Health-Promoting Potential of the Mediterranean Diet and Challenges for Its Application in Aging Populations
Abstract
1. Introduction
2. Methods
3. MD for Aged People
3.1. MD in Disease Prevention
3.2. MD in Comorbidities Prevention
3.3. MD in Sarcopenia Prevention
3.4. MD Adherence in Later Age
4. Mediterranean Food Plants and Bioactive Molecules
Mediterranean Dietary Synergy
5. Sensory Perceptions and Food Preferences Among the Elderly
5.1. Sensory Perceptions in Aged People and MD
5.2. The Sensory Science to Support Adherence to MD
6. The MD Lifestyle as a Social Driver for Age-Friendly Communities
Barriers and Policy Opportunities for Supporting Mediterranean Diet Adherence in Older Populations
7. Strengths and Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keys, A.; Menotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H.; et al. The Diet and 15-Year Death Rate in the Seven Countries Study. Am. J. Epidemiol. 2017, 185, 1130–1142. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Bach-Faig, A.; Raidó-Quintana, B. Nutritional and Cultural Aspects of the Mediterranean Diet. Int. J. Vitam. Nutr. Res. 2012, 82, 157–162. [Google Scholar] [CrossRef]
- Caprara, G. Diet and Longevity: The Effects of Traditional Eating Habits on Human Lifespan Extension. Mediterr. J. Nutr. Metab. 2018, 11, 261–294. [Google Scholar] [CrossRef]
- Giuffrè, D.; Giuffrè, A.M. Mediterranean Diet and Health in the Elderly. AIMS Public Health 2023, 10, 568–576. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Ognenoska, V.; Trajkovska-Broach, A. Mediterranean Diet: From Ancient Traditions to Modern Science—A Sustainable Way Towards Better Health, Wellness, Longevity, and Personalized Nutrition. Sustainability 2025, 17, 4187. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing Evidence on Benefits of Adherence to the Mediterranean Diet on Health: An Updated Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef]
- Critselis, E.; Panagiotakos, D. Adherence to the Mediterranean Diet and Healthy Ageing: Current Evidence, Biological Pathways, and Future Directions. Crit. Rev. Food Sci. Nutr. 2020, 60, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Crepaldi, G.; Capurso, A.; Capurso, C. Benefits of the Mediterranean Diet in the Elderly Patient; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Rizzoli, R.; Vaona, A.; Demurtas, J.; Crepaldi, G.; Maggi, S. Adherence to a Mediterranean Diet Is Associated with Lower Incidence of Frailty: A Longitudinal Cohort Study. Clin. Nutr. 2018, 37, 1492–1497. [Google Scholar] [CrossRef]
- Bamia, C.; Trichopoulos, D.; Ferrari, P.; Overvad, K.; Bjerregaard, L.; Tjønneland, A.; Halkjær, J.; Clavel-Chapelon, F.; Kesse, E.; Boutron-Ruault, M.-C.; et al. Dietary Patterns and Survival of Older Europeans: The EPIC-Elderly Study (European Prospective Investigation into Cancer and Nutrition). Public Health Nutr. 2007, 10, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavska, P.; Silva, M.L.; Vicente, F.; Pereira, P. Mediterranean Dietary Pattern for Healthy and Active Aging: A Narrative Review of an Integrative and Sustainable Approach. Nutrients 2024, 16, 1725. [Google Scholar] [CrossRef]
- La Dieta Mediterranea. Available online: https://www.iss.it/-/dieta-mediterranea (accessed on 14 October 2025).
- Pyo, I.S.; Yun, S.; Yoon, Y.E.; Choi, J.-W.; Lee, S.-J. Mechanisms of Aging and the Preventive Effects of Resveratrol on Age-Related Diseases. Molecules 2020, 25, 4649. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. Food Funct. 2023, 14, 7799–7824. [Google Scholar] [CrossRef]
- Capurso, C.; Bellanti, F.; Lo Buglio, A.; Vendemiale, G. The Mediterranean Diet Slows Down the Progression of Aging and Helps to Prevent the Onset of Frailty: A Narrative Review. Nutrients 2019, 12, 35. [Google Scholar] [CrossRef]
- Laffond, A.; Rivera-Picón, C.; Rodríguez-Muñoz, P.M.; Juárez-Vela, R.; Ruiz de Viñaspre-Hernández, R.; Navas-Echazarreta, N.; Sánchez-González, J.L. Mediterranean Diet for Primary and Secondary Prevention of Cardiovascular Disease and Mortality: An Updated Systematic Review. Nutrients 2023, 15, 3356. [Google Scholar] [CrossRef] [PubMed]
- Sarsangi, P.; Salehi-Abargouei, A.; Ebrahimpour-Koujan, S.; Esmaillzadeh, A. Association between Adherence to the Mediterranean Diet and Risk of Type 2 Diabetes: An Updated Systematic Review and Dose–Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2022, 13, 1787–1798. [Google Scholar] [CrossRef]
- Ubago-Guisado, E.; Rodríguez-Barranco, M.; Ching-López, A.; Petrova, D.; Molina-Montes, E.; Amiano, P.; Barricarte-Gurrea, A.; Chirlaque, M.-D.; Agudo, A.; Sánchez, M.-J. Evidence Update on the Relationship between Diet and the Most Common Cancers from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: A Systematic Review. Nutrients 2021, 13, 3582. [Google Scholar] [CrossRef]
- Vaziri, Y. The Mediterranean Diet: A Powerful Defense against Alzheimer Disease–A Comprehensive Review. Clin. Nutr. ESPEN 2024, 64, 160–167. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Parisi, A.; Seminara, F.; Vernuccio, L.; Catanese, G.; Barbagallo, M. Mediterranean Diet and Lifestyle in Persons with Mild to Moderate Alzheimer’s Disease. Nutrients 2024, 16, 3421. [Google Scholar] [CrossRef]
