0.59 | 0.47 ± 0.91 | 0.40 ± 0.76 | 0.45 |
| High Fats Subscale | 5.8 ± 4.4 | 5.4 ± 4.2 | 0.48 | 6.4 ± 4.7 | 6.3 ± 5.7 | 0.74 |
| TN Snack Group (N = 40) | CHO Snack Group (N = 44) | |||||
|---|---|---|---|---|---|---|
| Baseline | End of Study | p-Value | Baseline | End of Study | p-Value | |
| Frequency of Consumption of Item/Food Group in an Average Week * | ||||||
| Salted Snacks | 2.28 ± 0.72 | 1.87 ± 0.86 | 0.006 | 2.16 ± 1.06 | 2.27 ± 0.95 | 0.28 |
| Sugary Snacks | 2.28 ± 1.05 | 1.95 ± 0.92 | 0.05 | 2.25 ± 1.16 | 2.23 ± 1.03 | 0.87 |
| Frozen Desserts | 1.46 ± 0.91 | 1.28 ± 0.69 | 0.04 | 1.50 ± 0.93 | 1.45 ± 0.90 | 0.70 |
| Sugar Sweetened Beverages | 0.93 ± 1.00 | 0.85 ± 0.98 | 0.65 | 1.07 ± 1.21 | 1.00 ± 1.20 | 0.55 |
| Non-Caloric Beverages | 0.85 ±1.25 | 0.85 ± 1.23 | 0.99 | 1.39 ± 1.45 | 1.39 ± 1.42 | 0.99 |
| Non-Nutritive Sweeteners | 1.08 ± 1.16 | 1.15 ± 1.19 | 0.29 | 1.39 ± 1.22 | 1.36 ± 1.13 | 0.87 |
| Homemade Meals | 3.26 ± 0.79 | 3.03 ± 1.01 | 0.04 | 3.25 ± 0.81 | 3.07 ± 0.93 | 0.04 |
| Restaurant Meals | 1.95 ± 0.65 | 1.92 ± 0.70 | 0.41 | 1.98 ± 0.70 | 1.98 ± 0.63 | 0.99 |
| Ready-to-Eat Meals | 1.59 ± 0.94 | 1.41 ± 0.84 | 0.15 | 1.59 ± 1.04 | 1.66 ± 0.96 | 0.62 |
| Fermented Foods | 0.72 ± 0.83 | 0.82 ± 0.85 | 0.40 | 1.00 ± 0.86 | 1.02 ± 0.88 | 0.82 |
| Extra Virgin Olive Oil | 2.69 ± 1.00 | 2.56 ± 1.05 | 0.41 | 2.73 ± 1.13 | 2.50 ± 1.11 | 0.08 |
| Water | 3.50 ± 0.72 | 3.45 ± 0.71 | 0.32 | 3.25 ± 0.89 | 3.32 ± 0.96 | 0.57 |
| Poultry (svgs) | 2.77 ± 0.84 | 2.87 ± 0.66 | 0.16 | 2.91 ± 0.71 | 2.91 ± 0.71 | 0.99 |
| Meat and Egg (svgs) | 3.30 ± 0.72 | 3.28 ± 0.68 | 0.40 | 3.48 ± 0.59 | 3.34 ± 0.61 | 0.14 |
| Red Meat (svgs) | 1.82 ± 0.82 | 1.82 ± 0.76 | 0.50 | 2.02 ± 0.90 | 1.95 ± 0.86 | 0.54 |
| High-Fat Red Meat (svgs) | 1.46 ± 0.82 | 1.33 ± 0.70 | 0.17 | 1.50 ± 0.93 | 1.48 ± 0.79 | 0.83 |
| Seafood (svgs) | 1.46 ± 0.85 | 1.33 ± 0.93 | 0.17 | 1.50 ± 0.85 | 1.45 ± 0.76 | 0.62 |
| Dairy (svgs) | 2.87 ± 1.13 | 2.62 ± 1.11 | 0.13 | 2.61 ± 1.13 | 2.39 ± 1.08 | 0.17 |
| Dairy Substitute (svgs) | 1.28 ± 1.36 | 1.31 ± 1.28 | 0.85 | 1.75 ± 1.38 | 1.34 ± 1.16 | 0.01 |
| Fruit (svgs) | 2.44 ± 1.07 | 2.51 ± 0.88 | 0.57 | 2.59 ± 0.90 | 2.23 ± 0.94 | 0.01 |
