The Mediterranean Diet in Primary and Secondary Prevention of Coronary Heart Disease: Evidence and Mechanisms
Abstract
1. Introduction
2. Methodology
3. Mediterranean Diet
3.1. Concept of Mediterranean Diet
3.2. Bioactive Components and Mechanisms of the Mediterranean Diet in Cardiovascular Disease
3.2.1. Lipid Metabolism
3.2.2. Inflammation and Oxidative Stress
4. Mediterranean Diet in Primary Prevention of Coronary Heart Disease
5. Mediterranean Diet in Secondary Prevention of Coronary Heart Disease
6. Comparison of the Mediterranean Diet with Other Diets
6.1. Low-Fat Diet
6.2. Low Carbohydrate Diet
6.3. Lacto-Ovo-Vegetarian Diet
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 8-OHdG | 8-hydroksy-2′-deoxyguanosine |
| ACS | Acute cronary syndrome |
| ALA | Alpha-linolenic acid |
| AMPK | AMP-activated protein kinase |
| Apo | Apolipoprotein |
| BMI | Body mass index |
| CABG | Coronary artery bypass grafting |
| CAD | Coronary artery disease |
| CHD | Coronary heart disease |
| CI | Confidence interval |
| COX | Cyclooxygenase |
| CPCs | Circulating progenitor cells |
| CRP | C-reactive protein |
| CVD | Cardiovascular disease |
| DASH | Dietary Approaches to Stop Hipertension |
| DHA | Docosahexaenoic acid |
| eGFR | Estimated glomerular filtration rate |
| EPA | Eicosapentaenoic acid |
| EVOO | Extra virgin olive oil |
| GPx | Glutathione peroxidase |
| GSH | Glutathione |
| HDL | High density lipoprotein |
| HDL-CEC | High density lipoprotein-cholesterol efflux capacity |
| HR | Hazard ratio |
| IL | Interleukin |
| IMT-CC | Intima-media thickness of both common carotid arteries |
| LCD | Low carbohydrate diet |
| LFD | Low fat diet |
| LDL-C | Low density liporotein-cholesterol |
| MDA | Malondialdehyde |
| MD | Mediterranean diet |
| MI | Myocardial infraction |
| MUFA | Monounsaturated fatty acids |
| NF | Nuclear factor |
| NLRP3 | NOD-like receptor protein 3 |
| NOX | Nitric oxide metabolites |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| OO | Olive oil |
| PCI | Percutaneous coronary intervention |
| PUFA | Polyunsaturated fatty acids |
| ROS | Reactive oxygen species |
| SOD | Superoxide dismutase |
| TNF | Tumor necrosis factor |
| UA | Unstable angina |
| VD | Vegetarian diet |
| VEC | Vascular endothelial cell |
| VOO | Virgin olive oil |
| WHO | World Health Organization |
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 23 August 2025).
- Liu, H.; Chen, X.; Hu, X.; Niu, H.; Tian, R.; Wang, H.; Pang, H.; Jiang, L.; Qiu, B.; Chen, X.; et al. Alterations in the Gut Microbiome and Metabolism with Coronary Artery Disease Severity. Microbiome 2019, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Wahab, A.; Khan, S.U.; Zaman, U.; Rehman, K.U.; Hamayun, S.; Naeem, M.; Ali, H.; Riaz, T.; Saeed, S.; et al. Stent as a Novel Technology for Coronary Artery Disease and Their Clinical Manifestation. Curr. Probl. Cardiol. 2023, 48, 101415. [Google Scholar] [CrossRef]
- Tuso, P.; Stoll, S.R.; Li, W.W. A Plant-Based Diet, Atherogenesis, and Coronary Artery Disease Prevention. Perm. J. 2015, 19, 62–67. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Goldsborough, E.; Osuji, N.; Blaha, M.J. Assessment of Cardiovascular Disease Risk: A 2022 Update. Endocrinol. Metab. Clin. N. Am. 2022, 51, 483–509. [Google Scholar] [CrossRef]
- Duggan, J.P.; Peters, A.S.; Trachiotis, G.D.; Antevil, J.L. Epidemiology of Coronary Artery Disease. Surg. Clin. N. Am. 2022, 102, 499–516. [Google Scholar] [CrossRef]
- Sigamani, A.; Gupta, R. Revisiting Secondary Prevention in Coronary Heart Disease. Indian Heart J. 2022, 74, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Saliba, S.J. Prevention of Coronary Artery Disease. Prim. Care 2000, 27, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.M.J.; Koyama, S.; Honigberg, M.C.; Surakka, I.; Haidermota, S.; Ganesh, S.; Patel, A.P.; Bhattacharya, R.; Lee, H.; Kim, H.C.; et al. Genetic, Sociodemographic, Lifestyle, and Clinical Risk Factors of Recurrent Coronary Artery Disease Events: A Population-Based Cohort Study. Eur. Heart J. 2023, 44, 3456–3465. [Google Scholar] [CrossRef]