- Kheirouri, S.; Alizadeh, M. MIND Diet and Cognitive Performance in Older Adults: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 8059–8077. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, O.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Adherence to Mediterranean dietary pattern is inversely associated with depression, anxiety and psychological distress. Nutr. Neurosci. 2019, 24, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Civille, G.V.; Oftedal, K.N. Sensory Evaluation Techniques—Make “Good for You” Taste “Good”. Physiol. Behav. 2012, 107, 598–605. [Google Scholar] [CrossRef]
- Laureati, M.; Pagliarini, E.; Calcinoni, O.; Bidoglio, M. Sensory Acceptability of Traditional Food Preparations by Elderly People. Food Qual. Prefer. 2006, 17, 43–52. [Google Scholar] [CrossRef]
- Albergamo, A.; Vadalà, R.; Metro, D.; Nava, V.; Bartolomeo, G.; Rando, R.; Macrì, A.; Messina, L.; Gualtieri, R.; Colombo, N.; et al. Physicochemical, Nutritional, Microbiological, and Sensory Qualities of Chicken Burgers Reformulated with Mediterranean Plant Ingredients and Health-Promoting Compounds. Foods 2021, 10, 2129. [Google Scholar] [CrossRef]
- Predieri, S.; Conte, A.; Danza, A.; Gatti, E.; Magli, M.; Maria, D.G. Senior Consumers Involvement in Developing New Fish-Based Foods Through Sequential Hedonic Tests. Curr. Res. Nutr. Food Sci. J. 2017, 5, 66–74. [Google Scholar] [CrossRef]
- Volpe, R.; Predieri, S.; Cianciabella, M.; Daniele, G.M.; Gatti, E.; Magli, M.; Rodinò, P.; Schiavetto, E.; Sotis, G.; Urbinati, S. EWHETA (Eat Well for a HEalthy Third Age) Project: Novel Foods to Improve the Nutrition in the Elderly People. Aging Clin. Exp. Res. 2021, 33, 1353–1358. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole Grain Consumption and Risk of Cardiovascular Disease, Cancer, and All Cause and Cause Specific Mortality: Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Morenga, L.T. Carbohydrate Quality and Human Health: A Series of Systematic Reviews and Meta-Analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Ye, E.Q.; Chacko, S.A.; Chou, E.L.; Kugizaki, M.; Liu, S. Greater Whole-Grain Intake Is Associated with Lower Risk of Type 2 Diabetes, Cardiovascular Disease, and Weight Gain. J. Nutr. 2012, 142, 1304–1313. [Google Scholar] [CrossRef]
- Belobrajdic, D.P.; Bird, A.R. The Potential Role of Phytochemicals in Wholegrain Cereals for the Prevention of Type-2 Diabetes. Nutr. J. 2013, 12, 62. [Google Scholar] [CrossRef]
- Landberg, R.; Kamal-Eldin, A.; Andersson, A.; Vessby, B.; Åman, P. Alkylresorcinols as Biomarkers of Whole-Grain Wheat and Rye Intake: Plasma Concentration and Intake Estimated from Dietary Records. Am. J. Clin. Nutr. 2008, 87, 832–838. [Google Scholar] [CrossRef]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive Phytochemicals in Barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef]
- Shvachko, N.A.; Loskutov, I.G.; Semilet, T.V.; Popov, V.S.; Kovaleva, O.N.; Konarev, A.V. Bioactive Components in Oat and Barley Grain as a Promising Breeding Trend for Functional Food Production. Molecules 2021, 26, 2260. [Google Scholar] [CrossRef]
- Tian, W.; Zheng, Y.; Wang, W.; Wang, D.; Tilley, M.; Zhang, G.; He, Z.; Li, Y. A Comprehensive Review of Wheat Phytochemicals: From Farm to Fork and Beyond. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2274–2308. [Google Scholar] [CrossRef] [PubMed]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Gupta, O.P.; Kumar, S.; Pandey, A.; Khan, M.K.; Singh, S.K.; Singh, G.P. Wheat Science: Nutritional and Anti-Nutritional Properties, Processing, Storage, Bioactivity, and Product Development; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-000-92349-0. [Google Scholar]
- Wang, B.; Nie, C.; Li, T.; Zhao, J.; Fan, M.; Li, Y.; Qian, H.; Wang, L. Effect of Boiling and Roasting on Phenolic Components and Their Bioaccessibilities of Highland Barley. Food Res. Int. 2022, 162, 112137. [Google Scholar] [CrossRef] [PubMed]
- Seal, C.J.; Courtin, C.M.; Venema, K.; de Vries, J. Health Benefits of Whole Grain: Effects on Dietary Carbohydrate Quality, the Gut Microbiome, and Consequences of Processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of Nuts and Legumes and Risk of Incident Ischemic Heart Disease, Stroke, and Diabetes: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Glenn, A.J.; Nishi, S.K.; Chiavaroli, L.; Seider, M.; Khan, T.; Bonaccio, M.; Iacoviello, L.; Mejia, S.B.; Jenkins, D.J.A.; et al. Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, S308–S319. [Google Scholar] [CrossRef]
- Tierney, A.C.; Rumble, C.E.; Billings, L.M.; George, E.S. Effect of Dietary and Supplemental Lycopene on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 1453–1488. [Google Scholar] [CrossRef]
- Rowles, J.L.; Ranard, K.M.; Smith, J.W.; An, R.; Erdman, J.W. Increased Dietary and Circulating Lycopene Are Associated with Reduced Prostate Cancer Risk: A Systematic Review and Meta-Analysis. Prostate Cancer Prostatic Dis. 2017, 20, 361–377. [Google Scholar] [CrossRef]
- Izzo, L.; Castaldo, L.; Lombardi, S.; Gaspari, A.; Grosso, M.; Ritieni, A. Bioaccessibility and Antioxidant Capacity of Bioactive Compounds From Various Typologies of Canned Tomatoes. Front. Nutr. 2022, 9, 849163. [Google Scholar] [CrossRef]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age-Related Macular Degeneration Protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef]
- O’Connor, D.M.A.; Scarlett, S.; De Looze, C.; O’Halloran, A.M.; Laird, E.; Molloy, A.M.; Clarke, R.; McGarrigle, C.A.; Kenny, R.A. Low Folate Predicts Accelerated Cognitive Decline: 8-Year Follow-up of 3140 Older Adults in Ireland. Eur. J. Clin. Nutr. 2022, 76, 950–957. [Google Scholar] [CrossRef]
- Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J.F.; Scalbert, A.; Mazur, A. Hesperidin Contributes to the Vascular Protective Effects of Orange Juice: A Randomized Crossover Study in Healthy Volunteers. Am. J. Clin. Nutr. 2011, 93, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Kean, R.J.; Lamport, D.J.; Dodd, G.F.; Freeman, J.E.; Williams, C.M.; Ellis, J.A.; Butler, L.T.; Spencer, J.P. Chronic Consumption of Flavanone-Rich Orange Juice Is Associated with Cognitive Benefits: An 8-Wk, Randomized, Double-Blind, Placebo-Controlled Trial in Healthy Older Adults. Am. J. Clin. Nutr. 2015, 101, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Jalili, F.; Moradi, S.; Talebi, S.; Mehrabani, S.; Ghoreishy, S.M.; Wong, A.; Jalalvand, A.R.; Kermani, M.A.H.; Jalili, C.; Jalili, F. The Effects of Citrus Flavonoids Supplementation on Endothelial Function: A Systematic Review and Dose–Response Meta-Analysis of Randomized Clinical Trials. Phytother. Res. 2024, 38, 2847–2859. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus Flavonoids: Molecular Structure, Biological Activity and Nutritional Properties: A Review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Galluzzi, S.; Marizzoni, M.; Gatti, E.; Bonfiglio, N.S.; Cattaneo, A.; Epifano, F.; Frisoni, G.B.; Genovese, S.; Geviti, A.; Marchetti, L.; et al. Citrus Supplementation in Subjective Cognitive Decline: Results of a 36-Week, Randomized, Placebo-Controlled Trial. Nutr. J. 2024, 23, 135. [Google Scholar] [CrossRef]
- Ried, K.; Frank, O.R.; Stocks, N.P.; Fakler, P.; Sullivan, T. Effect of Garlic on Blood Pressure: A Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord. 2008, 8, 13. [Google Scholar] [CrossRef]
- Reinhart, K.M.; Talati, R.; White, C.M.; Coleman, C.I. The Impact of Garlic on Lipid Parameters: A Systematic Review and Meta-Analysis. Nutr. Res. Rev. 2009, 22, 39–48. [Google Scholar] [CrossRef]
- Ried, K.; Travica, N.; Sali, A. The Effect of Kyolic Aged Garlic Extract on Gut Microbiota, Inflammation, and Cardiovascular Markers in Hypertensives: The GarGIC Trial. Front. Nutr. 2018, 5, 122. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut Consumption and Risk of Cardiovascular Disease, Total Cancer, All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Han, J.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Association of Nut Consumption with Total and Cause-Specific Mortality. N. Engl. J. Med. 2013, 369, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Perry, N.S.L.; Bollen, C.; Perry, E.K.; Ballard, C. Salvia for Dementia Therapy: Review of Pharmacological Activity and Pilot Tolerability Clinical Trial. Pharmacol. Biochem. Behav. 2003, 75, 651–659. [Google Scholar] [CrossRef]
- Annaz, H.; Sane, Y.; Bitchagno, G.T.M.; Ben Bakrim, W.; Drissi, B.; Mahdi, I.; El Bouhssini, M.; Sobeh, M. Caper (Capparis spinosa L.): An Updated Review on Its Phytochemistry, Nutritional Value, Traditional Uses, and Therapeutic Potential. Front. Pharmacol. 2022, 13, 878749. [Google Scholar] [CrossRef] [PubMed]
- Pengelly, A.; Snow, J.; Mills, S.Y.; Scholey, A.; Wesnes, K.; Butler, L.R. Short-Term Study on the Effects of Rosemary on Cognitive Function in an Elderly Population. J. Med. Food 2012, 15, 10–17. [Google Scholar] [CrossRef]
- Faridzadeh, A.; Salimi, Y.; Ghasemirad, H.; Kargar, M.; Rashtchian, A.; Mahmoudvand, G.; Karimi, M.A.; Zerangian, N.; Jahani, N.; Masoudi, A.; et al. Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and Lavender. Front. Neurosci. 2022, 16, 909833. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Shen, A.; Zhang, T.; Jiang, L.; El-Seedi, H.; Zhang, G.; Sui, X. Legumes as an Alternative Protein Source in Plant-Based Foods: Applications, Challenges, and Strategies. Curr. Res. Food Sci. 2024, 9, 100876. [Google Scholar] [CrossRef]
- Mehany, T.; Olawoye, B.; Popoola-Akinola, O. Exploring Bioactive Compounds and Biological Functions of Underutilized Legumes: Advancing the Development of Ideal Plant-Based Milks. J. Future Foods, 2025; in press. [Google Scholar] [CrossRef]
- Pereira, A.; Ramos, F.; Sanches Silva, A. Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges. Molecules 2022, 27, 8557. [Google Scholar] [CrossRef]
- Grdeń, P.; Jakubczyk, A. Health Benefits of Legume Seeds. J. Sci. Food Agric. 2023, 103, 5213–5220. [Google Scholar] [CrossRef] [PubMed]
- Keskin, S.O.; Ali, T.M.; Ahmed, J.; Shaikh, M.; Siddiq, M.; Uebersax, M.A. Physico-Chemical and Functional Properties of Legume Protein, Starch, and Dietary Fiber—A Review. Legume Sci. 2022, 4, e117. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Angeloni, S.; Borsetta, G.; Caprioli, G.; Nzekoue, F.K.; Sagratini, G.; Vittori, S. Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals 2022, 15, 1225. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.-S.; Contador, C.A.; Ng, M.-S.; Yu, J.; Chung, G.; Lam, H.-M. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front. Genet. 2020, 11, 581357. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ruiz, R.G.; Olivares-Ochoa, X.C.; Salinas-Varela, Y.; Guajardo-Espinoza, D.; Roldán-Flores, L.G.; Rivera-Leon, E.A.; López-Quintero, A. Phenolic Compounds and Anthocyanins in Legumes and Their Impact on Inflammation, Oxidative Stress, and Metabolism: Comprehensive Review. Molecules 2025, 30, 174. [Google Scholar] [CrossRef]
- Conti, M.V.; Guzzetti, L.; Panzeri, D.; De Giuseppe, R.; Coccetti, P.; Labra, M.; Cena, H. Bioactive Compounds in Legumes: Implications for Sustainable Nutrition and Health in the Elderly Population. Trends Food Sci. Technol. 2021, 117, 139–147. [Google Scholar] [CrossRef]