| Vegetable (svgs) | 2.85 ± 0.99 | 3.10 ± 0.79 | 0.09 | 3.00 ± 0.86 | 2.82 ± 0.92 | 0.17 |
| Whole Grains (svgs) | 2.77 ± 0.93 | 2.62 ± 1.09 | 0.11 | 2.43 ± 1.07 | 2.55 ± 0.98 | 0.51 |
| Fruit Servings (cup eq) | 0.76 ± 1.68 | 0.35 ± 0.50 | 0.13 | 0.84 ± 1.19 | 0.51 ± 0.48 | 0.06 |
| Frequency of Consumption of Food Group Servings on an Average Day | ||||||
| Total Grain Servings (oz eq) | 7.27 ± 5.51 | 5.55 ± 3.41 | 0.08 | 6.99 ± 4.46 | 8.77 ± 4.21 | 0.06 |
| Whole Grain Servings (oz eq) | 1.88 ± 2.39 | 1.68 ± 2.55 | 0.69 | 1.81 ± 2.18 | 2.57 ± 2.46 | 0.13 |
| Refined Grain Servings (oz eq) | 5.39 ± 5.66 | 3.86 ± 2.62 | 0.09 | 5.18 ± 3.94 | 6.20 ± 3.62 | 0.19 |
| Vegetable Servings (cup eq) | 1.42 ± 1.14 | 1.39 ± 1.02 | 0.89 | 1.92 ± 1.33 | 1.99 ± 1.32 | 0.77 |
| Greens and Beans Servings (cup eq) | 0.30 ± 0.49 | 0.36 ± 0.54 | 0.62 | 0.60 ± 0.65 | 0.68 ± 0.75 | 0.55 |
| Dairy Servings (cup eq) | 1.57 ± 1.41 | 1.02 ± 0.94 | 0.03 | 1.38 ± 1.35 | 1.41 ± 1.39 | 0.89 |
| Protein Servings (oz eq) | 6.06 ± 4.16 | 11.16 ± 5.47 | <0.001 | 8.28 ± 5.41 | 8.22 ± 5.26 | 0.95 |
| Seafood and Plant Protein Servings (cup eq) | 1.30 ± 2.07 | 5.67 ± 3.41 | <0.001 | 2.88 ± 2.89 | 1.53 ± 2.50 | 0.05 |
| Tree Nuts Snack Group (N = 40) | High-Carbohydrate Snack Group (N = 44) | |||||
|---|---|---|---|---|---|---|
| Baseline | End of Study | p-Value | Baseline | End of Study | p-Value | |
| Glucose (mg/dL) | 86.3 ± 10.4 | 85.8 ± 11.9 | 0.77 | 82.9 ± 8.2 | 84.4 ± 8.2 | 0.42 |
| Insulin (µU/mL) | 9.5 ± 9.9 | 8.1 ± 5.0 | 0.22 | 6.8 ± 3.4 | 7.0 ± 4.1 | 0.73 |
| Active Ghrelin (pg/mL) | 72.1 ± 78.3 | 92.7 ± 89.3 | 0.10 | 89.7 ± 106.7 | 97.5 ± 100.5 | 0.41 |
| Total Ghrelin (pg/mL) | 439.4 ± 444.3 | 644.8 ± 613.4 | 0.04 | 594.9 ± 571.8 | 698.5 ± 615.4 | 0.14 |
| Active GLP-1 (pg/mL) | 15.7 ± 11.8 | 18.3 ± 13.9 | 0.20 | 19.9 ± 44.9 | 21.8 ± 40.9 | 0.32 |
| Total GLP-1 (pg/mL) | 144.2 ± 57.5 | 160.6 ± 55.7 | 0.04 | 136.8 ± 72.7 | 141.6 ± 67.4 | 0.52 |
| Adiponectin (mcg/mL) | 31.8 ± 18.4 | 21.6 ± 8.3 | <0.001 | 35.5 ± 33.2 | 22.6 ± 11.8 | <0.001 |
| Hunger | 4.9 ± 1.4 | 4.8 ± 1.6 | 0.93 | 4.6 ± 1.8 | 5.2 ± 1.7 | 0.07 |
| Fullness | 6.1 ± 1.5 | 6.1 ± 1.6 | 0.85 | 6.3 ± 1.3 | 5.8 ± 1.5 | 0.10 |
| Tree Nuts Snack Group (N = 40) | High-Carbohydrate Snack Group (N = 44) | |||||
