Lactobacillus helveticus Alleviates Collagen-Induced Arthritis in Rats Through Inflammation Modulation and Gut Microbiota Regulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains Preparation and Culture
2.2. Animals and Experimental Design
2.3. Assessment of CIA
2.4. Knee Joint Histopathology
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Quantitative Real-Time Polymerase Chain Reaction
2.7. Determination of SCFAs in Feces
2.8. Analysis of Gut Microbiota
2.9. Statistical Analyses
3. Results
3.1. Effect of L. helveticus on Body Weight and Hind Paw Thickness of CIA Rats
3.2. Effect of L. helveticus on CIA Rat Knee Joint Tissue Pathology Sections
3.3. Effect of L. helveticus on Anti-CII IgG in the Serum of CIA Rats
3.4. Effect of L. helveticus on Inflammatory Factors in the Serum of CIA Rats
3.5. Effect of L. helveticus on Matrix Metalloproteinases Levels in the Serum of CIA Rats
3.6. Effects of L. helveticus on Intestinal Barrier Related Protein Genes in CIA Rats
3.7. Effects of L. helveticus on SCFAs in CIA Rats
3.8. Effects of L. helveticus on the Gut Microbiota in CIA Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| RA | Rheumatoid arthritis |
| CIA | Collagen-induced arthritis |
| CCFM | Culture Collection of Food Microorganisms |
| DMARDs | Disease-Modifying Antirheumatic Drugs |
| ISAPP | International Scientific Association for Probiotics and Prebiotics |
| MRS | Man Rogosa Sharpe Medium |
| SPF | Specific-pathogen-free |
| IL-1β | Interleukin-1β |
| IL-6 | Interleukin-6 |
| IL-17A | Interleukin-17A |
| TNF-α | Tumor necrosis factor-α |
| IL-10 | Interleukin-10 |
| MMP-2 | Matrix Metallopeptidase-2 |
| MMP-3 | Matrix Metallopeptidase-3 |
| MMP-9 | Matrix Metallopeptidase-9 |
| ZO-1 | Zona occludens 1 |
| SCFAs | Short-chain fatty acids |
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, H.; Lv, W.; Wei, S.; Zou, Y.; Li, R.; Wang, J.; She, W.; Yuan, L.; Tao, J.; et al. Global, regional and national burden of rheumatoid arthritis from 1990 to 2021, with projections of incidence to 2050: A systematic and comprehensive analysis of the Global Burden of Disease study 2021. Biomark. Res. 2025, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Black, R.J.; Cross, M.; Haile, L.M.; Culbreth, G.; Steinmetz, J.; Hagins, H.; Kopec, J.A.; Brooks, P.M.; Woolf, A.; Ong, K.L.; et al. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, E594–E610. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Dan, A.; Pawar, V.; Chauhan, D.S.; Kaushik, A.; Bhatia, D.; Srivastava, R.; Dhanka, M. Pathophysiology to advanced intra-articular drug delivery strategies: Unravelling rheumatoid arthritis. Biomaterials 2023, 303, 122390. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Joyce Wu, H.-J.; Mauro, D.; Schett, G.; Ciccia, F. The gut–joint axis in rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 224–237. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Jia, H.; Feng, Q.; Wang, D.; Liang, D.; Wu, X.; Li, J.; Tang, L.; Li, Y.; et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 2015, 21, 895–905. [Google Scholar] [CrossRef]
- Zhao, T.; Wei, Y.Y.; Zhu, Y.Y.; Xie, Z.H.; Hai, Q.S.; Li, Z.F.; Qin, D.D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front. Immunol. 2022, 13, 1007165. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, Q.; Zhang, X.H.; Liu, Z.M. Rheumatoid arthritis and the intestinal microbiome: Probiotics as a potential therapy. Front. Immunol. 2024, 15, 1331486. [Google Scholar] [CrossRef]