- Cosme, F.; Aires, A.; Pinto, T.; Oliveira, I.; Vilela, A.; Gonçalves, B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025, 30, 800. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition and Antioxidant Potential of Grain Legume Seeds: A Review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A Concise Review on Food Related Aspects, Applications and Health Implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Li, H.; Zhai, B.; Sun, J.; Fan, Y.; Zou, J.; Cheng, J.; Zhang, X.; Shi, Y.; Guo, D. Antioxidant, Anti-Aging and Organ Protective Effects of Total Saponins from Aralia Taibaiensis. Drug Des. Devel. Ther. 2021, 15, 4025–4042. [Google Scholar] [CrossRef]
- Es-Sai, B.; Wahnou, H.; Benayad, S.; Rabbaa, S.; Laaziouez, Y.; El Kebbaj, R.; Limami, Y.; Duval, R.E. Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Molecules 2025, 30, 653. [Google Scholar] [CrossRef]
- Tamburino, R.; Severino, V.; Sandomenico, A.; Ruvo, M.; Parente, A.; Chambery, A.; Maro, A.D. De Novo Sequencing and Characterization of a Novel Bowman–Birk Inhibitor from Lathyrus sativus L. Seeds by Electrospray Mass Spectrometry. Mol. BioSyst. 2012, 8, 3232–3241. [Google Scholar] [CrossRef]
- Losso, J.N. The Biochemical and Functional Food Properties of the Bowman-Birk Inhibitor. Crit. Rev. Food Sci. Nutr. 2008, 48, 94–118. [Google Scholar] [CrossRef]
- Birk, Y. The Bowman-Birk inhibitor. Trypsin- and chymotrypsin-inhibitor from soybeans. Int. J. Pept. Protein Res. 1985, 25, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Agarwal, S. Role of Lycopene as Antioxidant Carotenoid in the Prevention of Chronic Diseases: A Review. Nutr. Res. 1999, 19, 305–323. [Google Scholar] [CrossRef]
- Agarwal, S.; Rao, A.V. Tomato Lycopene and Its Role in Human Health and Chronic Diseases. CMAJ 2000, 163, 739–744. [Google Scholar] [PubMed]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in Health and Disease. Science 2018, 359, eaan2788. [Google Scholar] [CrossRef]
- Dalbeni, A.; Treggiari, D.; Tagetti, A.; Bevilaqua, M.; Bonafini, S.; Montagnana, M.; Scaturro, G.; Minuz, P.; Fava, C. Positive Effects of Tomato Paste on Vascular Function After a Fat Meal in Male Healthy Subjects. Nutrients 2018, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, W.; Li, D.; Chan, A.S.C. Evaluation of Nutritional Compositions, Bioactive Components, and Antioxidant Activity of Three Cherry Tomato Varieties. Agronomy 2023, 13, 637. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Teleky, B.-E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef]
- Farinon, B.; Felli, M.; Sulli, M.; Diretto, G.; Savatin, D.V.; Mazzucato, A.; Merendino, N.; Costantini, L. Tomato Pomace Food Waste from Different Variants as a High Antioxidant Potential Resource. Food Chem. 2024, 452, 139509. [Google Scholar] [CrossRef]
- O’Kennedy, N.; Crosbie, L.; Whelan, S.; Luther, V.; Horgan, G.; Broom, J.I.; Webb, D.J.; Duttaroy, A.K. Effects of Tomato Extract on Platelet Function: A Double-Blinded Crossover Study in Healthy Humans. Am. J. Clin. Nutr. 2006, 84, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Dutta-Roy, K.; Crosbie, L.; Margaret, J.; Gordon, A. Effects of Tomato Extract on Human Platelet Aggregation In Vitro. Platelets 2001, 12, 218–227. [Google Scholar] [CrossRef]
- Morris, M.C.; Wang, Y.; Barnes, L.L.; Bennett, D.A.; Dawson-Hughes, B.; Booth, S.L. Nutrients and Bioactives in Green Leafy Vegetables and Cognitive Decline. Neurology 2018, 90, e214–e222. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Lee, G.-S. Potential Role of Inflammasomes in Aging. Int. J. Mol. Sci. 2025, 26, 6768. [Google Scholar] [CrossRef]
- Mrowicka, M.; Mrowicki, J.; Kucharska, E.; Majsterek, I. Lutein and Zeaxanthin and Their Roles in Age-Related Macular Degeneration—Neurodegenerative Disease. Nutrients 2022, 14, 827. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Li, F.; Lei, X.; Ge, L.; Li, H.; Zhao, N.; Ming, J. The Effects of Interventions with Glucosinolates and Their Metabolites in Cruciferous Vegetables on Inflammatory Bowel Disease: A Review. Foods 2024, 13, 3507. [Google Scholar] [CrossRef]
- Baldelli, S.; Lombardo, M.; D’Amato, A.; Karav, S.; Tripodi, G.; Aiello, G. Glucosinolates in Human Health: Metabolic Pathways, Bioavailability, and Potential in Chronic Disease Prevention. Foods 2025, 14, 912. [Google Scholar] [CrossRef] [PubMed]
- Navarro del Hierro, J.; Herrera, T.; Fornari, T.; Reglero, G.; Martin, D. The Gastrointestinal Behavior of Saponins and Its Significance for Their Bioavailability and Bioactivities. J. Funct. Foods 2018, 40, 484–497. [Google Scholar] [CrossRef]
- Shen, L.; Luo, H.; Fan, L.; Tian, X.; Tang, A.; Wu, X.; Dong, K.; Su, Z. Potential Immunoregulatory Mechanism of Plant Saponins: A Review. Molecules 2024, 29, 113. [Google Scholar] [CrossRef]
- Juszkiewicz, A.; Zaborska, A.; Łaptaś, A.; Olech, Z. A Study of the Inhibition of Jack Bean Urease by Garlic Extract. Food Chem. 2004, 85, 553–558. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
- Tang, Y.; Lv, D.; Tao, Y.; Wang, J. The Therapeutic Effects of Natural Organosulfur Compounds on Atherosclerosis and Their Potential Mechanisms: A Comprehensive Review. Front. Cardiovasc. Med. 2025, 12, 1599154. [Google Scholar] [CrossRef]