- Dalen, J.E.; Alpert, J.S.; Goldberg, R.J.; Weinstein, R.S. The Epidemic of the 20(Th) Century: Coronary Heart Disease. Am. J. Med. 2014, 127, 807–812. [Google Scholar] [CrossRef]
- Tu, Z.; Yang, J.; Fan, C. The Role of Different Nutrients in the Prevention and Treatment of Cardiovascular Diseases. Front. Immunol. 2024, 15, 1393378. [Google Scholar] [CrossRef]
- Diab, A.; Dastmalchi, L.N.; Gulati, M.; Michos, E.D. A Heart-Healthy Diet for Cardiovascular Disease Prevention: Where Are We Now? Vasc. Health Risk Manag. 2023, 19, 237–253. [Google Scholar] [CrossRef]
- Laffond, A.; Rivera-Picón, C.; Rodríguez-Muñoz, P.M.; Juárez-Vela, R.; Ruiz de Viñaspre-Hernández, R.; Navas-Echazarreta, N.; Sánchez-González, J.L. Mediterranean Diet for Primary and Secondary Prevention of Cardiovascular Disease and Mortality: An Updated Systematic Review. Nutrients 2023, 15, 3356. [Google Scholar] [CrossRef]
- Urquiaga, I.; Echeverría, G.; Dussaillant, C.; Rigotti, A. Origen, Componentes y Posibles Mecanismos de Acción de La Dieta Mediterránea. Rev. Méd. Chile 2017, 145, 85–95. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Pyramid Today. Science and Cultural Updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- Hernández, J.M.; Rentero, M.P.Z.; Hernández, J.M.; Rentero, M.P.Z. Bioactive Compounds Contained in Mediterranean Diet and Their Effects on Neurodegenerative Diseases. In Current Topics on Superfoods; IntechOpen: London, UK, 2018; ISBN 978-1-78923-209-7. [Google Scholar]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Stephan, B.C.M.; Minihane, A.-M.; Mathers, J.C.; Siervo, M. Nitric Oxide Boosting Effects of the Mediterranean Diet: A Potential Mechanism of Action. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 902–904. [Google Scholar] [CrossRef]
- Freitas-Simoes, T.-M.; Cofán, M.; Blasco, M.A.; Soberón, N.; Foronda, M.; Serra-Mir, M.; Roth, I.; Valls-Pedret, C.; Doménech, M.; Ponferrada-Ariza, E.; et al. Walnut Consumption for Two Years and Leukocyte Telomere Attrition in Mediterranean Elders: Results of a Randomized Controlled Trial. Nutrients 2018, 10, 1907. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants 2018, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Dinu, M.; Pagliai, G.; Cesari, F.; Gori, A.M.; Sereni, A.; Becatti, M.; Fiorillo, C.; Marcucci, R.; Casini, A. Low-Calorie Vegetarian Versus Mediterranean Diets for Reducing Body Weight and Improving Cardiovascular Risk Profile. Circulation 2018, 137, 1103–1113. [Google Scholar] [CrossRef]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-Style Diet on Cardiovascular Risk Factors: A Randomized Trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Naska, A.; Orfanos, P.; Trichopoulos, D.; Mountokalakis, T.; Trichopoulou, A. Olive Oil, the Mediterranean Diet, and Arterial Blood Pressure: The Greek European Prospective Investigation into Cancer and Nutrition (EPIC) Study123. Am. J. Clin. Nutr. 2004, 80, 1012–1018. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Benetou, V.; Trichopoulou, A.; La Vecchia, C.; Bamia, C. Mediterranean Diet and Its Components in Relation to All-Cause Mortality: Meta-Analysis. Br. J. Nutr. 2018, 120, 1081–1097. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Missbach, B.; König, J.; Hoffmann, G. Adherence to a Mediterranean Diet and Risk of Diabetes: A Systematic Review and Meta-Analysis. Public Health Nutr. 2015, 18, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Health Fraud Program. Qualified Health Claims: Letters of Enforcement Discretion; FDA: Washington, DC, USA, 2024. [Google Scholar]