- Opoku, Y.K.; Asare, K.K.; Ghartey-Quansah, G.; Afrifa, J.; Bentsi-Enchill, F.; Ofori, E.G.; Koomson, C.K.; Kumi-Manu, R. Intestinal microbiome-rheumatoid arthritis crosstalk: The therapeutic role of probiotics. Front. Microbiol. 2022, 13, 996031. [Google Scholar] [CrossRef]
- Cannarella, L.A.T.; Mari, N.L.; Alcântara, C.C.; Iryioda, T.M.V.; Costa, N.T.; Oliveira, S.R.; Lozovoy, M.A.B.; Reiche, E.M.V.; Dichi, I.; Simao, A.N.C. Mixture of probiotics reduces inflammatory biomarkers and improves the oxidative/nitrosative profile in people with rheumatoid arthritis. Nutrition 2021, 89, 111282. [Google Scholar] [CrossRef]
- Li, B.W.; Ding, M.F.; Chen, C.; Zhao, J.X.; Shi, G.X.; Ross, P.; Stanton, C.; Chen, W.; Yang, B. Bifidobacterium longum subsp. infantis B6MNI Alleviates Collagen-Induced Arthritis in Rats via Regulating 5-HIAA and Pim-1/JAK/STAT3 Inflammation Pathways. J. Agric. Food Chem. 2023, 71, 17819–17832. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, Q.; Zhang, X.H.; Liu, Z.M. Bifidobacterium animalis BD400 protects from collagen-induced arthritis through histidine metabolism. Front. Immunol. 2025, 16, 1518181. [Google Scholar] [CrossRef]
- Yamashita, M.; Matsumoto, K.; Endo, T.; Ukibe, K.; Hosoya, T.; Matsubara, Y.; Nakagawa, H.; Sakai, F.; Miyazaki, T. Preventive Effect of Lactobacillus helveticus SBT2171 on Collagen-Induced Arthritis in Mice. Front. Microbiol. 2017, 8, 1159. [Google Scholar] [CrossRef]
- Chelladhurai, K.; Ayyash, M.; Turner, M.S.; Kamal-Eldin, A. Lactobacillus helveticus: Health effects, current applications, and future trends in dairy fermentation. Trends Food Sci. Technol. 2023, 136, 159–168. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, J.M.; Wang, X.; Chun, L.; Yang, Q.N.; Zhao, H.R.; Xue, S.M.; Zhang, Z.Y.; Liu, X.B.; Wang, S.W.; et al. Lactobacillus helveticus mitigates diarrhea and inflammation induced by enterotoxigenic E. coli through rebalance of gut microbiota. Curr. Res. Food Sci. 2025, 11, 101147. [Google Scholar] [CrossRef]
- Alatan, H.; Liang, S.; Shimodaira, Y.; Wu, X.L.; Hu, X.; Wang, T.; Luo, J.; Iijima, K.; Jin, F. Supplementation with Lactobacillus helveticus NS8 alleviated behavioral, neural, endocrine, and microbiota abnormalities in an endogenous rat model of depression. Front. Immunol. 2024, 15, 1407620. [Google Scholar] [CrossRef] [PubMed]
- Li, B.W.; Ding, M.F.; Liu, X.M.; Zhao, J.X.; Ross, R.P.; Stanton, C.; Yang, B.; Chen, W. Bifidobacterium breve CCFM1078 Alleviates Collagen-Induced Arthritis in Rats via Modulating the Gut Microbiota and Repairing the Intestinal Barrier Damage. J. Agric. Food Chem. 2022, 70, 14665–14678. [Google Scholar] [CrossRef]
- Brand, D.D.; Latham, K.A.; Rosloniec, E.F. Collagen-induced arthritis. Nat. Protoc. 2007, 2, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.X.; Yang, B.; Ross, R.P.; Stanton, C.; Zhao, J.X.; Zhang, H.; Chen, W. The prophylactic effects of different Lactobacilli on collagen-induced arthritis in rats. Food Funct. 2020, 11, 3681–3694. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yue, Y.; He, Z.J.; Li, B.W.; Zhao, J.X.; Chen, W.; Yang, B. Lactobacillus gasseri relieves diarrhea caused by enterotoxin-producing Escherichia coli through inflammation modulation and gut microbiota regulation. Food Biosci. 2023, 56, 103186. [Google Scholar] [CrossRef]