- Blomhoff, R.; Carlsen, M.H.; Andersen, L.F.; Jacobs, D.R., Jr. Health Benefits of Nuts: Potential Role of Antioxidants. Br. J. Nutr. 2006, 96, S52–S60. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of Nuts and Their Potential Health Benefits—An Overview. Foods 2023, 12, 942. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, J.F.; Bulló, M.; Barrubés, L. Mediterranean Diet and Cardiovascular Disease Prevention: What Do We Know? Prog. Cardiovasc. Dis. 2018, 61, 62–67. [Google Scholar] [CrossRef]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef]
- Arnesen, E.K.; Thorisdottir, B.; Bärebring, L.; Söderlund, F.; Nwaru, B.I.; Spielau, U.; Dierkes, J.; Ramel, A.; Lamberg-Allardt, C.; Åkesson, A. Nuts and Seeds Consumption and Risk of Cardiovascular Disease, Type 2 Diabetes and Their Risk Factors: A Systematic Review and Meta-Analysis. Food Nutr. Res. 2023, 67, 10.29219/fnr.v67.8961. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)Phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef]
- Lorenzon dos Santos, J.; Schaan de Quadros, A.; Weschenfelder, C.; Bueno Garofallo, S.; Marcadenti, A. Oxidative Stress Biomarkers, Nut-Related Antioxidants, and Cardiovascular Disease. Nutrients 2020, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Youssef, R.; Najm, D.B.; Al-Bourji, M.; Boutros, P.H. Association of the Mediterranean Diet with Mental Well-Being: A Cross-Sectional Study among Adults Living in Lebanon. BMC Public Health 2025, 25, 2689. [Google Scholar] [CrossRef]
- Scholey, A.B.; Tildesley, N.T.J.; Ballard, C.G.; Wesnes, K.A.; Tasker, A.; Perry, E.K.; Kennedy, D.O. An Extract of Salvia (Sage) with Anticholinesterase Properties Improves Memory and Attention in Healthy Older Volunteers. Psychopharmacology 2008, 198, 127–139. [Google Scholar] [CrossRef]
- Grigore-Gurgu, L.; Dumitrașcu, L.; Aprodu, I. Aromatic Herbs as a Source of Bioactive Compounds: An Overview of Their Antioxidant Capacity, Antimicrobial Activity, and Major Applications. Molecules 2025, 30, 1304. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Ozcelik, B.; Altın, G.; Daşkaya-Dikmen, C.; Martorell, M.; Ramírez-Alarcón, K.; Alarcón-Zapata, P.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Alves Borges Leal, A.L.; et al. Salvia Spp. Plants-from Farm to Food Applications and Phytopharmacotherapy. Trends Food Sci. Technol. 2018, 80, 242–263. [Google Scholar] [CrossRef]
- de Macedo, L.M.; dos Santos, É.M.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., Syn Salvia Rosmarinus Spenn.) and Its Topical Applications: A Review. Plants 2020, 9, 651. [Google Scholar] [CrossRef]
- González-Vallinas, M.; Reglero, G.; Ramírez de Molina, A. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy. Nutr. Cancer 2015, 67, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Yousef, M.; Tsiani, E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients 2016, 8, 731. [Google Scholar] [CrossRef]
- Allegra, A.; Tonacci, A.; Pioggia, G.; Musolino, C.; Gangemi, S. Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials. Nutrients 2020, 12, 1739. [Google Scholar] [CrossRef] [PubMed]
- Elbe, H.; Yigitturk, G.; Cavusoglu, T.; Baygar, T.; Ozgul Onal, M.; Ozturk, F. Comparison of Ultrastructural Changes and the Anticarcinogenic Effects of Thymol and Carvacrol on Ovarian Cancer Cells: Which Is More Effective? Ultrastruct. Pathol. 2020, 44, 193–202. [Google Scholar] [CrossRef]
- Mari, A.; Mani, G.; Nagabhishek, S.N.; Balaraman, G.; Subramanian, N.; Mirza, F.B.; Sundaram, J.; Thiruvengadam, D. Carvacrol Promotes Cell Cycle Arrest and Apoptosis through PI3K/AKT Signaling Pathway in MCF-7 Breast Cancer Cells. Chin. J. Integr. Med. 2021, 27, 680–687. [Google Scholar] [CrossRef]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Tapsell, L.; Hemphill, I.; Cobiac, L.; Sullivan, D.R.; Fenech, M.; Patch, C.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.; et al. Health Benefits of Herbs and Spices: The Past, the Present, the Future. Med. J. Aust. 2006, 185, S1–S24. [Google Scholar] [CrossRef]
- Jackson, P.A.; Wightman, E.L.; Veasey, R.; Forster, J.; Khan, J.; Saunders, C.; Mitchell, S.; Haskell-Ramsay, C.F.; Kennedy, D.O. A Randomized, Crossover Study of the Acute Cognitive and Cerebral Blood Flow Effects of Phenolic, Nitrate and Botanical Beverages in Young, Healthy Humans. Nutrients 2020, 12, 2254. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R.; Walasek-Janusz, M. Chemical Composition, Biological Activity, and Potential Uses of Oregano (Origanum vulgare L.) and Oregano Essential Oil. Pharmaceuticals 2025, 18, 267. [Google Scholar] [CrossRef]
- Andreo-López, M.C.; Contreras-Bolívar, V.; Muñoz-Torres, M.; García-Fontana, B.; García-Fontana, C. Influence of the Mediterranean Diet on Healthy Aging. Int. J. Mol. Sci. 2023, 24, 4491. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Nouvenne, A.; Cerundolo, N.; Parise, A.; Mena, P.; Meschi, T. The Interaction between Mediterranean Diet and Intestinal Microbiome: Relevance for Preventive Strategies against Frailty in Older Individuals. Aging Clin. Exp. Res. 2024, 36, 58. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean Diet and Health Status: An Updated Meta-Analysis and a Proposal for a Literature-Based Adherence Score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.Á.; Hershey, M.S.; Zazpe, I.; Trichopoulou, A. Transferability of the Mediterranean Diet to Non-Mediterranean Countries. What Is and What Is Not the Mediterranean Diet. Nutrients 2017, 9, 1226. [Google Scholar] [CrossRef]