- Sabaté, J.; Oda, K.; Ros, E. Nut Consumption and Blood Lipid Levels: A Pooled Analysis of 25 Intervention Trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef]
- Banel, D.K.; Hu, F.B. Effects of Walnut Consumption on Blood Lipids and Other Cardiovascular Risk Factors: A Meta-Analysis and Systematic Review2. Am. J. Clin. Nutr. 2009, 90, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Tuccinardi, D.; Farr, O.M.; Upadhyay, J.; Oussaada, S.M.; Klapa, M.I.; Candela, M.; Rampelli, S.; Lehoux, S.; Lázaro, I.; Sala-Vila, A.; et al. Mechanisms Underlying the Cardiometabolic Protective Effect of Walnut Consumption in Obese People: A Cross-over, Randomized, Double-Blind, Controlled Inpatient Physiology Study. Diabetes Obes. Metab. 2019, 21, 2086–2095. [Google Scholar] [CrossRef]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferré, M.; et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención Con Dieta Mediterránea). Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Farrés, X.; Luque, X.; Narejos, S.; Borrell, M.; Basora, J.; Anguera, A.; Torres, F.; Bulló, M.; Balanza, R.; et al. Effect of Two Doses of a Mixture of Soluble Fibres on Body Weight and Metabolic Variables in Overweight or Obese Patients: A Randomised Trial. Br. J. Nutr. 2008, 99, 1380–1387. [Google Scholar] [CrossRef]
- Theuwissen, E.; Mensink, R.P. Water-Soluble Dietary Fibers and Cardiovascular Disease. Physiol. Behav. 2008, 94, 285–292. [Google Scholar] [CrossRef]
- Ilari, S.; Dagostino, C.; Malafoglia, V.; Lauro, F.; Giancotti, L.A.; Spila, A.; Proietti, S.; Ventrice, D.; Rizzo, M.; Gliozzi, M.; et al. Protective Effect of Antioxidants in Nitric Oxide/COX-2 Interaction during Inflammatory Pain: The Role of Nitration. Antioxidants 2020, 9, 1284. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Carpi, S.; Scoditti, E.; Massaro, M.; Polini, B.; Manera, C.; Digiacomo, M.; Esposito Salsano, J.; Poli, G.; Tuccinardi, T.; Doccini, S.; et al. The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-κB Activation. Nutrients 2019, 11, 2855. [Google Scholar] [CrossRef]
- Chartoumpekis, D.V.; Kensler, T.W. New Player on An Old Field; the Keap1/Nrf2 Pathway as a Target for Treatment of Type 2 Diabetes and Metabolic Syndrome. Curr. Diabetes Rev. 2013, 9, 137–145. [Google Scholar] [CrossRef]
- Azzini, E.; Polito, A.; Fumagalli, A.; Intorre, F.; Venneria, E.; Durazzo, A.; Zaccaria, M.; Ciarapica, D.; Foddai, M.S.; Mauro, B.; et al. Mediterranean Diet Effect: An Italian Picture. Nutr. J. 2011, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; Gómez, C.; Mateos, D.; Ripoll-Vera, T.; Tur, J.A.; Sureda, A. Inflammatory and Oxidative Stress Markers Related to Adherence to the Mediterranean Diet in Patients with Metabolic Syndrome. Antioxidants 2022, 11, 901. [Google Scholar] [CrossRef] [PubMed]
- Mitjavila, M.T.; Fandos, M.; Salas-Salvadó, J.; Covas, M.-I.; Borrego, S.; Estruch, R.; Lamuela-Raventós, R.; Corella, D.; Martínez-Gonzalez, M.Á.; Sánchez, J.M.; et al. The Mediterranean Diet Improves the Systemic Lipid and DNA Oxidative Damage in Metabolic Syndrome Individuals. A Randomized, Controlled, Trial. Clin. Nutr. 2013, 32, 172–178. [Google Scholar] [CrossRef]
- Serreli, G.; Deiana, M. Biological Relevance of Extra Virgin Olive Oil Polyphenols Metabolites. Antioxidants 2018, 7, 170. [Google Scholar] [CrossRef]
- Urpi-Sarda, M.; Casas, R.; Chiva-Blanch, G.; Romero-Mamani, E.S.; Valderas-Martínez, P.; Salas-Salvadó, J.; Covas, M.I.; Toledo, E.; Andres-Lacueva, C.; Llorach, R.; et al. The Mediterranean Diet Pattern and Its Main Components Are Associated with Lower Plasma Concentrations of Tumor Necrosis Factor Receptor 60 in Patients at High Risk for Cardiovascular Disease. J. Nutr. 2012, 142, 1019–1025. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-Style Diet on Endothelial Dysfunction and Markers of Vascular Inflammation in the Metabolic Syndrome: A Randomized Trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Montefusco, L.; D’Addio, F.; Loretelli, C.; Ben Nasr, M.; Garziano, M.; Rossi, A.; Pastore, I.; Plebani, L.; Lunati, M.E.; Bolla, A.M.; et al. Anti-Inflammatory Effects of Diet and Caloric Restriction in Metabolic Syndrome. J. Endocrinol. Investig. 2021, 44, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Ilari, S.; Proietti, S.; Milani, F.; Vitiello, L.; Muscoli, C.; Russo, P.; Bonassi, S. Dietary Patterns, Oxidative Stress, and Early Inflammation: A Systematic Review and Meta-Analysis Comparing Mediterranean, Vegan, and Vegetarian Diets. Nutrients 2025, 17, 548. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, S. The Association between Olive Oil Consumption and Primary Prevention of Cardiovascular Diseases. J. Fam. Med. Prim. Care 2018, 7, 859. [Google Scholar] [CrossRef]
- Sikic, J.; Stipcevic, M.; Vrazic, H.; Cerkez Habek, J.; Margetic, E.; Gulin, D. Nutrition in Primary and Secondary Prevention of Cardiovascular Risk in the Continental and Mediterranean Regions of Croatia. BMC Cardiovasc. Disord. 2017, 17, 247. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean Diet and Cardiovascular Disease: A Systematic Review and Meta-Analysis of Observational Studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Colditz, G.A.; Rosner, B.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Frequent Nut Consumption and Risk of Coronary Heart Disease in Women: Prospective Cohort Study. BMJ 1998, 317, 1341–1345. [Google Scholar] [CrossRef]
- Solá, R.; Fitó, M.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; De La Torre, R.; Muñoz, M.A.; López-Sabater, M.D.C.; Martínez-González, M.-A.; Arós, F.; et al. Effect of a Traditional Mediterranean Diet on Apolipoproteins B, A-I, and Their Ratio: A Randomized, Controlled Trial. Atherosclerosis 2011, 218, 174–180. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- Yan, Y.; Jiang, W.; Spinetti, T.; Tardivel, A.; Castillo, R.; Bourquin, C.; Guarda, G.; Tian, Z.; Tschopp, J.; Zhou, R. Omega-3 Fatty Acids Prevent Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome Activation. Immunity 2013, 38, 1154–1163. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.-H.; Smith, A.B.; Breslin, P.A.S. Phytochemistry: Ibuprofen-like Activity in Extra-Virgin Olive Oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Skoumas, I.; Stefanadis, C. ATTICA Study Five-Year Incidence of Cardiovascular Disease and Its Predictors in Greece: The ATTICA Study. Vasc. Med. 2008, 13, 113–121. [Google Scholar] [CrossRef]
- Pitsavos, C.; Panagiotakos, D.B.; Chrysohoou, C.; Stefanadis, C. Epidemiology of Cardiovascular Risk Factors in Greece: Aims, Design and Baseline Characteristics of the ATTICA Study. BMC Public Health 2003, 3, 32. [Google Scholar] [CrossRef]
- Kouvari, M.; Tsiampalis, T.; Chrysohoou, C.; Georgousopoulou, E.; Notara, V.; Souliotis, K.; Psaltopoulou, T.; Yannakoulia, M.; Pitsavos, C.; Panagiotakos, D.B. A Mediterranean Diet Microsimulation Modeling in Relation to Cardiovascular Disease Burden: The ATTICA and GREECS Epidemiological Studies. Eur. J. Clin. Nutr. 2022, 76, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.J.; Roberts, M.B.; Salter, J.; Eaton, C.B. Relationship between Mediterranean Diet Score and Atherothrombotic Risk: Findings from the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Atherosclerosis 2010, 210, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Pant, A.; Gribbin, S.; McIntyre, D.; Trivedi, R.; Marschner, S.; Laranjo, L.; Mamas, M.A.; Flood, V.; Chow, C.K.; Zaman, S. Primary Prevention of Cardiovascular Disease in Women with a Mediterranean Diet: Systematic Review and Meta-Analysis. Heart 2023, 109, 1208–1215. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-Style Diet for the Primary and Secondary Prevention of Cardiovascular Disease. Cochrane Database Syst. Rev. 2019, 3, CD009825. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Díaz-López, A.; Ruiz-Canela, M.; Basora, J.; Fitó, M.; Corella, D.; Serra-Majem, L.; Wärnberg, J.; Romaguera, D.; Estruch, R.; et al. Effect of a Lifestyle Intervention Program With Energy-Restricted Mediterranean Diet and Exercise on Weight Loss and Cardiovascular Risk Factors: One-Year Results of the PREDIMED-Plus Trial. Diabetes Care 2019, 42, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, J.; Ruiz-Canela, M.; Galmes-Panades, A.M.; Abete, I.; Babio, N.; Fiol, M.; Martín-Sánchez, V.; Estruch, R.; Vidal, J.; Buil-Cosiales, P.; et al. An Energy-Reduced Mediterranean Diet, Physical Activity, and Body Composition: An Interim Subgroup Analysis of the PREDIMED-Plus Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2337994. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; PREDIMED INVESTIGATORS. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- Itsiopoulos, C.; Brazionis, L.; Kaimakamis, M.; Cameron, M.; Best, J.D.; O’Dea, K.; Rowley, K. Can the Mediterranean Diet Lower HbA1c in Type 2 Diabetes? Results from a Randomized Cross-over Study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 740–747. [Google Scholar] [CrossRef]
- Hernáez, Á.; Castañer, O.; Elosua, R.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; Fiol, M.; et al. Mediterranean Diet Improves High-Density Lipoprotein Function in High-Cardiovascular-Risk Individuals. Circulation 2017, 135, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Hernáez, Á.; Castañer, O.; Goday, A.; Ros, E.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; et al. The Mediterranean Diet Decreases LDL Atherogenicity in High Cardiovascular Risk Individuals: A Randomized Controlled Trial. Mol. Nutr. Food Res. 2017, 61, 1601015. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and Developing a Literature-Derived, Population-Based Dietary Inflammatory Index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.L.; Thomas, C.J.; Tierney, A.C.; Kucianski, T.; George, E.S.; Ruiz-Canela, M.; Hebert, J.R.; Shivappa, N.; Itsiopoulos, C. Randomization to 6-Month Mediterranean Diet Compared with a Low-Fat Diet Leads to Improvement in Dietary Inflammatory Index Scores in Patients with Coronary Heart Disease: The AUSMED Heart Trial. Nutr. Res. 2018, 55, 94–107. [Google Scholar] [CrossRef]
- Itsiopoulos, C.; Kucianski, T.; Mayr, H.L.; van Gaal, W.J.; Martinez-Gonzalez, M.A.; Vally, H.; Kingsley, M.; Kouris-Blazos, A.; Radcliffe, J.; Segal, L.; et al. The AUStralian MEDiterranean Diet Heart Trial (AUSMED Heart Trial): A Randomized Clinical Trial in Secondary Prevention of Coronary Heart Disease in a Multiethnic Australian Population: Study Protocol. Am. Heart J. 2018, 203, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Perez-Martinez, P.; Garcia-Rios, A.; Alcala-Diaz, J.F.; Perez-Caballero, A.I.; Gomez-Delgado, F.; Fuentes, F.; Quintana-Navarro, G.; Lopez-Segura, F.; Ortiz-Morales, A.M.; et al. CORonary Diet Intervention with Olive Oil and Cardiovascular PREVention Study (the CORDIOPREV Study): Rationale, Methods, and Baseline Characteristics: A Clinical Trial Comparing the Efficacy of a Mediterranean Diet Rich in Olive Oil versus a Low-Fat Diet on Cardiovascular Disease in Coronary Patients. Am. Heart J. 2016, 177, 42–50. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Delgado-Lista, J.; Alcala-Diaz, J.F.; Garcia-Rios, A.; Perez-Caballero, A.I.; Blanco-Rojo, R.; Gomez-Delgado, F.; Marin, C.; Tinahones, F.J.; Caballero, J.; et al. A Dysregulation of Glucose Metabolism Control Is Associated with Carotid Atherosclerosis in Patients with Coronary Heart Disease (CORDIOPREV-DIAB Study). Atherosclerosis 2016, 253, 178–185. [Google Scholar] [CrossRef]
