Estimates of the Dietary Glycemic Index and Load in a Representative Sample of the Greek Population
Abstract
1. Introduction
2. Methods
Data Analysis
3. Results
| (A) | Tertile 1 | Tertile 2 | Tertile 3 |
|---|---|---|---|
| (Mean GI: 53) | (Mean GI: 60) | (Mean GI: 66) | |
| Energy (kcal) | 1658.1 (1606.5–1709.7) | 1890.3 (1840.1–1940.5) | 1996.8 (1933.3–2060.2) |
| Protein (g) | 63.4 (61.4–65.5) | 70.5 (68.3–72.8) | 76.3 (73.4–79.2) |
| Carbohydrates (g) | 147.6 (142.5–152.7) | 173.8 (168.6–179) | 183.6 (177.1–190.1) |
| Fat (g) | 80.4 (77–83.8) | 88.9 (86.2–91.5) | 92.3 (89–95.7) |
| SFA (g) | 25.2 (24.2–26.3) | 27.7 (26.8–28.5) | 28.7 (27.5–29.8) |
| MUFA (g) | 39.1 (37.2–41.1) | 42.6 (41.2–44.1) | 43.7 (42–45.4) |
| PUFA (g) | 10.2 (9.7–10.8) | 12.3 (11.8–12.8) | 13.4 (12.7–14.1) |
| Cholesterol (mg) | 184.6 (174.6–194.5) | 213.4 (200.7–226.1) | 225.4 (212.6–238.2) |
| Fiber (g) | 17.3 (16.6–18) | 17.3 (16.7–18) | 15.8 (15.2–16.3) |
| (B) | Tertile 1 | Tertile 2 | Tertile 3 |
| (mean GL: 55) | (mean GL: 92) | (mean GL: 158) | |
| Energy (kcal) | 1244.5 (1198.8–1290.2) | 1746 (1706.6–1785.4) | 2554.5 (2500.5–2608.4) |
| Protein (g) | 51.5 (49.4–53.6) | 66 (63.7–68.2) | 92.8 (90.5–95) |
| Carbohydrates (g) | 95.7 (93.8–97.7) | 155 (153.5–156.4) | 254.2 (248.6–259.8) |
| Fat (g) | 63.6 (60.5–66.7) | 84.1 (81.2–87) | 113.9 (110.7–117.2) |
| SFA (g) | 19.4 (18.5–20.3) | 26.1 (25.2–27) | 36 (35–37.1) |
| MUFA (g) | 31.5 (29.8–33.2) | 40.6 (39–42.3) | 53.4 (51.7–55.1) |
| PUFA (g) | 8.2 (7.6–8.7) | 11.4 (10.8–12) | 16.3 (15.7–16.9) |
| Cholesterol (mg) | 165.8 (154.6–176.9) | 196.4 (185.8–207) | 261.2 (248.7–273.7) |
| Fiber (g) | 11.9 (11.4–12.3) | 16.1 (15.6–16.5) | 22.5 (21.7–23.3) |
| Females (n = 2115) | Males (n = 1836) | |||||
|---|---|---|---|---|---|---|
| N | Glycemic Index (Mean (95% CI)) | p-Value | N | Glycemic Index (Mean (95% CI)) | p-Value | |
| Overall | 59.2 (55.6–62.8) | 61.2 (57.4–64.7) | ||||
| Age (years) | 0.001 | <0.001 | ||||
| 18–44 | 935 | 59.6 (59.2 to 60.1) | 798 | 61.2 (60.7 to 61.7) | ||
| 45–64 | 763 | 58.5 (57.9 to 59.0) | 648 | 60.8 (60.1 to 61.4) | ||
| 65+ | 417 | 58.4 (57.4 to 59.4) | 390 | 58.9 (58.2 to 59.6) | ||
| BMI | 0.046 | 0.249 | ||||
| Underweight (<120 kg/m2) | 105 | 60.6 (59.3 to 61.9) | 16 | 61.8 (59.3 to 64.4) | ||
| Normal (20–24.9 kg/m2) | 646 | 59.1 (58.5 to 59.6) | 361 | 61.2 (60.4 to 61.9) | ||
| Overweight (25–29.9 kg/m2) | 666 | 59.0 (58.3 to 59.7) | 825 | 60.4 (59.9 to 61.0) | ||
| Obese (≥30 kg/m2) | 670 | 58.6 (57.9 to 59.3) | 596 | 60.2 (59.6 to 60.9) | ||
| Educational level | 0.038 | <0.001 | ||||
| Low | 644 | 59.0 (58.3 to 59.8) | 472 | 60.8 (60.1 to 61.4) | ||
| Intermediate | 877 | 59.2 (58.7 to 59.6) | 736 | 61.0 (60.5 to 61.5) | ||
| High | 594 | 58.2 (57.7 to 58.8) | 628 | 59.4 (59.0 to 59.9) | ||
| Employment Status | 0.022 | 0.004 | ||||
