Lipid Metabolism–Signaling Crosstalk in Metabolic Disease and Aging: Mechanisms and Therapeutic Targets
Abstract
1. Introduction
2. Lipid Pathways: Synthesis, Storage, Mobilization, and Oxidation
2.1. Fatty Acid Synthesis
2.2. Lipolysis
2.3. Lipogenesis
2.4. β-Oxidation
3. Regulation of Lipid Metabolism: Enzymatic and Hormonal Control
3.1. Enzymatic and Hormonal Control
3.2. Transcriptional and Epigenetic Control
4. Interconnections Between Lipid Metabolism and Signaling Pathways
5. Dysregulation of Lipid Metabolism in Metabolic Disorders
6. Aging and Lipid Metabolism/Signaling
6.1. Alterations in Lipid Signaling Pathways During Aging
6.2. Age-Related Metabolic Disorders and Association with Lipid Dysfunction
6.2.1. Cardiovascular Disease (CVD)
6.2.2. Type 2 Diabetes (T2D)
6.2.3. Obesity
6.2.4. Non-Alcoholic Fatty Liver Disease (NAFLD)
7. Therapeutic Approaches Targeting Lipid Metabolism and Signaling
7.1. Drug Targets in Lipid Intake
7.1.1. Drug Targets in Lipid Synthesis
7.1.2. Drug Targets in Lipid Oxidation
| Target | Function | Inhibitors/ Modulators | Therapeutic Applications |
|---|---|---|---|
| HMG-CoA Reductase [139] | Rate-limiting enzyme in cholesterol synthesis | Statins (e.g., Atorvastatin, Simvastatin) | Hypercholesterolemia, Cardiovascular Disease |
| PCSK9 [140] | Regulates LDL receptor degradation | PCSK9 Inhibitors (e.g., Alirocumab, Evolocumab) | Hypercholesterolemia, Atherosclerosis |
| ATP Citrate Lyase (ACL) [141] | Catalyzes the conversion of citrate to acetyl-CoA | Bempedoic Acid | Hypercholesterolemia |
| Acetyl-CoA Carboxylase (ACC) [142] | Catalyzes the first step in fatty acid synthesis | ACC Inhibitors (e.g., Firsocostat) | Non-Alcoholic Fatty Liver Disease (NAFLD), Obesity |
| Farnesoid X Receptor (FXR) [143] | Regulates bile acid, lipid, and glucose metabolism | FXR Agonists (e.g., Obeticholic Acid) | NAFLD, Primary Biliary Cholangitis (PBC) |
| Diacylglycerol Acyltransferase (DGAT) [144] | Catalyzes the final step in triglyceride synthesis | DGAT Inhibitors (e.g., Pradigastat) | Obesity, Hypertriglyceridemia |
| Microsomal Triglyceride Transfer Protein (MTTP) [145] | Assists in the assembly and secretion of lipoproteins | Lomitapide | Homozygous Familial Hypercholesterolemia |
| NPC1L1 [125,127] | Intestinal cholesterol uptake via endocytosis | Ezetimibe | Hypercholesterolemia; adjunct to statin; outcome benefit post-ACS |
7.2. Translational and Clinical Considerations
7.3. Lifestyle Interventions: Diet and Exercise as Modulators of Lipid Metabolism and Signaling
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACC | Acetyl-CoA carboxylase |
| ACSS2 | Acyl–CoA synthetase short–chain family member 2 |
| ACLY | ATP-citrate lyase |
| ACS/ACSL | Acyl-CoA synthetase/Acyl-CoA synthetase long-chain |
| AMPK | AMP-activated protein kinase |
| AET | Aerobic exercise training |
| ALA | α-Linolenic acid |
| ApoA-I | Apolipoprotein A-I |
| ApoC-II | Apolipoprotein C-II |
| ATGL | Adipose triglyceride lipase |
| CIC/SLC25A1 | Mitochondrial citrate carrier |
| CPT-1 | Carnitine palmitoyltransferase 1 |
| cAMP | Cyclic adenosine monophosphate |
| CREB | cAMP response element-binding protein |
| DAG | Diacylglycerol |
| DNL | De novo lipogenesis |
| DGAT | Diacylglycerol acyltransferase |
| FA | Fatty acid |
| FAO | Fatty acid oxidation |
| FASN/FAS | Fatty acid synthase |
| FFA | Free fatty acid |
| FXR | Farnesoid X receptor |
| GPL | Glycerophospholipid |
| HDL | High-density lipoprotein |
| HFD | High-fat diet |
| HSC | Hematopoietic stem cell |
| IGF-1 | Insulin-like growth factor 1 |
| IIS | Insulin/IGF-1 signaling |
| IP3 | Inositol trisphosphate |
| IRS | Insulin receptor substrate |
| JNK | c-Jun N-terminal kinase |
| KGDHC | (Not used—ignore) |
| Krebs cycle/TCA | Tricarboxylic acid cycle |
| LD/LDs | Lipid droplet(s) |
| LDL | Low-density lipoprotein |
| LPL | Lipoprotein lipase |
| ME | Malic enzyme |
| MET | Metabolic equivalent of task |
| mTOR/mTORC1/mTORC2 | Mechanistic target of rapamycin (complex 1/2) |
| MUFAs | Monounsaturated fatty acids |
| NAEs | N-acylethanolamides (e.g., anandamide) |
| NAFLD | Non-alcoholic fatty liver disease |
| NASH | Non-alcoholic steatohepatitis |
| NPC1L1 | Niemann–Pick C1-like 1 |
| OXPHOS | Oxidative phosphorylation |
| PA/PPL | Physical activity/Postprandial lipemia |
| PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
| PDK1 | Pyruvate dehydrogenase kinase 1 |
| PFA | Paraformaldehyde (in immunohistochemistry, if used) |
| PIP2/PIP3 | Phosphatidylinositol-4,5-bisphosphate/Phosphatidylinositol-3,4,5-trisphosphate |
| PLIN1/2/5 | Perilipins |
| PPAR (α, γ-1, γ-2, δ) | Peroxisome proliferator-activated receptor |
| SCAP | SREBP cleavage-activating protein |
| SCD | Stearoyl-CoA desaturase |
| SCFA | Short-chain fatty acid |
| SFA | Saturated fatty acid |
| SREBPs | Sterol regulatory element-binding proteins |
| TG | Triglyceride |
| TVB-2640 | Denifanstat (Fatty acid synthase inhibitor) |
| TCA | Tricarboxylic acid cycle |
| VLCFA | Very-long-chain fatty acid |
| VLDL | Very low-density lipoprotein |
| WAT | White adipose tissue |
References
- Ghosh, S.; Raghunath, M.; Das, B.C.; Sinha, J.K. High Sugar Content in Baby Food: An Indian Perspective. Lancet Diabetes Endocrinol. 2019, 7, 748–749. [Google Scholar] [CrossRef]