- Ding, M.F.; Yang, B.; Khine, W.W.T.; Lee, Y.K.; Rahayu, E.S.; Ross, R.P.; Stanton, C.; Zhao, J.X.; Zhang, H.; Chen, W. The Species-Level Composition of the Fecal Bifidobacterium and Lactobacillus Genera in Indonesian Children Differs from That of Their Mothers. Microorganisms 2021, 9, 1995. [Google Scholar] [CrossRef]
- Yan, S.; Yang, B.; Zhao, J.C.; Zhao, J.X.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, W. A ropy exopolysaccharide producing strain Bifidobacterium longum subsp. longum YS108R alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation. Food Funct. 2019, 10, 1595–1608. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef] [PubMed]
- Laha, A.; Nasra, S.; Bhatia, D.; Kumar, A. Advancements in rheumatoid arthritis therapy: A journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. Nanoscale 2024, 16, 14975–14993. [Google Scholar] [CrossRef] [PubMed]
- Balasundaram, D.; Veerasamy, V.; Singarayar, M.S.; Neethirajan, V.; Devanesan, A.A.; Thilagar, S. Therapeutic potential of probiotics in gut microbial homeostasis and Rheumatoid arthritis. Int. Immunopharmacol. 2024, 137, 112501. [Google Scholar] [CrossRef]
- Fan, Z.X.; Ross, R.P.; Stanton, C.; Hou, B.; Zhao, J.X.; Zhang, H.; Yang, B.; Chen, W. Lactobacillus casei CCFM1074 Alleviates Collagen-Induced Arthritis in Rats via Balancing Treg/Th17 and Modulating the Metabolites and Gut Microbiota. Front. Immunol. 2021, 12, 680073. [Google Scholar] [CrossRef]
- Trentham, D.E.; Dynesiustrentham, R.A.; Orav, E.J.; Combitchi, D.; Lorenzo, C.; Sewell, K.L.; Hafler, D.A.; Weiner, H.L. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 1993, 261, 1727–1730. [Google Scholar] [CrossRef]
- Pan, P.; Wang, Y.; Nyirenda, M.H.; Saiyed, Z.; Karimian Azari, E.; Sunderman, A.; Milling, S.; Harnett, M.M.; Pineda, M. Undenatured type II collagen protects against collagen-induced arthritis by restoring gut-joint homeostasis and immunity. Commun. Biol. 2024, 7, 804. [Google Scholar] [CrossRef]
- Koper-Lenkiewicz, O.M.; Sutkowska, K.; Wawrusiewicz-Kurylonek, N.; Kowalewska, E.; Matowicka-Karna, J. Proinflammatory Cytokines (IL-1,-6,-8,-15,-17,-18,-23, TNF-α) Single Nucleotide Polymorphisms in Rheumatoid Arthritis-A Literature Review. Int. J. Mol. Sci. 2022, 23, 2106. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 2017, 389, 2328–2337. [Google Scholar] [CrossRef]
- Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 10922. [Google Scholar] [CrossRef]
- van den Berg, W.B.; Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 549–553. [Google Scholar] [CrossRef]
- York, A.G.; Skadow, M.H.; Oh, J.; Qu, R.H.; Zhou, Q.D.; Hsieh, W.Y.; Mowel, W.K.; Brewer, J.R.; Kaffe, E.; Williams, K.J.; et al. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature 2024, 627, 628–635. [Google Scholar] [CrossRef]
- Ge, J.; Yan, Q.; Wang, Y.J.; Cheng, X.Q.; Song, D.W.; Wu, C.H.; Yu, H.; Yang, H.L.; Zou, J. IL-10 delays the degeneration of intervertebral discs by suppressing the p38 MAPK signaling pathway. Free Radic. Biol. Med. 2020, 147, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Zhou, T.Y.; Maimaiti, K.; Xu, H.Y.; Ma, G.X. Anti-rheumatoid arthritis effects of Caragana acanthophylla Kom. on collagen-induced arthritis and the anti-inflammatory activity of polyphenols as main active components. J. Ethnopharmacol. 2025, 346, 119637. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Yang, X.W.; Gao, H. Activation of the NF-κB signaling pathway by Reynoutria japonica Houtt ameliorates complete Freund’s adjuvant-induced arthritis in rats. Inflammopharmacology 2025, 33, 1407–1424. [Google Scholar] [CrossRef]