| Employed | 1408 | 58.7 (58.2 to 59.2) | 902 | 60.0 (59.6 to 60.5) | ||
| All other | 707 | 59.5 (58.9 to 60.0) | 934 | 61.0 (60.5 to 61.5) | ||
| Smoking | 0.007 | <0.001 | ||||
| Never | 1080 | 58.8 (58.2 to 59.3) | 567 | 60.0 (59.4 to 60.6) | ||
| Ex smoker | 290 | 58.1 (57.2 to 59.0) | 550 | 59.4 (58.8 to 60.1) | ||
| Current smoker | 741 | 59.5 (59.0 to 60.0) | 711 | 61.7 (61.2 to 62.3) | ||
| Med. Diet Adherence Category | 0.449 | 0.002 | ||||
| Low | 997 | 59.2 (58.7 to 59.6) | 728 | 61.4 (60.8 to 62.0) | ||
| Med | 856 | 58.8 (58.1 to 59.5) | 766 | 60.0 (59.5 to 60.6) | ||
| High | 262 | 58.5 (57.2 to 59.8) | 342 | 59.7 (58.9 to 60.6) | ||
| Females (n = 2115) | Males (n = 1836) | |||||
|---|---|---|---|---|---|---|
| n | Glycemic Load (Mean (95% CI)) | p-Value | n | Glycemic Load (Mean (95% CI)) | p-Value | |
| 81.9 (62.2–107.8) | 112.9 (82.1–151.1) | |||||
| Age (years) | <0.001 | <0.001 | ||||
| 18–44 | 935 | 96.2 (93.0 to 99.4) | 798 | 135.3 (129.0 to 141.5) | ||
| 45–64 | 763 | 85.6 (82.5 to 88.8) | 648 | 114.2 (107.6 to 120.7) | ||
| 65+ | 417 | 73.4 (68.4 to 78.4) | 390 | 90.0 (84.9 to 95.1) | ||
| BMI | <0.001 | <0.001 | ||||
| Underweight (<20 kg/m2) | 105 | 114.9 (98.4 to 131.4) | 16 | 161.0 (139.9 to 182.1) | ||
| Normal (18.5–24.9 kg/m2) | 646 | 94.1 (90.2 to 98.1) | 361 | 134.6 (129.0 to 140.3) | ||
| Overweight (25–29.9 kg/m2) | 666 | 83.6 (80.1 to 87.1) | 825 | 119.8 (113.5 to 126.1) | ||
| Obese (≥30 kg/m2) | 670 | 80.5 (76.3 to 84.7) | 596 | 106.6 (101.0 to 112.3) | ||
| Educational level | <0.001 | <0.001 | ||||
| Low | 644 | 79.1 (74.5 to 83.7) | 472 | 107.1 (101.0 to 113.3) | ||
| Intermediate | 877 | 91.4 (88.3 to 94.5) | 736 | 124.8 (118.6 to 131.0) | ||
| High | 594 | 94.7 (90.6 to 98.8) | 628 | 122.2 (116.4 to 127.9) | ||
| Employment Status | <0.001 | <0.001 | ||||
| Employed | 1408 | 82.3 (79.6 to 85.0) | 902 | 110.5 (104.9 to 116.0) | ||
| All other | 707 | 96.1 (92.1 to 100.1) | 934 | 125.0 (120.0 to 130.0) | ||
| Smoking | 0.429 | 0.005 | ||||
| Never | 1080 | 85.5 (82.5 to 88.5) | 567 | 118.9 (113.2 to 124.6) | ||
| Ex smoker | 290 | 87.1 (80.6 to 93.6) | 550 | 108.1 (100.9 to 115.3) | ||
| Current smoker | 741 | 88.3 (84.5 to 92.2) | 711 | 125.2 (118.7 to 131.6) | ||
| Med. Diet Adherence Category | 0.001 | 0.409 | ||||
| Low | 997 | 83.8 (80.8 to 86.8) | 728 | 114.9 (108.5 to 121.3) | ||
| Med | 856 | 86.7 (83.0 to 90.3) | 766 | 120.5 (114.7 to 126.4) | ||
| High | 262 | 97.4 (90.6 to 104.3) | 342 | 119.3 (113.0 to 125.7) | ||
4. Discussion
5. Strengths and Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 795–815. [Google Scholar] [CrossRef] [PubMed]
- Foster-Powell, K.; Holt, S.H.A.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef]
- FAO/WHO. Carbohydrates in Human Nutrition; Report No. 66; FAO: Rome, Italy, 2007; Available online: https://www.fao.org/4/w8079e/w8079e00.htm (accessed on 15 June 2025).