- Natesan, V.; Kim, S.-J. Lipid Metabolism, Disorders and Therapeutic Drugs—Review. Biomol. Ther. 2021, 29, 596–604. [Google Scholar] [CrossRef]
- Ratnayake, W.M.N.; Galli, C. Fat and Fatty Acid Terminology, Methods of Analysis and Fat Digestion and Metabolism: A Background Review Paper. Ann. Nutr. Metab. 2009, 55, 8–43. [Google Scholar] [CrossRef]
- Ahmed, S.; Shah, P.; Ahmed, O. Biochemistry, Lipids; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Church, C.; Horowitz, M.; Rodeheffer, M. WAT Is a Functional Adipocyte? Adipocyte 2012, 1, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, A.; Vijayakumar, N. Urea Cycle Pathway Targeted Therapeutic Action of Naringin against Ammonium Chloride Induced Hyperammonemic Rats. Biomed. Pharmacother. 2017, 94, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sinha, J.K.; Putcha, U.K.; Raghunath, M. Severe but Not Moderate Vitamin B12 Deficiency Impairs Lipid Profile, Induces Adiposity, and Leads to Adverse Gestational Outcome in Female C57BL/6 Mice. Front. Nutr. 2016, 3, 1. [Google Scholar] [CrossRef]
- Yoon, H.; Shaw, J.L.; Haigis, M.C.; Greka, A. Lipid Metabolism in Sickness and in Health: Emerging Regulators of Lipotoxicity. Mol. Cell 2021, 81, 3708–3730. [Google Scholar] [CrossRef]
- Tian, L.; Yu, X. Lipid Metabolism Disorders and Bone Dysfunction-Interrelated and Mutually Regulated (Review). Mol. Med. Rep. 2015, 12, 783–794. [Google Scholar] [CrossRef]
- Mutlu, A.S.; Duffy, J.; Wang, M.C. Lipid Metabolism and Lipid Signals in Aging and Longevity. Dev. Cell 2021, 56, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Rossignol, F.; Vaz, F.M.; Ferreira, C.R. Inherited Disorders of Complex Lipid Metabolism: A Clinical Review. J. Inherit. Metab. Dis. 2021, 44, 809–825. [Google Scholar] [CrossRef]
- Quispe, R.; Hendrani, A.; Baradaran-Noveiry, B.; Martin, S.; Brown, E.; Kulkarni, K.; Banach, M.; Toth, P.; Brinton, E.; Jones, S.; et al. Characterization of Lipoprotein Profiles in Patients with Hypertriglyceridemic Fredrickson-Levy and Lees Dyslipidemia Phenotypes: The Very Large Database of Lipids Studies 6 and 7. Arch. Med. Sci. 2019, 15, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, I.J.; Trent, C.M.; Schulze, P.C. Lipid Metabolism and Toxicity in the Heart. Cell Metab. 2012, 15, 805–812. [Google Scholar] [CrossRef]
- Loeser, R.F.; Collins, J.A.; Diekman, B.O. Ageing and the Pathogenesis of Osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 412–420. [Google Scholar] [CrossRef]
- Vashisth, K.; Sinha, J.K.; Jha, N.K.; Singh, M.P.; Singh, K.K.; Narayanan, K.B.; Shampa, G. Neuropharmacological Insights into Type 3 Diabetes: Molecular Mechanisms, Therapeutic Advances, and Future Directions. J. Biol. Regul. Homeost. Agents 2024, 38, 3645–3655. [Google Scholar] [CrossRef]
- Seo, J.-Y.; Kim, T.-H.; Kang, K.-R.; Lim, H.; Choi, M.-C.; Kim, D.K.; Chun, H.S.; Kim, H.-J.; Yu, S.-K.; Kim, J.-S. 7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis. Mol. Cells 2023, 46, 245–255. [Google Scholar] [CrossRef]
- Chung, K.W. Advances in Understanding of the Role of Lipid Metabolism in Aging. Cells 2021, 10, 880. [Google Scholar] [CrossRef]
- Raghu, P. Functional Diversity in a Lipidome. Proc. Natl. Acad. Sci. USA 2020, 117, 11191–11193. [Google Scholar] [CrossRef] [PubMed]
- Cockroft, S. Mammalian lipids: Structure, synthesis and fuction. Essays Biochem. 2021, 65, 813–845. [Google Scholar] [CrossRef]
- Zaidi, N.; Swinnen, J.V.; Smans, K. ATP-Citrate Lyase: A Key Player in Cancer Metabolism. Cancer Res. 2012, 72, 3709–3714. [Google Scholar] [CrossRef]
- Bogie, J.F.J.; Grajchen, E.; Wouters, E.; Corrales, A.G.; Dierckx, T.; Vanherle, S.; Mailleux, J.; Gervois, P.; Wolfs, E.; Dehairs, J.; et al. Stearoyl-CoA Desaturase-1 Impairs the Reparative Properties of Macrophages and Microglia in the Brain. J. Exp. Med. 2020, 217, e20191660. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.J.; Levin, M.C.; Farese, R.V. Membrane Topology and Identification of Key Functional Amino Acid Residues of Murine Acyl-CoA:Diacylglycerol Acyltransferase-2. J. Biol. Chem. 2006, 281, 40273–40282. [Google Scholar] [CrossRef] [PubMed]
- Aregger, M.; Lawson, K.A.; Billmann, M.; Costanzo, M.; Tong, A.H.Y.; Chan, K.; Rahman, M.; Brown, K.R.; Ross, C.; Usaj, M.; et al. Systematic Mapping of Genetic Interactions for de Novo Fatty Acid Synthesis Identifies C12orf49 as a Regulator of Lipid Metabolism. Nat. Metab. 2020, 2, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Grabner, G.F.; Xie, H.; Schweiger, M.; Zechner, R. Lipolysis: Cellular Mechanisms for Lipid Mobilization from Fat Stores. Nat. Metab. 2021, 3, 1445–1465. [Google Scholar] [CrossRef]
- Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human Fatty Liver Disease: Old Questions and New Insights. Science (80-.) 2011, 332, 1519–1523. [Google Scholar] [CrossRef]
- Haemmerle, G.; Lass, A.; Zimmermann, R.; Gorkiewicz, G.; Meyer, C.; Rozman, J.; Heldmaier, G.; Maier, R.; Theussl, C.; Eder, S.; et al. Defective Lipolysis and Altered Energy Metabolism in Mice Lacking Adipose Triglyceride Lipase. Science (80-.) 2006, 312, 734–737. [Google Scholar] [CrossRef]
- Peyot, M.-L.; Guay, C.; Latour, M.G.; Lamontagne, J.; Lussier, R.; Pineda, M.; Ruderman, N.B.; Haemmerle, G.; Zechner, R.; Joly, É.; et al. Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-Fuel-Stimulated Insulin Secretion. J. Biol. Chem. 2009, 284, 16848–16859. [Google Scholar] [CrossRef] [PubMed]
- Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. FAT SIGNALS-Lipases and Lipolysis in Lipid Metabolism and Signaling. Cell Metab. 2012, 15, 279–291. [Google Scholar] [CrossRef]
- Cen, B.; Wei, J.; Wang, D.; DuBois, R.N. Peroxisome Proliferator–Activated Receptor δ Suppresses the Cytotoxicity of CD8+ T Cells by Inhibiting RelA DNA-Binding Activity. Cancer Res. Commun. 2024, 4, 2673–2684. [Google Scholar] [CrossRef]
- Theys, C.; Vanderhaeghen, T.; Van Dijck, E.; Peleman, C.; Scheepers, A.; Ibrahim, J.; Mateiu, L.; Timmermans, S.; Vanden Berghe, T.; Francque, S.M.; et al. Loss of PPARα Function Promotes Epigenetic Dysregulation of Lipid Homeostasis Driving Ferroptosis and Pyroptosis Lipotoxicity in Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD). Front. Mol. Med. 2024, 3, 1283170. [Google Scholar] [CrossRef]
- Gastaldelli, A. Is It Necessary to Target Lipid Metabolism in Different Organs for Effective Treatment of NASH?—The Results of the Pan-PPAR Lanifibranor Trial. Hepatobiliary Surg. Nutr. 2022, 11, 481–484. [Google Scholar] [CrossRef]
- Cooreman, M.P.; Butler, J.; Giugliano, R.P.; Zannad, F.; Dzen, L.; Huot-Marchand, P.; Baudin, M.; Beard, D.R.; Junien, J.-L.; Broqua, P.; et al. The Pan-PPAR Agonist Lanifibranor Improves Cardiometabolic Health in Patients with Metabolic Dysfunction-Associated Steatohepatitis. Nat. Commun. 2024, 15, 3962. [Google Scholar] [CrossRef]
- Vallerie, S.N.; Hotamisligil, G.S. The Role of JNK Proteins in Metabolism. Sci. Transl. Med. 2010, 2, 60rv5. [Google Scholar] [CrossRef]
- Jeon, Y.G.; Kim, Y.Y.; Lee, G.; Kim, J.B. Physiological and Pathological Roles of Lipogenesis. Nat. Metab. 2023, 5, 735–759. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Kumar, S.; Kant, R. An Update on Metabolic Syndrome: Metabolic Risk Markers and Adipokines in the Development of Metabolic Syndrome. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2409–2417. [Google Scholar] [CrossRef]
- Poursharifi, P.; Madiraju, S.R.M.; Oppong, A.; Kajimura, S.; Nolan, C.J.; Blondin, D.P.; Prentki, M. Glycerolipid Cycling in Thermogenesis, Energy Homeostasis, Signaling, and Diseases. Physiol. Rev. 2025, 105, 2449–2499. [Google Scholar] [CrossRef] [PubMed]
- Wunderling, K.; Zurkovic, J.; Zink, F.; Kuerschner, L.; Thiele, C. Triglyceride Cycling Enables Modification of Stored Fatty Acids. Nat. Metab. 2023, 5, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Khandelwal, R.; Wolfrum, C. Futile Lipid Cycling: From Biochemistry to Physiology. Nat. Metab. 2024, 6, 808–824. [Google Scholar] [CrossRef]
- Bogner-Strauss, J.G. N-Acetylaspartate Metabolism Outside the Brain: Lipogenesis, Histone Acetylation, and Cancer. Front. Endocrinol. 2017, 8, 240. [Google Scholar] [CrossRef]
- Castelli, S.; Desideri, E.; Laureti, L.; Felice, F.; De Cristofaro, A.; Scaricamazza, S.; Lazzarino, G.; Ciriolo, M.R.; Ciccarone, F. N-Acetylaspartate Promotes Glycolytic-to-Oxidative Fiber-Type Switch and Resistance to Atrophic Stimuli in Myotubes. Cell Death Dis. 2024, 15, 686. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Carneiro-Freire, N.; Seco-Filgueira, M.; Fernández-Fernández, C.; Mouriño-Bayolo, D. Mitochondrial β-Oxidation of Saturated Fatty Acids in Humans. Mitochondrion 2019, 46, 73–90. [Google Scholar] [CrossRef]
- Smith, D.M.; Choi, J.; Wolfgang, M.J. Tissue Specific Roles of Fatty Acid Oxidation. Adv. Biol. Regul. 2025, 95, 101070. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, Y.; Huang, Q.; Chen, Y.; Zeng, K.; Yang, W.; Chen, J.; Chen, J. Important Hormones Regulating Lipid Metabolism. Molecules 2022, 27, 7052. [Google Scholar] [CrossRef]
- Lin, H.V.; Accili, D. Hormonal Regulation of Hepatic Glucose Production in Health and Disease. Cell Metab. 2011, 14, 9–19. [Google Scholar] [CrossRef]
- Filhoulaud, G.; Guilmeau, S.; Dentin, R.; Girard, J.; Postic, C. Novel Insights into ChREBP Regulation and Function. Trends Endocrinol. Metab. 2013, 24, 257–268. [Google Scholar] [CrossRef]
- von Meyenn, F.; Porstmann, T.; Gasser, E.; Selevsek, N.; Schmidt, A.; Aebersold, R.; Stoffel, M. Glucagon-Induced Acetylation of Foxa2 Regulates Hepatic Lipid Metabolism. Cell Metab. 2013, 17, 436–447. [Google Scholar] [CrossRef]
- Janah, L.; Kjeldsen, S.; Galsgaard, K.D.; Winther-Sørensen, M.; Stojanovska, E.; Pedersen, J.; Knop, F.K.; Holst, J.J.; Wewer Albrechtsen, N.J. Glucagon Receptor Signaling and Glucagon Resistance. Int. J. Mol. Sci. 2019, 20, 3314. [Google Scholar] [CrossRef]
- Sethi, P.; Bhaskar, R.; Singh, K.K.; Gupta, S.; Han, S.S.; Avinash, D.; Abomughaid, M.M.; Koul, A.; Rani, B.; Ghosh, S.; et al. Exploring Advancements in Early Detection of Alzheimer’s Disease with Molecular Assays and Animal Models. Ageing Res. Rev. 2024, 100, 102411. [Google Scholar] [CrossRef] [PubMed]
- Soto-Avellaneda, A.; Morrison, B.E. Signaling and Other Functions of Lipids in Autophagy: A Review. Lipids Health Dis. 2020, 19, 214. [Google Scholar] [CrossRef]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Staels, B.; Butruille, L.; Francque, S. Treating NASH by Targeting Peroxisome Proliferator-Activated Receptors. J. Hepatol. 2023, 79, 1302–1316. [Google Scholar] [CrossRef] [PubMed]