- Bian, Y.Q.; Xiang, Z.; Wang, Y.F.; Ren, Q.; Chen, G.M.; Xiang, B.; Wang, J.Y.; Zhang, C.B.; Pei, S.Q.; Guo, S.C.; et al. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front. Pharmacol. 2023, 14, 1285455. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.J.; Wang, N.; Shang, L.L.; Wang, Y.L.; Feng, M.; Liu, G.Y.; Gao, C.; Luo, J. Evaluation of the immune feature of ACPA-negative rheumatoid arthritis and the clinical value of matrix metalloproteinase-3. Front. Immunol. 2022, 13, 939265. [Google Scholar] [CrossRef]
- Kumagai, S.; Uemura, Y.; Saito, T.; Umeda, R.; Muta, A.; Izumi, M.; Abe, K.; Sendo, S.; Tsuji, G. AB0240 MMP-3 as A Biomarker of Disease Activity of Rheumatoid Arthritis. Ann. Rheum. Dis. 2016, 75, 980. [Google Scholar] [CrossRef]
- Qi, P.; Chen, X.; Tian, J.X.; Zhong, K.X.; Qi, Z.H.; Li, M.H.; Xie, X.W. The gut homeostasis-immune system axis: Novel insights into rheumatoid arthritis pathogenesis and treatment. Front. Immunol. 2024, 15, 482214. [Google Scholar] [CrossRef]
- Mucientes, A.; Lisbona-Montañez, J.M.; Mena-Vázquez, N.; Ruiz-Limón, P.; Manrique-Arija, S.; García-Studer, A.; Ortiz-Márquez, F.; Fernández-Nebro, A. Intestinal Dysbiosis, Tight Junction Proteins, and Inflammation in Rheumatoid Arthritis Patients: A Cross-Sectional Study. Int. J. Mol. Sci. 2024, 25, 8649. [Google Scholar] [CrossRef]
- Rauf, A.; Khalil, A.A.; Rahman, U.U.; Khalid, A.; Naz, S.; Shariati, M.A.; Rebezov, M.; Urtecho, E.Z.; de Albuquerque, R.; Anwar, S.; et al. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6034–6054. [Google Scholar] [CrossRef] [PubMed]
- Golpour, F.; Abbasi-Alaei, M.; Babaei, F.; Mirzababaei, M.; Parvardeh, S.; Mohammadi, G.; Nassiri-Asl, M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed. Pharmacother. 2023, 163, 114763. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kwon, J.E.; Lee, S.H.; Kim, E.K.; Ryu, J.G.; Jung, K.A.; Choi, J.W.; Park, M.J.; Moon, Y.M.; Park, S.H.; et al. Attenuation of Rheumatiod Inflammation by Soudium Butyrate Through Reciprocal Targeting of HDAC2 in Osteoclasts and HDAC8 in T Cells. Front. Immunol. 2018, 9, 1525. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, J.J.; Xiao, J.; Hong, Y.J.; Xu, K.; Zhu, Y. Butyrate: A bridge between intestinal flora and rheumatoid arthritis. Front. Immunol. 2024, 15, 1475529. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, X.Y.; Zheng, Y.Q.; Zhang, M.; Fei, W.D.; Sun, D.L.; Zhao, M.D.; Ye, Y.Q.; Zheng, C.H. Short-chain fatty acids regulate B cells differentiation via the FFA2 receptor to alleviate rheumatoid arthritis. Br. J. Pharmacol. 2022, 179, 4315–4329. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhya, I.; Louis, P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat. Rev. Microbiol. 2025, 10, 635–651. [Google Scholar] [CrossRef]
- Dong, Y.; Yao, J.L.; Deng, Q.Y.; Li, X.X.; He, Y.Y.; Ren, X.Y.; Zheng, Y.; Song, R.L.; Zhong, X.J.; Ma, J.M.; et al. Relationship between gut microbiota and rheumatoid arthritis: A bibliometric analysis. Front. Immunol. 2023, 14, 1131933. [Google Scholar] [CrossRef]