- Berendsen, A.A.M.; Van de Rest, O.; Feskens, E.J.M.; Santoro, A.; Ostan, R.; Pietruszka, B.; Brzozowska, A.; Stelmaszczyk-Kusz, A.; Jennings, A.; Gillings, R.; et al. Changes in Dietary Intake and Adherence to the NU-AGE Diet Following a One-Year Dietary Intervention among European Older Adults—Results of the NU-AGE Randomized Trial. Nutrients 2018, 10, 1905. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; et al. Mediterranean Diet Intervention Alters the Gut Microbiome in Older People Reducing Frailty and Improving Health Status: The NU-AGE 1-Year Dietary Intervention across Five European Countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef]
- Doets, E.L.; Kremer, S. The Silver Sensory Experience—A Review of Senior Consumers’ Food Perception, Liking and Intake. Food Qual. Prefer. 2016, 48, 316–332. [Google Scholar] [CrossRef]
- Rolls, B.; McDermott, T. Effects of Age on Sensory-Specific Satiety. Am. J. Clin. Nutr. 1991, 54, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Laguna, L.; Chen, J. The Eating Capability: Constituents and Assessments. Food Qual. Prefer. 2016, 48, 345–358. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhang, L.; Dong, Q.; Hu, X.; Yang, Y.; Liu, T.; Wu, B.; Shan, B.; Yin, C.; et al. Sensory Insights in Aging: Exploring the Impact on Improving Dietary Through Sensory Enhancement. Food Sci. Nutr. 2025, 13, e70074. [Google Scholar] [CrossRef]
- Liu, F.; Yin, J.; Wang, J.; Xu, X. Food for the Elderly Based on Sensory Perception: A Review. Curr. Res. Food Sci. 2022, 5, 1550–1558. [Google Scholar] [CrossRef]
- Aschenbrenner, K.; Hummel, C.; Teszmer, K.; Krone, F.; Ishimaru, T.; Seo, H.-S.; Hummel, T. The Influence of Olfactory Loss on Dietary Behaviors. Laryngoscope 2008, 118, 135–144. [Google Scholar] [CrossRef]
- Predieri, S.; Sotis, G.; Rodinò, P.; Gatti, E.; Magli, M.; Rossi, F.; Daniele, G.M.; Cianciabella, M.; Volpe, R. Older Adults’ Involvement in Developing Satisfactory Pasta Sauces with Healthy Ingredients. Br. Food J. 2018, 120, 804–814. [Google Scholar] [CrossRef]
- Maitre, I.; Symoneaux, R.; Sulmont-Rossé, C. 23-Sensory Testing in New Product Development: Working with Older People. In Rapid Sensory Profiling Techniques; Delarue, J., Lawlor, J.B., Rogeaux, M., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2015; pp. 485–508. ISBN 978-1-78242-248-8. [Google Scholar]
- Daniele, G.M.; Medoro, C.; Lippi, N.; Cianciabella, M.; Magli, M.; Predieri, S.; Versari, G.; Volpe, R.; Gatti, E. Exploring Eating Habits, Healthy Food Awareness, and Inclination Toward Functional Foods of Italian Elderly People Through Computer-Assisted Telephone Interviews (CATIs). Nutrients 2024, 16, 762. [Google Scholar] [CrossRef]
- Grunert, K.G.; Dean, M.; Raats, M.M.; Nielsen, N.A.; Lumbers, M. A Measure of Satisfaction with Food-Related Life. Appetite 2007, 49, 486–493. [Google Scholar] [CrossRef]
- Subar, A.F.; Heimendinger, J.; Patterson, B.H.; Krebs-Smith, S.M.; Pivonka, E.; Kessler, R. Fruit and Vegetable Intake in the United States: The Baseline Survey of the Five a Day for Better Health Program. Am. J. Health Promot. 1995, 9, 352–360. [Google Scholar] [CrossRef]
- Delgado, A.; Gonçalves, S.; Romano, A. Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods 2023, 12, 840. [Google Scholar] [CrossRef]
- Bower, A.; Marquez, S.; de Mejia, E.G. The Health Benefits of Selected Culinary Herbs and Spices Found in the Traditional Mediterranean Diet. Crit. Rev. Food Sci. Nutr. 2016, 56, 2728–2746. [Google Scholar] [CrossRef]
- Louro, T.; Simões, C.; Castelo, P.M.; Capela e Silva, F.; Luis, H.; Moreira, P.; Lamy, E. How Individual Variations in the Perception of Basic Tastes and Astringency Relate with Dietary Intake and Preferences for Fruits and Vegetables. Foods 2021, 10, 1961. [Google Scholar] [CrossRef] [PubMed]
- Laureati, M.; Pagliarini, E.; Calcinoni, O. Does the Enhancement of Chemosensory Stimuli Improve the Enjoyment of Food in Institutionalized Elderly People? J. Sens. Stud. 2008, 23, 234–250. [Google Scholar] [CrossRef]
- Mathey, M.-F.A.M.; Siebelink, E.; de Graaf, C.; Van Staveren, W.A. Flavor Enhancement of Food Improves Dietary Intake and Nutritional Status of Elderly Nursing Home Residents. J. Gerontol. Ser. A 2001, 56, M200–M205. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.C.; Breen, J.A.; Pan, Z. Effects of Culinary Spices on Liking and Consumption of Protein Rich Foods in Community-Dwelling Older Adults. Nutrients 2023, 15, 1172. [Google Scholar] [CrossRef]
- Dougkas, A.; Vannereux, M.; Giboreau, A. The Impact of Herbs and Spices on Increasing the Appreciation and Intake of Low-Salt Legume-Based Meals. Nutrients 2019, 11, 2901. [Google Scholar] [CrossRef]
- Ghawi, S.K.; Rowland, I.; Methven, L. Enhancing Consumer Liking of Low Salt Tomato Soup over Repeated Exposure by Herb and Spice Seasonings. Appetite 2014, 81, 20–29. [Google Scholar] [CrossRef]
- Simmons, W.K.; Martin, A.; Barsalou, L.W. Pictures of Appetizing Foods Activate Gustatory Cortices for Taste and Reward. Cereb. Cortex 2005, 15, 1602–1608. [Google Scholar] [CrossRef]
- Real, H.; Dias, R.R.; Graça, P. Mediterranean Diet Conceptual Model and Future Trends of Its Use in Portugal. Health Promot. Int. 2021, 36, 548–560. [Google Scholar] [CrossRef]
- Koura, S.; Oshikawa, T.; Ogawa, N.; Snyder, S.M.; Nagatomo, M.; Nishikawa, C. Utilization of Horticultural Therapy for Elderly Persons in the Urban Environment. Acta Hortic. 2010, 881, 865–868. [Google Scholar] [CrossRef]
- Koura, S.; Okawa, H.; Oshikawa, T.; Ueda, T.; Nishikawa, C.; Ikeda, A.; Kamijyo, K. Dementia Protective Efficacy by the Combination of Active and Passive Horticultural Therapy for All Persons Concerned. Acta Hortic. 2018, 1215, 223–232. [Google Scholar] [CrossRef]