- Capolupo, L. Single-Cell Lipidomics Reveals the Organizing Principle of Cell Fate Decision. Nat. Rev. Mol. Cell Biol. 2023, 24, 377. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, M.; Lam, S.M.; Shui, G. Embracing Lipidomics at Single-Cell Resolution: Promises and Pitfalls. TrAC Trends Anal. Chem. 2023, 160, 116973. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef]
- Tyagi, S.; Gupta, P.; Saini, A.; Kaushal, C.; Sharma, S. The Peroxisome Proliferator-Activated Receptor: A Family of Nuclear Receptors Role in Various Diseases. J. Adv. Pharm. Technol. Res. 2011, 2, 236. [Google Scholar] [CrossRef]
- Holland, W.L.; Summers, S.A. Sphingolipids, Insulin Resistance, and Metabolic Disease: New Insights from in Vivo Manipulation of Sphingolipid Metabolism. Endocr. Rev. 2008, 29, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance. Endocr. Rev. 2006, 27, 73–100. [Google Scholar] [CrossRef]
- Ghosh, S.; Durgvanshi, S.; Agarwal, S.; Raghunath, M.; Sinha, J.K. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 883–903. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sinha, J.K.; Raghunath, M. Epigenomic Maintenance through Dietary Intervention Can Facilitate DNA Repair Process to Slow down the Progress of Premature Aging. IUBMB Life 2016, 68, 717–721. [Google Scholar] [CrossRef]
- Bruce, K.D.; Zsombok, A.; Eckel, R.H. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front. Endocrinol. 2017, 8, 717–721. [Google Scholar] [CrossRef]
- Kim, S.J.; Hyun, J. Altered Lipid Metabolism as a Predisposing Factor for Liver Metastasis in MASLD. Mol. Cells 2024, 47, 100010. [Google Scholar] [CrossRef]
- Verma, N. Introduction to Hyperlipidemia and Its Treatment: A Review. Int. J. Curr. Pharm. Res. 2016, 9, 6. [Google Scholar] [CrossRef]
- Ofori, E.K.; Buabeng, A.; Amanquah, S.D.; Danquah, K.O.; Amponsah, S.K.; Dziedzorm, W.; Dogodzi, F.K.; Adusu-Donkor, L.X.; Bernard, S.K.; Asare-Anane, H. Effect of Circulating Ceramides on Adiposity and Insulin Resistance in Patients with Type 2 Diabetes: An Observational Cross-sectional Study. Endocrinol. Diabetes Metab. 2023, 6, e418. [Google Scholar] [CrossRef]
- Kim, Y.R.; Han, K.H. Familial Hypercholesterolemia and the Atherosclerotic Disease. Korean Circ. J. 2013, 43, 363. [Google Scholar] [CrossRef] [PubMed]
- Elmehdawi, R. Hypolipidemia: A Word of Caution. Libyan J. Med. 2008, 3, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Platt, F.M.; D’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal Storage Diseases. Nat. Rev. Dis. Prim. 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, P.; Ronald, W. Peroxisomal Disorders. Handb. Clin. Neurol. 2013, 113, 1593–1609. [Google Scholar]
- Merritt, J.L., II; Norris, M.; Kanungo, S. Fatty Acid Oxidation Disorders. Ann. Transl. Med. 2018, 6, 473. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Zhang, Y.; Liu, J.; Jiang, L.; Hu, L.; Yao, K.; Yu, Y.; Chen, X. Cholesterol Metabolism: Physiological Regulation and Diseases. MedComm 2024, 5, e476. [Google Scholar] [CrossRef]
- Elkanawati, R.; Sumiwi, S.; Levita, J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des. Devel. Ther. 2024, 18, 3337–3360. [Google Scholar] [CrossRef]
- Jani, S.; Da Eira, D.; Ceddia, R.B. Insulin-resistant Female Rat Skeletal Muscles Display Diacylglycerol-mediated Protein Kinase C Activation and Inflammation without Ceramide Accumulation. J. Physiol. 2023, 601, 1745–1759. [Google Scholar] [CrossRef]
- Pan, Y.; Li, J.; Lin, P.; Wan, L.; Qu, Y.; Cao, L.; Wang, L. A Review of the Mechanisms of Abnormal Ceramide Metabolism in Type 2 Diabetes Mellitus, Alzheimer’s Disease, and Their Co-Morbidities. Front. Pharmacol. 2024, 15, 1348410. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sinha, J.K.; Raghunath, M. ‘Obesageing’: Linking obesity & ageing. Indian J. Med. Res. 2019, 149, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Spitler, K.M.; Davies, B.S.J. Aging and Plasma Triglyceride Metabolism. J. Lipid Res. 2020, 61, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Camell, C.D.; Sander, J.; Spadaro, O.; Lee, A.; Nguyen, K.Y.; Wing, A.; Goldberg, E.L.; Youm, Y.-H.; Brown, C.W.; Elsworth, J.; et al. Inflammasome-Driven Catecholamine Catabolism in Macrophages Blunts Lipolysis during Ageing. Nature 2017, 550, 119–123. [Google Scholar] [CrossRef]
- Pérez, L.M.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Emanuele, E.; Lucia, A.; Gálvez, B.G. ‘Adipaging’: Ageing and Obesity Share Biological Hallmarks Related to a Dysfunctional Adipose Tissue. J. Physiol. 2016, 594, 3187–3207. [Google Scholar] [CrossRef]
- Palmer, A.K.; Kirkland, J.L. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine. Exp. Gerontol. 2016, 86, 97–105. [Google Scholar] [CrossRef]
- Shah, R.V.; Murthy, V.L.; Abbasi, S.A.; Blankstein, R.; Kwong, R.Y.; Goldfine, A.B.; Jerosch-Herold, M.; Lima, J.A.C.; Ding, J.; Allison, M.A. Visceral Adiposity and the Risk of Metabolic Syndrome Across Body Mass Index. JACC Cardiovasc. Imaging 2014, 7, 1221–1235. [Google Scholar] [CrossRef]
- Nagayach, A.; Bhaskar, R.; Ghosh, S.; Singh, K.K.; Han, S.S.; Sinha, J.K. Advancing the Understanding of Diabetic Encephalopathy through Unravelling Pathogenesis and Exploring Future Treatment Perspectives. Ageing Res. Rev. 2024, 100, 102450. [Google Scholar] [CrossRef]