- Wolever, T.; Jenkins, D.; Jenkins, A.; Josse, R. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef]
- Bornet, F.R.; Costagliola, D.; Rizkalla, S.W.; Blayo, A.; Fontvieille, A.M.; Haardt, M.J.; Letanoux, M.; Tchobroutsky, G.; Slama, G. Insulinemic and glycemic indexes of six starch-rich foods taken alone and in a mixed meal by type 2 diabetics. Am. J. Clin. Nutr. 1987, 45, 588–595. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Collier, G.R.; Ocana, A.; Rao, A.V.; Buckley, G.; Lam, Y.; Mayer, A.; Thompson, L.U. Metabolic effects of a low-glycemic-index diet. Am. J. Clin. Nutr. 1987, 46, 968–975. [Google Scholar] [CrossRef]
- Salmerón, J. Dietary Fiber, Glycemic Load, and Risk of Non—Insulin-dependent Diabetes Mellitus in Women. JAMA J. Am. Med. Assoc. 1997, 277, 472. [Google Scholar] [CrossRef]
- Trumbo, P.R. Global evaluation of the use of glycaemic impact measurements to food or nutrient intake. Public Health Nutr. 2021, 24, 3966–3975. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Willett, W.C.; Stampfer, M.J.; Hu, F.B.; Franz, M.; Sampson, L.; Hennekens, C.H.; Manson, J.E. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am. J. Clin. Nutr. 2000, 71, 1455–1461. [Google Scholar] [CrossRef]
- Ludwig, D.S. The Glycemic Index: Physiological Mechanisms Relating to Obesity, Diabetes, and Cardiovascular Disease. JAMA 2002, 287, 2414. [Google Scholar] [CrossRef]
- Pawlak, D.B.; Kushner, J.A.; Ludwig, D.S. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet 2004, 364, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Augustin, L.; Franceschi, S.; Jenkins, D.; Kendall, C.; La Vecchia, C. Glycemic index in chronic disease: A review. Eur. J. Clin. Nutr. 2002, 56, 1049–1071. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Leidig, M.M.; Feldman, H.A.; Lovesky, M.M.; Ludwig, D.S. Effects of a low-glycemic load vs low-fat diet in obese young adults: A randomized trial. JAMA 2007, 297, 2092–2102. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations. Am. J. Clin. Nutr. 2017, 105, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.M.; Kramer, C.K.; Crispim, D.; Azevedo, M.J. A High–Glycemic Index, Low-Fiber Breakfast Affects the Postprandial Plasma Glucose, Insulin, and Ghrelin Responses of Patients with Type 2 Diabetes in a Randomized Clinical Trial1–3. J. Nutr. 2015, 145, 736–741. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Inomaki, R.; Murakami, K.; Livingstone, M.B.E.; Okubo, H.; Kobayashi, S.; Suga, H.; Sasaki, S. A Japanese diet with low glycaemic index and glycaemic load is associated with both favourable and unfavourable aspects of dietary intake patterns in three generations of women. Public Health Nutr. 2017, 20, 649–659. [Google Scholar] [CrossRef]
- Castro, M.A.; Carlos, J.V.; Lopes, R.C.V.; Januário, B.L.; Marchioni, D.M.L.; Fisberg, R.M. Dietary Glycemic Index, Glycemic Load, and Nutritional Correlates in Free-Living Elderly Brazilians: A Population-Based Survey. J. Am. Coll. Nutr. 2014, 33, 111–119. [Google Scholar] [CrossRef]
- Hills, A.P.; Arena, R.; Khunti, K.; Yajnik, C.S.; Jayawardena, R.; Henry, C.J.; Street, S.J.; Soares, M.J.; Misra, A. Epidemiology and determinants of type 2 diabetes in south Asia. Lancet Diabetes Endocrinol. 2018, 6, 966–978. [Google Scholar] [CrossRef]
- Keys, A.; Keys, M. How to Eat Well and Stay Well the Mediterranean Way; Doubleday: New York, NY, USA, 1975. [Google Scholar]