- Mills, S.; Brown, H.; Wrieden, W.; White, M.; Adams, J. Frequency of Eating Home Cooked Meals and Potential Benefits for Diet and Health: Cross-Sectional Analysis of a Population-Based Cohort Study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Zschippig, C.; Kluss, T. Gardening in Ambient Assisted Living. Urban For. Urban Green. 2016, 15, 186–189. [Google Scholar] [CrossRef]
- Alaimo, K.; Packnett, E.; Miles, R.A.; Kruger, D.J. Fruit and Vegetable Intake among Urban Community Gardeners. J. Nutr. Educ. Behav. 2008, 40, 94–101. [Google Scholar] [CrossRef]
- Dernini, S.; Berry, E.M.; Serra-Majem, L.; Vecchia, C.L.; Capone, R.; Medina, F.X.; Aranceta-Bartrina, J.; Belahsen, R.; Burlingame, B.; Calabrese, G.; et al. Med Diet 4.0: The Mediterranean Diet with Four Sustainable Benefits. Public Health Nutr. 2017, 20, 1322–1330. [Google Scholar] [CrossRef]
- Sommerfeld, A.J.; McFarland, A.L.; Waliczek, T.M.; Zajicek, J.M. Growing Minds: Evaluating the Relationship between Gardening and Fruit and Vegetable Consumption in Older Adults. HortTechnology 2010, 20, 711–717. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Kingston, A.; Houlden, V.; Franklin, R. The Longitudinal Associations between Proximity to Local Grocery Shops and Functional Ability in the Very Old Living with and without Multimorbidity: Results from the Newcastle 85+ Study. Arch. Gerontol. Geriatr. 2022, 101, 104703. [Google Scholar] [CrossRef]
- Bhatia, R.; Hernandez, M.A.; Platt, J.; Newman, A.B.; Siscovick, D.S.; Mukamal, K.J.; Lovasi, G.S. Associations of Neighbourhood Food Retail with Disability and Death in Older Adults: Cardiovascular Health Study. BMJ Nutr. Prev. Health 2024, 7, e000646. [Google Scholar] [CrossRef]
- Maltarić, M.; Ruščić, P.; Kolak, M.; Bender, D.V.; Kolarić, B.; Ćorić, T.; Hoejskov, P.S.; Bošnir, J.; Kljusurić, J.G. Adherence to the Mediterranean Diet Related to the Health Related and Well-Being Outcomes of European Mature Adults and Elderly, with an Additional Reference to Croatia. Int. J. Environ. Res. Public Health 2023, 20, 4893. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Bernardi, E.; Visioli, F. Fostering Wellbeing and Healthy Lifestyles through Conviviality and Commensality: Underappreciated Benefits of the Mediterranean Diet. Nutr. Res. 2024, 126, 46–57. [Google Scholar] [CrossRef]
- Divert, C.; Laghmaoui, R.; Crema, C.; Issanchou, S.; Wymelbeke, V.V.; Sulmont-Rossé, C. Improving Meal Context in Nursing Homes. Impact of Four Strategies on Food Intake and Meal Pleasure. Appetite 2015, 84, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Fu, E.; Farland, G.; Cohen, D.; Gerstler, C.; Margolies, P.; Pope, L.; Rotter, M.; Compton, M.T. A Group-Based, Six-Lesson Healthy Eating Curriculum for Individuals with Serious Mental Illnesses: Development and Implementation. Community Ment. Health J. 2024, 60, 1352–1363. [Google Scholar] [CrossRef] [PubMed]
- Irz, X.; Fratiglioni, L.; Kuosmanen, N.; Mazzocchi, M.; Modugno, L.; Nocella, G.; Shakersain, B.; Traill, W.B.; Xu, W.; Zanello, G. Sociodemographic Determinants of Diet Quality of the EU Elderly: A Comparative Analysis in Four Countries. Public Health Nutr. 2014, 17, 1177–1189. [Google Scholar] [CrossRef]
- Colaprico, C.; Crispini, D.; Rocchi, I.; Kibi, S.; De Giusti, M.; La Torre, G. Cost and Cost-Effectiveness of the Mediterranean Diet: An Update of a Systematic Review. Nutrients 2024, 16, 1899. [Google Scholar] [CrossRef]
- Alves, R.; Perelman, J. European Mature Adults and Elderly Are Moving Closer to the Mediterranean Diet—A Longitudinal Study, 2013–2019. Eur. J. Public Health 2022, 32, 600–605. [Google Scholar] [CrossRef]
- Tatoli, R.; Lampignano, L.; Donghia, R.; Castellana, F.; Zupo, R.; Bortone, I.; De Nucci, S.; Campanile, G.; Lofù, D.; Vimercati, L.; et al. Dietary Customs and Social Deprivation in an Aging Population From Southern Italy: A Machine Learning Approach. Front. Nutr. 2022, 9, 811076. [Google Scholar] [CrossRef] [PubMed]
- Lachat, C.; Naska, A.; Trichopoulou, A.; Engeset, D.; Fairgrieve, A.; Marques, H.Á.; Kolsteren, P. Essential Actions for Caterers to Promote Healthy Eating out among European Consumers: Results from a Participatory Stakeholder Analysis in the HECTOR Project. Public Health Nutr. 2011, 14, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Perez-Cueto, F.J.A.; Dos Santos, Q.; Bredie, W.L.P.; Molla-Bauza, M.B.; Rodrigues, V.M.; Buch-Andersen, T.; Appleton, K.M.; Hemingway, A.; Giboreau, A.; et al. Promotion of Novel Plant-Based Dishes among Older Consumers Using the ‘Dish of the Day’ as a Nudging Strategy in 4 EU Countries. Food Qual. Prefer. 2019, 75, 260–272. [Google Scholar] [CrossRef]
- Zhou, X.; Perez-Cueto, F.J.A.; Santos, Q.D.; Monteleone, E.; Giboreau, A.; Appleton, K.M.; Bjørner, T.; Bredie, W.L.P.; Hartwell, H. A Systematic Review of Behavioural Interventions Promoting Healthy Eating among Older People. Nutrients 2018, 10, 128. [Google Scholar] [CrossRef]
- Turner, A.; LaMonica, H.M.; Flood, V.M. Behaviour Change Techniques Used in Mediterranean Diet Interventions for Older Adults: A Systematic Scoping Review. Nutrients 2023, 15, 1189. [Google Scholar] [CrossRef]
- Volpe, R.; Sotis, G.; Predieri, S.; Magli, M. Good Mental Health in Old Age Is A Real Possibility. J. Aging Sci. 2017, 5, 168. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Kyrozis, A.; Rossi, M.; Katsoulis, M.; Trichopoulos, D.; La Vecchia, C.; Lagiou, P. Mediterranean Diet and Cognitive Decline over Time in an Elderly Mediterranean Population. Eur. J. Nutr. 2015, 54, 1311–1321. [Google Scholar] [CrossRef]