- Miller, K.N.; Burhans, M.S.; Clark, J.P.; Howell, P.R.; Polewski, M.A.; DeMuth, T.M.; Eliceiri, K.W.; Lindstrom, M.J.; Ntambi, J.M.; Anderson, R.M. Aging and Caloric Restriction Impact Adipose Tissue, Adiponectin, and Circulating Lipids. Aging Cell 2017, 16, 497–507. [Google Scholar] [CrossRef]
- Craige, S.M.; Mammel, R.K.; Amiri, N.; Willoughby, O.S.; Drake, J.C. Interplay of ROS, Mitochondrial Quality, and Exercise in Aging: Potential Role of Spatially Discrete Signaling. Redox Biol. 2024, 77, 103371. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Deng, S.; Lian, Z.; Yu, K. Skeletal Muscle Oxidative Stress and Inflammation in Aging: Focus on Antioxidant and Anti-Inflammatory Therapy. Front. Cell Dev. Biol. 2022, 10, 964130. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef]
- Lapierre, L.R.; Hansen, M. Lessons from C. elegans: Signaling Pathways for Longevity. Trends Endocrinol. Metab. 2012, 23, 637–644. [Google Scholar] [CrossRef]
- Perez, C.L.; Van Gilst, M.R. A 13C Isotope Labeling Strategy Reveals the Influence of Insulin Signaling on Lipogenesis in C. elegans. Cell Metab. 2008, 8, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Judy, M.; Lee, S.-J.; Kenyon, C. Direct and Indirect Gene Regulation by a Life-Extending FOXO Protein in C. elegans: Roles for GATA Factors and Lipid Gene Regulators. Cell Metab. 2013, 17, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol. Sci. 2017, 38, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Sabatini, D.M. MTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Blackwell, T.K.; Sewell, A.K.; Wu, Z.; Han, M. TOR Signaling in Caenorhabditis Elegans Development, Metabolism, and Aging. Genetics 2019, 213, 329–360. [Google Scholar] [CrossRef]
- Li, S.; Brown, M.S.; Goldstein, J.L. Bifurcation of Insulin Signaling Pathway in Rat Liver: MTORC1 Required for Stimulation of Lipogenesis, but Not Inhibition of Gluconeogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 3441–3446. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, A.; Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Molecular Interplay between Mammalian Target of Rapamycin (mTOR), Amyloid-β, and Tau. J. Biol. Chem. 2010, 285, 13107–13120. [Google Scholar] [CrossRef]
- Han, S.; Schroeder, E.A.; Silva-García, C.G.; Hebestreit, K.; Mair, W.B.; Brunet, A. Mono-Unsaturated Fatty Acids Link H3K4me3 Modifiers to C. elegans Lifespan. Nature 2017, 544, 185–190. [Google Scholar] [CrossRef]
- Folick, A.; Oakley, H.D.; Yu, Y.; Armstrong, E.H.; Kumari, M.; Sanor, L.; Moore, D.D.; Ortlund, E.A.; Zechner, R.; Wang, M.C. Lysosomal Signaling Molecules Regulate Longevity in Caenorhabditis Elegans. Science (80-.) 2015, 347, 83–86. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, T.; Zhang, M.; Li, C.; Liu, Q.; Li, F. Prevalence, Awareness and Control of Type 2 Diabetes Mellitus and Risk Factors in Chinese Elderly Population. BMC Public Health 2022, 22, 1382. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Singh, K.K.; Jha, S.; Raghunath, M.; Sinha, J.K. Interconnected Dynamics of ‘Obesageing’: Intricate Relationship Between Obesity and Ageing Processes. Alzheimer’s Dement. 2024, 20, e085889. [Google Scholar] [CrossRef]
- Sinha, J.K.; Ghosh, S.; Raghunath, M. Concomitant High Oxidative Stress and Poor Antioxidant Enzyme Activity with DNA Damage May Underlie Obesity and Reduced Longevity in WNIN/Ob Obese Rats. J. Neurol. Sci. 2021, 429, 118615. [Google Scholar] [CrossRef]
- Song, R.; Hu, M.; Qin, X.; Qiu, L.; Wang, P.; Zhang, X.; Liu, R.; Wang, X. The Roles of Lipid Metabolism in the Pathogenesis of Chronic Diseases in the Elderly. Nutrients 2023, 15, 3433. [Google Scholar] [CrossRef] [PubMed]
- Ciccarone, F.; Castelli, S.; Lazzarino, G.; Scaricamazza, S.; Mangione, R.; Bernardini, S.; Apolloni, S.; D’Ambrosi, N.; Ferri, A.; Ciriolo, M.R. Lipid Catabolism and Mitochondrial Uncoupling Are Stimulated in Brown Adipose Tissue of Amyotrophic Lateral Sclerosis Mouse Models. Genes Dis. 2023, 10, 321–324. [Google Scholar] [CrossRef]
- Milan, A.M.; Cameron-Smith, D. Digestion and Postprandial Metabolism in the Elderly. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2015; pp. 79–124. [Google Scholar]
- Yamamoto, K.; E, S.; Hatakeyama, Y.; Sakamoto, Y.; Tsuduki, T. High-Fat Diet Intake from Senescence Inhibits the Attenuation of Cell Functions and the Degeneration of Villi with Aging in the Small Intestine, and Inhibits the Attenuation of Lipid Absorption Ability in SAMP8 Mice. J. Clin. Biochem. Nutr. 2015, 57, 204–211. [Google Scholar] [CrossRef]
- Castro, A.; Signini, É.F.; De Oliveira, J.M.; Di Medeiros Leal, M.C.B.; Rehder-Santos, P.; Millan-Mattos, J.C.; Minatel, V.; Pantoni, C.B.F.; Oliveira, R.V.; Catai, A.M.; et al. The Aging Process: A Metabolomics Perspective. Molecules 2022, 27, 8656. [Google Scholar] [CrossRef]
- Katsiki, N.; Kolovou, G.; Perez-Martinez, P.; Mikhailidis, D.P. Dyslipidaemia in the Elderly: To Treat or Not to Treat? Expert Rev. Clin. Pharmacol. 2018, 11, 259–278. [Google Scholar] [CrossRef]
- Eum, J.Y.; Lee, J.C.; Yi, S.S.; Kim, I.Y.; Seong, J.K.; Moon, M.H. Aging-Related Lipidomic Changes in Mouse Serum, Kidney, and Heart by Nanoflow Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2020, 1618, 460849. [Google Scholar] [CrossRef]