- Jimenez-Torres, J.; Alcalá-Diaz, J.F.; Torres-Peña, J.D.; Gutierrez-Mariscal, F.M.; Leon-Acuña, A.; Gómez-Luna, P.; Fernández-Gandara, C.; Quintana-Navarro, G.M.; Fernandez-Garcia, J.C.; Perez-Martinez, P.; et al. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. Stroke 2021, 52, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Chrysohoou, C.; Panagiotakos, D.B.; Aggelopoulos, P.; Kastorini, C.-M.; Kehagia, I.; Pitsavos, C.; Stefanadis, C. The Mediterranean Diet Contributes to the Preservation of Left Ventricular Systolic Function and to the Long-Term Favorable Prognosis of Patients Who Have Had an Acute Coronary Event. Am. J. Clin. Nutr. 2010, 92, 47–54. [Google Scholar] [CrossRef]
- Kouvari, M.; Chrysohoou, C.; Aggelopoulos, P.; Tsiamis, E.; Tsioufis, K.; Pitsavos, C.; Tousoulis, D. Mediterranean Diet and Prognosis of First-Diagnosed Acute Coronary Syndrome Patients According to Heart Failure Phenotype: Hellenic Heart Failure Study. Eur. J. Clin. Nutr. 2017, 71, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Michas, G.; Karvelas, G.; Trikas, A. Cardiovascular Disease in Greece; the Latest Evidence on Risk Factors. Hellenic J. Cardiol. 2019, 60, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Giroli, M.G.; Werba, J.P.; Risé, P.; Porro, B.; Sala, A.; Amato, M.; Tremoli, E.; Bonomi, A.; Veglia, F. Effects of Mediterranean Diet or Low-Fat Diet on Blood Fatty Acids in Patients with Coronary Heart Disease. A Randomized Intervention Study. Nutrients 2021, 13, 2389. [Google Scholar] [CrossRef]
- Delgado-Lista, J.; Alcala-Diaz, J.F.; Torres-Peña, J.D.; Quintana-Navarro, G.M.; Fuentes, F.; Garcia-Rios, A.; Ortiz-Morales, A.M.; Gonzalez-Requero, A.I.; Perez-Caballero, A.I.; Yubero-Serrano, E.M.; et al. Long-Term Secondary Prevention of Cardiovascular Disease with a Mediterranean Diet and a Low-Fat Diet (CORDIOPREV): A Randomised Controlled Trial. Lancet 2022, 399, 1876–1885. [Google Scholar] [CrossRef]
- Podadera-Herreros, A.; Alcala-Diaz, J.F.; Gutierrez-Mariscal, F.M.; Jimenez-Torres, J.; de la Cruz-Ares, S.; Arenas-de Larriva, A.P.; Cardelo, M.P.; Torres-Peña, J.D.; Luque, R.M.; Ordovas, J.M.; et al. Long-Term Consumption of a Mediterranean Diet or a Low-Fat Diet on Kidney Function in Coronary Heart Disease Patients: The CORDIOPREV Randomized Controlled Trial. Clin. Nutr. 2022, 41, 552–559. [Google Scholar] [CrossRef]
- Yokose, C.; McCormick, N.; Rai, S.K.; Lu, N.; Curhan, G.; Schwarzfuchs, D.; Shai, I.; Choi, H.K. Effects of Low-Fat, Mediterranean, or Low-Carbohydrate Weight Loss Diets on Serum Urate and Cardiometabolic Risk Factors: A Secondary Analysis of the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Care 2020, 43, 2812–2820. [Google Scholar] [CrossRef]
- Ronca, A.; Pellegrini, N.; Pagliai, G.; Dinu, M.; Manfredini, M.; Incerti, M.; Favari, E.; Sofi, F. Effects of a Dietary Intervention with Mediterranean vs Lacto-Ovo Vegetarian Diets on HDL Function: Results from the CARDIVEG Study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 651–658. [Google Scholar] [CrossRef]
- Cesari, F.; Dinu, M.; Pagliai, G.; Rogolino, A.; Giusti, B.; Gori, A.M.; Casini, A.; Marcucci, R.; Sofi, F. Mediterranean, but Not Lacto-Ovo-Vegetarian, Diet Positively Influence Circulating Progenitor Cells for Cardiovascular Prevention: The CARDIVEG Study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 604–610. [Google Scholar] [CrossRef]
- Del Gobbo, L.C.; Imamura, F.; Aslibekyan, S.; Marklund, M.; Virtanen, J.K.; Wennberg, M.; Yakoob, M.Y.; Chiuve, S.E.; Dela Cruz, L.; Frazier-Wood, A.C.; et al. ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. JAMA Intern. Med. 2016, 176, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Matthan, N.R.; Manson, J.E.; Howard, B.V.; Tinker, L.F.; Neuhouser, M.L.; Van Horn, L.V.; Rossouw, J.E.; Allison, M.A.; Martin, L.W.; et al. Plasma Phospholipid Fatty Acids and Coronary Heart Disease Risk: A Matched Case-Control Study within the Women’s Health Initiative Observational Study. Nutrients 2019, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Kleber, M.E.; Delgado, G.E.; Lorkowski, S.; März, W.; von Schacky, C. Omega-3 Fatty Acids and Mortality in Patients Referred for Coronary Angiography. The Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis 2016, 252, 175–181. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Lemaitre, R.N.; King, I.B.; Song, X.; Huang, H.; Sacks, F.M.; Rimm, E.B.; Wang, M.; Siscovick, D.S. Plasma Phospholipid Long-Chain ω-3 Fatty Acids and Total and Cause-Specific Mortality in Older Adults: A Cohort Study. Ann. Intern. Med. 2013, 158, 515–525. [Google Scholar] [CrossRef]
- Huang, T.; Yang, B.; Zheng, J.; Li, G.; Wahlqvist, M.L.; Li, D. Cardiovascular Disease Mortality and Cancer Incidence in Vegetarians: A Meta-Analysis and Systematic Review. Ann. Nutr. Metab. 2012, 60, 233–240. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Kendall, C.W.; Kahleová, H.; Rahelić, D.; Salas-Salvadó, J.; Choo, V.L.; Mejia, S.B.; Stewart, S.E.; Leiter, L.A.; Jenkins, D.J.; et al. Effect of Vegetarian Dietary Patterns on Cardiometabolic Risk Factors in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2019, 38, 1133–1145. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Nishimura, K.; Barnard, N.D.; Takegami, M.; Watanabe, M.; Sekikawa, A.; Okamura, T.; Miyamoto, Y. Vegetarian Diets and Blood Pressure: A Meta-Analysis. JAMA Intern. Med. 2014, 174, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol Efflux Capacity, High-Density Lipoprotein Function, and Atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef]
- Saleheen, D.; Scott, R.; Javad, S.; Zhao, W.; Rodrigues, A.; Picataggi, A.; Lukmanova, D.; Mucksavage, M.L.; Luben, R.; Billheimer, J.; et al. Association of HDL Cholesterol Efflux Capacity with Incident Coronary Heart Disease Events: A Prospective Case-Control Study. Lancet Diabetes Endocrinol. 2015, 3, 507–513. [Google Scholar] [CrossRef]
- Riggs, K.A.; Rohatgi, A. HDL and Reverse Cholesterol Transport Biomarkers. Methodist. Debakey Cardiovasc. J. 2019, 15, 39–46. [Google Scholar] [CrossRef]
- Cahill, L.E.; Sacks, F.M.; Rimm, E.B.; Jensen, M.K. Cholesterol Efflux Capacity, HDL Cholesterol, and Risk of Coronary Heart Disease: A Nested Case-Control Study in Men. J. Lipid Res. 2019, 60, 1457–1464. [Google Scholar] [CrossRef]
- Hunjadi, M.; Lamina, C.; Kahler, P.; Bernscherer, T.; Viikari, J.; Lehtimäki, T.; Kähönen, M.; Hurme, M.; Juonala, M.; Taittonen, L.; et al. HDL Cholesterol Efflux Capacity Is Inversely Associated with Subclinical Cardiovascular Risk Markers in Young Adults: The Cardiovascular Risk in Young Finns Study. Sci. Rep. 2020, 10, 19223. [Google Scholar] [CrossRef]
- Rigato, M.; Fadini, G.P. Circulating Stem/Progenitor Cells as Prognostic Biomarkers in Macro- and Microvascular Disease: A Narrative Review of Prospective Observational Studies. Curr. Med. Chem. 2018, 25, 4507–4517. [Google Scholar] [CrossRef]


| Study | Conclusions | |
|---|---|---|
| Primary Prevention | ATTICA | High adherence to the MD is associated with lower CVD incidence. MD has a beneficial effect on the pathomechanisms underlying CHD [56,57,58]. |
| NHANES II | DM adherence is related to a better profile of cardioprotective lipids, glucose metabolism, inflammation and coagulation parameters [59]. | |
| PREDIMED | Modified MD supplemented with extra virgin olive oil or nuts reduces the incidence of cardiovascular events with better results than a low-fat diet [61,62]. | |
| PREDIMED-Plus | Hypocaloric MD combined with lifestyle modification reduces cardiovascular risk and improves weight management and metabolic health [63,64,65]. | |
| Secondary Prevention | AUSMED | MD has a high anti-inflammatory potential and significantly reduces inflammatory markers in patients with CHD [69,70,71]. |
| CORDIOPREV | MD decreases the progression of atherosclerosis in patients with CHD [72,73,74]. | |