- Vissavajjhala, P. Chapter 1—Impact of Nutrition on Healthy Aging. In Nutrition and Functional Foods for Healthy Aging; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 3–10. ISBN 978-0-12-805376-8. [Google Scholar]
- Maggi, S.; Ecarnot, F.; Gianfredi, V.; Nucci, D.; Veronese, N.; Lei, L.; Hu, M.; Avart, C.; Capurso, A.; Chen, L.; et al. Mediterranean Diet and Cantonese Cuisine for Human Health: Report from a Sino-Italian Bilateral Meeting. Aging Clin. Exp. Res. 2025, 37, 295. [Google Scholar] [CrossRef] [PubMed]

| Food Group | Main Bioactive Compounds | Dietary Doses/Servings | Main Geriatric Outcomes/Mechanisms | Evidence Type | Evidence Intensity | Key References |
|---|---|---|---|---|---|---|
| Whole grains | Dietary fiber, β-glucans, phenolic acids (ferulic, caffeic, p-coumaric), lignans, tocols, phytosterols | 3–6 servings/day (~90–180 g/day) | Reduced CVD and T2D risk; improved lipid and glucose metabolism; antioxidant and microbiota effects | Meta-analyses, multicenter cohorts (clinical and observational) | Strong | [30,31,32,41] |
| Legumes | Plant proteins, fermentable fiber, isoflavones, saponins, flavonoids, bioactive peptides | 3–4 servings/week (~100–150 g cooked per serving) | Improved glycemic and lipid control; antioxidant and anti-inflammatory actions | RCTs + cohorts | Moderate | [42,43] |
| Tomato and tomato by-products | Lycopene, polyphenols (quercetin, naringenin), phytosterols, polyamines | 1–2 servings/day (~150–200 g fresh or 80 g canned/tomato paste) | Antioxidant and anti-inflammatory; vascular and metabolic benefits; antithrombotic activity | Meta-analysis + systematic reviews + translational studies | Moderate (translational) | [44,45,46] |
| Leafy vegetables and cucurbits | Carotenoids (lutein, zeaxanthin), folates, vitamin K1, glucosinolates, saponins, fiber | No doses indicated in selected papers | Visual and cognitive protection; anti-inflammatory; improved glycemic and lipid control | Prospective cohorts + narrative review | Moderate | [47,48] |
| Citrus fruits | Flavanones (hesperidin, naringin), polymethoxylated flavones, vitamin C | 1–2 servings/day (~150–200 g fruit or 125 mL juice) | Endothelial protection, anti-inflammatory and bone-supporting effects | RCTs + systematic reviews (clinical) | Moderate | [49,50,51,52,53] |
| Allium species | Organosulfur compounds (allicin, S-allyl cysteine), phenolics (rutin, quercetin) | 1–2 cloves garlic/day (3–5 g), or ½ cup chopped onion (~75 g) | BP and cholesterol reduction; antimicrobial and immunomodulatory effects | Meta-analyses + short-term RCTs | Moderate | [54,55,56] |
| Nuts | MUFAs, PUFAs, tocopherols, phytosterols, polyphenols (ellagitannins, flavan-3-ols), L-arginine, Mg | 1 serving/day (~30 g) | Reduced LDL oxidation, inflammation, improved endothelial and cognitive function | Meta-analyses + long-term RCTs + systematic and narrative reviews | Strong | [57,58,59] |
| Capers, herbs and spices (Mediterranean seasonings) | Terpenoids, essential oils, polyphenols (e.g., rosmarinic acid, apigenin) | No doses indicated in selected papers | Improved cerebral blood flow, modulation of cholinergic neurotransmission, reduced neuroinflammation, cognitive and vascular support | Mechanistic and preclinical studies (translational) | Limited (preclinical) | [60,61,62,63] |
| Dietary Pattern/Study | Key Components | Main Findings Related to Aging | Evidence Type | Key References |
|---|---|---|---|---|
| Mediterranean diet overall | High plant-based foods, olive oil, moderate wine | Reduced all-cause mortality, CVD, frailty, cognitive decline | Meta-analyses, prospective cohorts | [123,124] |
| NU-AGE multicenter trial | Personalized Mediterranean-like diet, micronutrient adequacy | Improved gut microbiota composition reduced frailty and improvements in selected immune and metabolic biomarkers (inflammaging-related signatures). Multicenter RCT across 5 European countries; generalizability limited by tailored intervention and 1-year duration | Multicenter RCT | [125,126] |
| Polyphenol-rich patterns | High intake of fruits, vegetables, tea, cocoa, red wine | Reduced oxidative stress, inflammation, and vascular aging | Systematic reviews | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cianciabella, M.; Predieri, S.; Tamburino, R.; Medoro, C.; Volpe, R.; Maggi, S. Health-Promoting Potential of the Mediterranean Diet and Challenges for Its Application in Aging Populations. Nutrients 2025, 17, 3675. https://doi.org/10.3390/nu17233675
Cianciabella M, Predieri S, Tamburino R, Medoro C, Volpe R, Maggi S. Health-Promoting Potential of the Mediterranean Diet and Challenges for Its Application in Aging Populations. Nutrients. 2025; 17(23):3675. https://doi.org/10.3390/nu17233675
Chicago/Turabian StyleCianciabella, Marta, Stefano Predieri, Rachele Tamburino, Chiara Medoro, Roberto Volpe, and Stefania Maggi. 2025. "Health-Promoting Potential of the Mediterranean Diet and Challenges for Its Application in Aging Populations" Nutrients 17, no. 23: 3675. https://doi.org/10.3390/nu17233675
APA StyleCianciabella, M., Predieri, S., Tamburino, R., Medoro, C., Volpe, R., & Maggi, S. (2025). Health-Promoting Potential of the Mediterranean Diet and Challenges for Its Application in Aging Populations. Nutrients, 17(23), 3675. https://doi.org/10.3390/nu17233675