- Sutton, N.R.; Bouïs, D.; Mann, K.M.; Rashid, I.M.; McCubbrey, A.L.; Hyman, M.C.; Goldstein, D.R.; Mei, A.; Pinsky, D.J. CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Li, H.; Ai, F.; Sun, F.; Singh, M.; Cao, X.; Jiang, J.; He, Y.; Tang, Z.; Guo, X. Association between the Triglyceride to High-Density Lipoprotein Cholesterol Ratio and the Risk of Type 2 Diabetes Mellitus among Chinese Elderly: The Beijing Longitudinal Study of Aging. BMJ Open Diabetes Res. Care 2020, 8, e000811. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Pérez-Sousa, M.; González-Ruíz, K.; Cano-Gutierrez, C.; Schmidt-RioValle, J.; Correa-Rodríguez, M.; Izquierdo, M.; Romero-García, J.; Campos-Rodríguez, A.; Triana-Reina, H.; et al. Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients 2019, 11, 2654. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jin, L.; Yang, J.-K.; Wang, B.; Wu, K.K.L.; Hallenborg, P.; Xu, A.; Cheng, K.K.Y. The Dysfunctional MDM2–p53 Axis in Adipocytes Contributes to Aging-Related Metabolic Complications by Induction of Lipodystrophy. Diabetes 2018, 67, 2397–2409. [Google Scholar] [CrossRef]
- Søndergaard, E.; Johansen, R.F.; Jensen, M.D.; Nielsen, S. Postprandial VLDL-TG Metabolism in Type 2 Diabetes. Metabolism 2017, 75, 25–35. [Google Scholar] [CrossRef]
- Tam, B.T.; Morais, J.A.; Santosa, S. Obesity and Ageing: Two Sides of the Same Coin. Obes. Rev. 2020, 21, e12991. [Google Scholar] [CrossRef]
- Arner, P.; Bernard, S.; Appelsved, L.; Fu, K.-Y.; Andersson, D.P.; Salehpour, M.; Thorell, A.; Rydén, M.; Spalding, K.L. Adipose Lipid Turnover and Long-Term Changes in Body Weight. Nat. Med. 2019, 25, 1385–1389. [Google Scholar] [CrossRef]
- Reyes-Farias, M.; Fos-Domenech, J.; Serra, D.; Herrero, L.; Sánchez-Infantes, D. White Adipose Tissue Dysfunction in Obesity and Aging. Biochem. Pharmacol. 2021, 192, 114723. [Google Scholar] [CrossRef]
- Feng, J.; Xu, H.; Pan, F.; Hu, J.; Wu, Y.; Lin, N.; Zhang, X.; Ji, C.; Hu, Y.; Zhong, H.; et al. An Integrated Analysis of MRNA and LncRNA Expression Profiles Indicates Their Potential Contribution to Brown Fat Dysfunction with Aging. Front. Endocrinol. 2020, 11, 46. [Google Scholar] [CrossRef]
- Wu, Q.; He, S.; Zhu, Y.; Pu, S.; Zhou, Z. Antiobesity Effects of Adipose-Derived Stromal/Stem Cells in a Naturally Aged Mouse Model. Obesity 2021, 29, 133–142. [Google Scholar] [CrossRef]
- Chen, T.; Lai, M.; Lin, W.; Huang, K.; Yang, K. Metabolic Profiles and Fibrosis of Nonalcoholic Fatty Liver Disease in the Elderly: A Community-based Study. J. Gastroenterol. Hepatol. 2020, 35, 1636–1643. [Google Scholar] [CrossRef]
- Wan, J.; Wu, X.; Chen, H.; Xia, X.; Song, X.; Chen, S.; Lu, X.; Jin, J.; Su, Q.; Cai, D.; et al. Aging-induced Aberrant RAGE/PPARα Axis Promotes Hepatic Steatosis via Dysfunctional Mitochondrial β Oxidation. Aging Cell 2020, 19, e13238. [Google Scholar] [CrossRef]
- Ishizuka, K.; Kon, K.; Lee-Okada, H.; Arai, K.; Uchiyama, A.; Yamashina, S.; Yokomizo, T.; Ikejima, K. Aging Exacerbates High-fat Diet-induced Steatohepatitis through Alteration in Hepatic Lipid Metabolism in Mice. J. Gastroenterol. Hepatol. 2020, 35, 1437–1448. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, Z.; Huang, C.; Lin, C.; Tsai, T. Cisd2 Slows down Liver Aging and Attenuates Age-related Metabolic Dysfunction in Male Mice. Aging Cell 2021, 20, e13523. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhou, B.; Yang, G.; Hu, W.; Zhang, L.; Liu, R.; Li, M.; Wang, K.; Gu, H.F.; Guan, Y.; et al. JAZF1 Ameliorates Age and Diet-Associated Hepatic Steatosis through SREBP-1c -Dependent Mechanism. Cell Death Dis. 2018, 9, 859. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Dai, J.-Y. Progress of Potential Drugs Targeted in Lipid Metabolism Research. Front. Pharmacol. 2022, 13, 1067652. [Google Scholar] [CrossRef] [PubMed]
- Nury, T.; Lizard, G.; Vejux, A. Lipids Nutrients in Parkinson and Alzheimer’s Diseases: Cell Death and Cytoprotection. Int. J. Mol. Sci. 2020, 21, 2501. [Google Scholar] [CrossRef]
- Mistry, J.J.; Hellmich, C.; Moore, J.A.; Jibril, A.; Macaulay, I.; Moreno-Gonzalez, M.; Di Palma, F.; Beraza, N.; Bowles, K.M.; Rushworth, S.A. Free Fatty-Acid Transport via CD36 Drives β-Oxidation-Mediated Hematopoietic Stem Cell Response to Infection. Nat. Commun. 2021, 12, 7130. [Google Scholar] [CrossRef]
- Deng, H.; Li, W. Monoacylglycerol Lipase Inhibitors: Modulators for Lipid Metabolism in Cancer Malignancy, Neurological and Metabolic Disorders. Acta Pharm. Sin. B 2020, 10, 582–602. [Google Scholar] [CrossRef]
- Gil-Ordóñez, A.; Martín-Fontecha, M.; Ortega-Gutiérrez, S.; López-Rodríguez, M.L. Monoacylglycerol Lipase (MAGL) as a Promising Therapeutic Target. Biochem. Pharmacol. 2018, 157, 18–32. [Google Scholar] [CrossRef]
- Luo, J.; Yang, H.; Song, B.-L. Mechanisms and Regulation of Cholesterol Homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef]
- Xie, C.; Zhou, Z.-S.; Li, N.; Bian, Y.; Wang, Y.-J.; Wang, L.-J.; Li, B.-L.; Song, B.-L. Ezetimibe Blocks the Internalization of NPC1L1 and Cholesterol in Mouse Small Intestine. J. Lipid Res. 2012, 53, 2092–2101. [Google Scholar] [CrossRef]