|---|---|---|---|---|---|---|
| Baseline | End of Study | p-Value | Baseline | End of Study | p-Value | |
| HEI Fruits | 1.51 ± 1.92 | 0.98 ± 1.52 | 0.08 | 1.90 ± 1.89 | 1.33 ± 1.31 | 0.08 |
| HEI Vegetables | 2.96 ± 1.80 | 2.75 ± 1.65 | 0.53 | 3.52 ± 1.69 | 3.14 ± 1.60 | 0.14 |
| HEI Whole Grains | 4.39 ± 4.18 | 3.73 ± 3.95 | 0.34 | 4.27 ± 3.98 | 5.51 ± 4.00 | 0.12 |
| HEI Refined Grains | 5.94 ± 4.38 | 7.75 ± 3.09 | 0.02 | 6.90 ± 3.58 | 6.16 ± 3.83 | 0.34 |
| HEI Dairy | 5.17 ± 3.85 | 3.60 ± 3.06 | 0.05 | 4.46 ± 3.68 | 3.96 ± 3.19 | 0.45 |
| HEI Protein | 4.14 ± 1.51 | 4.85 ± 0.62 | 0.01 | 4.45 ± 1.04 | 4.44 ± 1.06 | 0.95 |
| HEI Fatty Acids | 4.71 ± 3.90 | 9.04 ± 2.16 | <0.001 | 6.08 ± 3.91 | 6.00 ± 3.50 | 0.89 |
| HEI Sodium | 4.11 ± 3.57 | 6.31 ± 3.50 | 0.01 | 3.72 ± 3.57 | 4.15 ± 3.54 | 0.56 |
| HEI Added Sugars | 8.05 ± 2.83 | 8.58 ± 2.35 | 0.30 | 8.26 ± 2.81 | 8.72 ± 1.91 | 0.31 |
| HEI Total Score | 51.98 ± 17.06 | 62.00 ± 12.16 | <0.001 | 58.09 ± 12.94 | 56.51 ± 12.93 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lillegard, K.; Widmer, A.; Koethe, J.R.; Silver, H.J. Consuming Tree Nuts Daily as Between-Meal Snacks Reduces Food Cravings and Improves Diet Quality in American Young Adults at High Metabolic Syndrome Risk. Nutrients 2025, 17, 3778. https://doi.org/10.3390/nu17233778
Lillegard K, Widmer A, Koethe JR, Silver HJ. Consuming Tree Nuts Daily as Between-Meal Snacks Reduces Food Cravings and Improves Diet Quality in American Young Adults at High Metabolic Syndrome Risk. Nutrients. 2025; 17(23):3778. https://doi.org/10.3390/nu17233778
Chicago/Turabian StyleLillegard, Kate, Annaliese Widmer, John R. Koethe, and Heidi J. Silver. 2025. "Consuming Tree Nuts Daily as Between-Meal Snacks Reduces Food Cravings and Improves Diet Quality in American Young Adults at High Metabolic Syndrome Risk" Nutrients 17, no. 23: 3778. https://doi.org/10.3390/nu17233778
APA StyleLillegard, K., Widmer, A., Koethe, J. R., & Silver, H. J. (2025). Consuming Tree Nuts Daily as Between-Meal Snacks Reduces Food Cravings and Improves Diet Quality in American Young Adults at High Metabolic Syndrome Risk. Nutrients, 17(23), 3778. https://doi.org/10.3390/nu17233778