| Hellenic Heart Failure Study | MD in patients after first diagnosed acute coronary syndrome protects against recurrent episodes [75,76]. |
| Diet Compared to MD | Paper | Patients | Primary Outcomes | Results | Selected Assessment Tools |
|---|---|---|---|---|---|
| Low fat diet | Giroli et al. | patients with CHD | blood fatty acids profile | improvement in both, advantage of MD in omega-3 | MeDAS (Mediterranean Diet Adherence Screener), plasma fatty acid levels measured using gas chromatography (GC) |
| Delgado-Lisa et al. | patients with CHD | major cardiovascular events | improvement in both, more beneficial in MD | Food frequency questionnaire (FFQ), 14-item MedDiet questionnaire, 9-item Low Fat Diet questionnaire | |
| Podadera-Herreros et al. | patients with CHD | kidney function in CHD (eGFR measurement) | significantly lower decrease in eGFR in MD | ||
| Yokose et al. | patients with moderate obesity; in MD group 47.4% with CHD, in LFD 32.9% with CHD | cardiometabolic risk factors (adiposity, lipid profile, systolic blood pressure fasting plasma insulin concentration) | improvement in both, no significant differences between diets | DXA scan Uricase assay (Roche Modular P) | |
| Low carbohydrate diet | Yokose et al. | patients with moderate obesity; in MD group 47.4% with CHD, in LCD 28.4% with CHD | cardiometabolic risk factors (adiposity, lipid profile, systolic blood pressure fasting plasma insulin concentration | improvement in both, no significant differences between diets | Uricase assay (Roche Modular P) |
| Lacto-ovo vegetarian diet | Sofi et al. | overweight patients with a low-to-moderate cardiovascular risk profile | total body weight, BMI, fat mass | ↓ in both, no significant differences between diets | Assessment used body and composition measures stadiometer, Tanita TBF-410 bioelectrical impedance analyzer dietary intake via the National Health and Nutrition Examination Survey food questionnaire |
| LDL-cholesterol, uric acid, vitamin B12 levels | ↓ in VD, no significant changes in MD | ||||
| Triglyceride levels | ↓ in MD, no significant changes in VD | ||||
| Oxidative stress profile | no significant differences between diets | ||||
| IL-17 level | ↓ in MD, ↑ in VD | ||||
| Ronca et al. | overweight patients with a low-to-moderate cardiovascular risk profile | HDL-cholesterol efflux capacity | MD > VD | ||
| Cesari et al. | overweight patients with a low-to-moderate cardiovascular risk profile | level of circulating progenitor cells | ↑ in MD, ↓ in VD | a modified version of the National Health and Nutrition Examination Survey food questionnaire-compliance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynarska, E.; Kurcińska, J.; Kurciński, S.; Marcinkowska, W.; Leszto, K.; Jakubowska, P.; Rysz, J.; Franczyk, B. The Mediterranean Diet in Primary and Secondary Prevention of Coronary Heart Disease: Evidence and Mechanisms. Nutrients 2025, 17, 3617. https://doi.org/10.3390/nu17223617
Młynarska E, Kurcińska J, Kurciński S, Marcinkowska W, Leszto K, Jakubowska P, Rysz J, Franczyk B. The Mediterranean Diet in Primary and Secondary Prevention of Coronary Heart Disease: Evidence and Mechanisms. Nutrients. 2025; 17(22):3617. https://doi.org/10.3390/nu17223617
Chicago/Turabian StyleMłynarska, Ewelina, Julia Kurcińska, Szymon Kurciński, Weronika Marcinkowska, Klaudia Leszto, Paulina Jakubowska, Jacek Rysz, and Beata Franczyk. 2025. "The Mediterranean Diet in Primary and Secondary Prevention of Coronary Heart Disease: Evidence and Mechanisms" Nutrients 17, no. 22: 3617. https://doi.org/10.3390/nu17223617
APA StyleMłynarska, E., Kurcińska, J., Kurciński, S., Marcinkowska, W., Leszto, K., Jakubowska, P., Rysz, J., & Franczyk, B. (2025). The Mediterranean Diet in Primary and Secondary Prevention of Coronary Heart Disease: Evidence and Mechanisms. Nutrients, 17(22), 3617. https://doi.org/10.3390/nu17223617