- Garcia-Calvo, M.; Lisnock, J.; Bull, H.G.; Hawes, B.E.; Burnett, D.A.; Braun, M.P.; Crona, J.H.; Davis, H.R.; Dean, D.C.; Detmers, P.A.; et al. The Target of Ezetimibe Is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl. Acad. Sci. USA 2005, 102, 8132–8137. [Google Scholar] [CrossRef]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Balaraju, S.; Töpf, A.; McMacken, G.; Kumar, V.P.; Pechmann, A.; Roper, H.; Vengalil, S.; Polavarapu, K.; Nashi, S.; Mahajan, N.P.; et al. Congenital Myasthenic Syndrome with Mild Intellectual Disability Caused by a Recurrent SLC25A1 Variant. Eur. J. Hum. Genet. 2020, 28, 373–377. [Google Scholar] [CrossRef]
- Tan, M.; Mosaoa, R.; Graham, G.T.; Kasprzyk-Pawelec, A.; Gadre, S.; Parasido, E.; Catalina-Rodriguez, O.; Foley, P.; Giaccone, G.; Cheema, A.; et al. Inhibition of the Mitochondrial Citrate Carrier, Slc25a1, Reverts Steatosis, Glucose Intolerance, and Inflammation in Preclinical Models of NAFLD/NASH. Cell Death Differ. 2020, 27, 2143–2157. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Leit, S.; Kuai, J.; Therrien, E.; Rafi, S.; Harwood, H.J.; DeLaBarre, B.; Tong, L. An Allosteric Mechanism for Potent Inhibition of Human ATP-Citrate Lyase. Nature 2019, 568, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Jena, B.S.; Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Chemistry and Biochemistry of (−)-Hydroxycitric Acid from Garcinia. J. Agric. Food Chem. 2002, 50, 10–22. [Google Scholar] [CrossRef]
- Syed-Abdul, M.M.; Parks, E.J.; Gaballah, A.H.; Bingham, K.; Hammoud, G.M.; Kemble, G.; Buckley, D.; McCulloch, W.; Manrique-Acevedo, C. Fatty Acid Synthase Inhibitor TVB-2640 Reduces Hepatic de Novo Lipogenesis in Males with Metabolic Abnormalities. Hepatology 2020, 72, 103–118. [Google Scholar] [CrossRef]
- Alkhouri, N.; Lawitz, E.; Noureddin, M.; DeFronzo, R.; Shulman, G.I. GS-0976 (Firsocostat): An Investigational Liver-Directed Acetyl-CoA Carboxylase (ACC) Inhibitor for the Treatment of Non-Alcoholic Steatohepatitis (NASH). Expert Opin. Investig. Drugs 2020, 29, 135–141. [Google Scholar] [CrossRef]
- Lawitz, E.J.; Bhandari, B.R.; Ruane, P.J.; Kohli, A.; Harting, E.; Ding, D.; Chuang, J.-C.; Huss, R.S.; Chung, C.; Myers, R.P.; et al. Fenofibrate Mitigates Hypertriglyceridemia in Nonalcoholic Steatohepatitis Patients Treated with Cilofexor/Firsocostat. Clin. Gastroenterol. Hepatol. 2023, 21, 143–152.e3. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.R.; Carley, A.N.; Ji, R.; Zhang, X.; Fasano, M.; Schulze, P.C.; Lewandowski, E.D. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking. Circulation 2019, 139, 2765–2777. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Liang, K.; Zhao, S.; Jia, W.; Liu, Y.; Wu, H.; Lv, J.; Cao, C.; Chen, T.; Zhuang, S.; et al. Chemoproteomics Reveals Baicalin Activates Hepatic CPT1 to Ameliorate Diet-Induced Obesity and Hepatic Steatosis. Proc. Natl. Acad. Sci. USA 2018, 115, E5896–E5905. [Google Scholar] [CrossRef]
- Sinha, J.K.; Jorwal, K.; Singh, K.K.; Han, S.S.; Bhaskar, R.; Ghosh, S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol. Neurobiol. 2025, 62, 6748–6763. [Google Scholar] [CrossRef] [PubMed]
- Le, L.T.M.; Thompson, J.R.; Dang, P.X.; Bhandari, J.; Alam, A. Structures of the Human Peroxisomal Fatty Acid Transporter ABCD1 in a Lipid Environment. Commun. Biol. 2022, 5, 7. [Google Scholar] [CrossRef]
- Friesen, J.A.; Rodwell, V.W. The 3-Hydroxy-3-Methylglutaryl Coenzyme-A (HMG-CoA) Reductases. Genome Biol. 2004, 5, 248. [Google Scholar] [CrossRef]
- Lagace, T.A. PCSK9 and LDLR Degradation. Curr. Opin. Lipidol. 2014, 25, 387–393. [Google Scholar] [CrossRef]
- Verschueren, K.H.G.; Blanchet, C.; Felix, J.; Dansercoer, A.; De Vos, D.; Bloch, Y.; Van Beeumen, J.; Svergun, D.; Gutsche, I.; Savvides, S.N.; et al. Structure of ATP Citrate Lyase and the Origin of Citrate Synthase in the Krebs Cycle. Nature 2019, 568, 571–575. [Google Scholar] [CrossRef]
- Polyak, S.W.; Abell, A.D.; Wilce, M.C.J.; Zhang, L.; Booker, G.W. Structure, Function and Selective Inhibition of Bacterial Acetyl-Coa Carboxylase. Appl. Microbiol. Biotechnol. 2012, 93, 983–992. [Google Scholar] [CrossRef]
- Chiang, J.Y.L.; Ferrell, J.M. Discovery of Farnesoid X Receptor and Its Role in Bile Acid Metabolism. Mol. Cell. Endocrinol. 2022, 548, 111618. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Stone, S.J.; Zhou, P.; Buhman, K.K.; Farese, R.V. Dissociation of Obesity and Impaired Glucose Disposal in Mice Overexpressing Acyl Coenzyme A:Diacylglycerol Acyltransferase 1 in White Adipose Tissue. Diabetes 2002, 51, 3189–3195. [Google Scholar] [CrossRef]
- Hussain, M.; Nijstad, N.; Franceschini, L. Regulation of Microsomal Triglyceride Transfer Protein. Clin. Lipidol. 2011, 6, 293–303. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight Regain and Cardiometabolic Effects after Withdrawal of Semaglutide: The STEP 1 Trial Extension. Diabetes. Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Batterham, R.L.; Bhatta, M.; Buscemi, S.; Christensen, L.N.; Frias, J.P.; Jódar, E.; Kandler, K.; Rigas, G.; Wadden, T.A.; et al. Two-Year Effects of Semaglutide in Adults with Overweight or Obesity: The STEP 5 Trial. Nat. Med. 2022, 28, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drugs Administration. FDA Approves First Treatment for Patients with Liver Scarring Due to Fatty Liver Disease. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-patients-liver-scarring-due-fatty-liver-disease (accessed on 10 March 2025).