- Horta-Baas, G.; Romero-Figueroa, M.D.; Montiel-Jarquín, A.J.; Pizano-Zárate, M.L.; García-Mena, J.; Ramírez-Durán, N. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis. J Immunol. Res. 2017, 2017, 4835189. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.X.; Chang, M.J.; Qiao, J.; Wang, C.H.; Li, X.F.; Yu, Q.; He, P.F. Characteristics of the Gut Microbiome and Its Relationship With Peripheral CD4+ T Cell Subpopulations and Cytokines in Rheumatoid Arthritis. Front. Microbiol. 2022, 13, 799602. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Li, W.J.; Niu, S.J.; Zhu, X.Y.; Chu, M.L.; Wang, W.Y.; Sun, W.T.; Wei, X.M.; Zhang, J.N.; Zhang, Z.Y. BzATP reverses ferroptosis-induced gut microbiota disorders in collagen-induced arthritis mice. Int. Immunopharmacol. 2023, 124, 110885. [Google Scholar] [CrossRef]
- Sun, H.J.; Guo, Y.K.; Wang, H.D.; Yin, A.L.; Hu, J.; Yuan, T.J.; Zhou, S.X.; Xu, W.C.; Wei, P.; Yin, S.S.; et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis. Gut 2023, 72, 1664–1677. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The GenusAlistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Shin, J.H.; Tillotson, G.; MacKenzie, T.N.; Warren, C.A.; Wexler, H.M.; Goldstein, E.J.C. Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 2024, 85, 102819. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Wu, Y.X.; Luo, Y.B.; Wei, S.X.; Lu, C.Y.; Zhou, Y.; Wang, J.; Miao, T.; Lin, H.; Zhao, Y.; et al. Self-Balance of Intestinal Flora in Spouses of Patients With Rheumatoid Arthritis. Front. Med. 2020, 7, 538. [Google Scholar] [CrossRef] [PubMed]
- Effendi, R.; Anshory, M.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Pardo, L.M.; Nijsten, T.E.C.; Thio, H.B. Akkermansia muciniphila and Faecalibacterium prausnitzii in Immune-Related Diseases. Microorganisms 2022, 10, 2382. [Google Scholar] [CrossRef]










| Gene | Forward (5′-3′) | Reverse (5′-3′) |
|---|---|---|
| ZO-1 | GGCGTTCTAGAAGATAGCC | GAAATCTACATTGTTCACCCTG |
| Claudin-1 | TCTGAATAGTACTTTGCAGGC | GTGGACACAAAGATTGCGA |
| Occludin | ACTATGAAACCGACTACACGA | TGATAGGTGGATATTCCCTGAG |
| β-actin | CTTCCTGGGTATGGAATCCT | TCTTTACGGATGTCAACGTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Hong, Q.; Zhai, Q.; Zhao, J.; Yang, B.; Liu, Z. Lactobacillus helveticus Alleviates Collagen-Induced Arthritis in Rats Through Inflammation Modulation and Gut Microbiota Regulation. Nutrients 2025, 17, 3645. https://doi.org/10.3390/nu17233645
Zhu Z, Hong Q, Zhai Q, Zhao J, Yang B, Liu Z. Lactobacillus helveticus Alleviates Collagen-Induced Arthritis in Rats Through Inflammation Modulation and Gut Microbiota Regulation. Nutrients. 2025; 17(23):3645. https://doi.org/10.3390/nu17233645
Chicago/Turabian StyleZhu, Zhexuan, Qing Hong, Qixiao Zhai, Jianxin Zhao, Bo Yang, and Zhenmin Liu. 2025. "Lactobacillus helveticus Alleviates Collagen-Induced Arthritis in Rats Through Inflammation Modulation and Gut Microbiota Regulation" Nutrients 17, no. 23: 3645. https://doi.org/10.3390/nu17233645
APA StyleZhu, Z., Hong, Q., Zhai, Q., Zhao, J., Yang, B., & Liu, Z. (2025). Lactobacillus helveticus Alleviates Collagen-Induced Arthritis in Rats Through Inflammation Modulation and Gut Microbiota Regulation. Nutrients, 17(23), 3645. https://doi.org/10.3390/nu17233645