- Yang, Z.; Wang, L. Current, Emerging, and Potential Therapies for Non-Alcoholic Steatohepatitis. Front. Pharmacol. 2023, 14, 1152042. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Pradhan, A.; Bhandari, M.; Sethi, R. Ezetimibe and Improving Cardiovascular Outcomes: Current Evidence and Perspectives. Cardiol. Res. Pract. 2020, 2020, 9815016. [Google Scholar] [CrossRef]
- Preiss, D.; Tobert, J.A.; Hovingh, G.K.; Reith, C. Lipid-Modifying Agents, from Statins to PCSK9 Inhibitors. J. Am. Coll. Cardiol. 2020, 75, 1945–1955. [Google Scholar] [CrossRef]
- Prasad, B.A.; Hanif, A.; Okafor, D.K.; Katyal, G.; Kaur, G.; Ashraf, H.; Khan, S. PCSK-9 Inhibitors and Cardiovascular Outcomes: A Systematic Review with Meta-Analysis. Cureus 2023, 15, e46605. [Google Scholar] [CrossRef]
- Sacks, F.M.; Katan, M. Randomized Clinical Trials on the Effects of Dietary Fat and Carbohydrate on Plasma Lipoproteins and Cardiovascular Disease. Am. J. Med. 2002, 113, 13–24. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of Dietary Fatty Acids and Carbohydrates on the Ratio of Serum Total to HDL Cholesterol and on Serum Lipids and Apolipoproteins: A Meta-Analysis of 60 Controlled Trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Krauss, R.M.; Blanche, P.J.; Rawlings, R.S.; Fernstrom, H.S.; Williams, P.T. Separate Effects of Reduced Carbohydrate Intake and Weight Loss on Atherogenic Dyslipidemia. Am. J. Clin. Nutr. 2006, 83, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, G.; Stensel, D.; Hamer, M.; Stamatakis, E. The Association between Leisure-Time Physical Activity, Low HDL-Cholesterol and Mortality in a Pooled Analysis of Nine Population-Based Cohorts. Eur. J. Epidemiol. 2017, 32, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Arija, V.; Villalobos, F.; Pedret, R.; Vinuesa, A.; Timón, M.; Basora, T.; Aguas, D.; Basora, J. Effectiveness of a Physical Activity Program on Cardiovascular Disease Risk in Adult Primary Health-Care Users: The “Pas-a-Pas” Community Intervention Trial. BMC Public Health 2017, 17, 576. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Beedie, C.; Jimenez, A. Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile: Review, Synthesis and Recommendations. Sport. Med. 2014, 44, 211–221. [Google Scholar] [CrossRef]


| Category | Disorder Name | Primary Lipid Involved | Key Enzyme/Protein Affected | Clinical Manifestations |
|---|---|---|---|---|
| Hyperlipidemias [64] | Familial Hypercholesterolemia | Cholesterol | LDL Receptor | Premature atherosclerosis, xanthomas |
| Familial Combined Hyperlipidemia | Cholesterol, Triglycerides | Multiple genes involved | Elevated LDL and triglycerides, risk of CHD | |
| Hypertriglyceridemia | Triglycerides | LPL or ApoC-II deficiency | Pancreatitis, xanthomas, hepatosplenomegaly | |
| Hypolipidemias [65] | Abetalipoproteinemia | Cholesterol, Triglycerides | Microsomal triglyceride transfer protein (MTTP) | Fat malabsorption, retinal degeneration, neuropathy |
| Hypoalphalipoproteinemia | HDL | ApoA-I deficiency | Low HDL levels, increased risk of atherosclerosis | |
| Lysosomal Storage Disorders [66] | Gaucher Disease | Glucosylceramide | Glucocerebrosidase | Hepatosplenomegaly, bone crises, neurological symptoms |
| Niemann-Pick Disease | Sphingomyelin, Cholesterol | Sphingomyelinase (Types A, B) | Hepatosplenomegaly, neurodegeneration | |
| Peroxisomal Disorders [67] | Zellweger Syndrome | Very-long-chain fatty acids | Peroxisome biogenesis | Craniofacial dysmorphism, liver dysfunction |
| Fatty Acid Oxidation Disorders [68] | Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCADD) | Medium-chain fatty acids | Medium-chain acyl-CoA dehydrogenase | Hypoglycemia, lethargy, liver dysfunction |
| Cholesterol Metabolism Disorders [69] | Smith-Lemli-Opitz Syndrome | Cholesterol | 7-Dehydrocholesterol reductase | Developmental delay, dysmorphic features |
| Sitosterolemia | Plant sterols | ABCG5/ABCG8 | Tendon xanthomas, premature atherosclerosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sethi, P.; Mishra, A.K.; Ghosh, S.; Singh, K.K.; Sharma, S.; Stojchevski, R.; Avtanski, D.; Sinha, J.K. Lipid Metabolism–Signaling Crosstalk in Metabolic Disease and Aging: Mechanisms and Therapeutic Targets. Nutrients 2025, 17, 3699. https://doi.org/10.3390/nu17233699
Sethi P, Mishra AK, Ghosh S, Singh KK, Sharma S, Stojchevski R, Avtanski D, Sinha JK. Lipid Metabolism–Signaling Crosstalk in Metabolic Disease and Aging: Mechanisms and Therapeutic Targets. Nutrients. 2025; 17(23):3699. https://doi.org/10.3390/nu17233699
Chicago/Turabian StyleSethi, Paalki, Awdhesh Kumar Mishra, Shampa Ghosh, Krishna Kumar Singh, Samarth Sharma, Radoslav Stojchevski, Dimiter Avtanski, and Jitendra Kumar Sinha. 2025. "Lipid Metabolism–Signaling Crosstalk in Metabolic Disease and Aging: Mechanisms and Therapeutic Targets" Nutrients 17, no. 23: 3699. https://doi.org/10.3390/nu17233699
APA StyleSethi, P., Mishra, A. K., Ghosh, S., Singh, K. K., Sharma, S., Stojchevski, R., Avtanski, D., & Sinha, J. K. (2025). Lipid Metabolism–Signaling Crosstalk in Metabolic Disease and Aging: Mechanisms and Therapeutic Targets. Nutrients, 17(23), 3699. https://doi.org/10.3390/nu17233699