- Rossi, M.; Turati, F.; Lagiou, P.; Trichopoulos, D.; Augustin, L.S.; La Vecchia, C.; Trichopoulou, A. Mediterranean diet and glycaemic load in relation to incidence of type 2 diabetes: Results from the Greek cohort of the population-based European Prospective Investigation into Cancer and Nutrition (EPIC). Diabetologia 2013, 56, 2405–2413. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Galanopoulos, K.; Kapetanakou, A.E.; Gkerekou, M.; Skandamis, P.N. Short-Term Effects of Traditional Greek Meals: Lentils with Lupins, Trahana with Tomato Sauce and Halva with Currants and Dried Figs on Postprandial Glycemic Responses—A Randomized Clinical Trial in Healthy Humans. Int. J. Environ. Res. Public Health 2022, 19, 11502. [Google Scholar] [CrossRef] [PubMed]
- Sievenpiper, J.L. Fructose: Where Does the Truth Lie? J. Am. Coll. Nutr. 2012, 31, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Moreiras-Varela, O. The Mediterranean diet in Spain. Eur. J. Clin. Nutr. 1989, 43 (Suppl. 2), 83–87. [Google Scholar]
- Augustin, L.S.; Ellis, P.R.; Vanginkel, M.-A.; Riccardi, G. Pasta: Is It an Unhealthy Refined Food? J. Nutr. 2025, 155, 378–380. [Google Scholar] [CrossRef]
- D’Alessandro, A.; De Pergola, G. Mediterranean Diet Pyramid: A Proposal for Italian People. Nutrients 2014, 6, 4302–4316. [Google Scholar] [CrossRef]
- European Food Safety Authority. Guidance on the EU Menu methodology. EFSA J. 2014, 12, 3944. [Google Scholar] [CrossRef]
- European Health Examination Survey. EHES Manuals: General Guidelines and Examination Protocols (Parts A–F); National Institute for Health and Welfare (THL): Helsinki, Finland, 2016; Available online: https://ehes.info/manuals.htm (accessed on 1 June 2025).
- Martimianaki, G.; Peppa, E.; Valanou, E.; Papatesta, E.M.; Klinaki, E.; Trichopoulou, A. Today’s Mediterranean Diet in Greece: Findings from the National Health and Nutrition Survey—HYDRIA (2013–2014). Nutrients 2022, 14, 1193. [Google Scholar] [CrossRef]
- Van Bakel, M.M.E.; Kaaks, R.; Feskens, E.J.M.; Rohrmann, S.; Welch, A.A.; Pala, V.; Avloniti, K.; Van Der Schouw, Y.T.; Van Der A, D.L.; Du, H.; et al. Dietary glycaemic index and glycaemic load in the European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63, S188–S205. [Google Scholar] [CrossRef]
- Różańska, D.; Waśkiewicz, A.; Regulska-Ilow, B.; Kwaśniewska, M.; Pająk, A.; Stepaniak, U.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.R.; Drygas, W. Relationship between the dietary glycemic loadof the adult Polish population and socio-demographicand lifestyle factors—Results of the WOBASZ II study. Adv. Clin. Exp. Med. 2019, 28, 891–897. [Google Scholar] [CrossRef]
- Sahyoun, N.R.; Anderson, A.L.; Kanaya, A.M.; Koh-Banerjee, P.; Kritchevsky, S.B.; de Rekeneire, N.; Tylavsky, F.A.; Schwartz, A.V.; Lee, J.S.; Harris, T.B. Dietary glycemic index and load, measures of glucose metabolism, and body fat distribution in older adults. Am. J. Clin. Nutr. 2005, 82, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rejón, A.I.; Castro-Quezada, I.; Ruano-Rodríguez, C.; Ruiz-López, M.D.; Sánchez-Villegas, A.; Toledo, E.; Artacho, R.; Estruch, R.; Salas-Salvadó, J.; Covas, M.I.; et al. Effect of a Mediterranean Diet Intervention on Dietary Glycemic Load and Dietary Glycemic Index: The PREDIMED Study. J. Nutr. Metab. 2014, 2014, 985373. [Google Scholar] [CrossRef] [PubMed]
- Sia, H.-K.; Kor, C.-T.; Tu, S.-T.; Liao, P.-Y.; Wang, J.-Y. Association between smoking and glycemic control in men with newly diagnosed type 2 diabetes: A retrospective matched cohort study. Ann. Med. 2022, 54, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Borgi, C.; Taktouk, M.; Nasrallah, M.; Isma’eel, H.; Tamim, H.; Nasreddine, L. Dietary Glycemic Index and Glycemic Load Are Not Associated with the Metabolic Syndrome in Lebanese Healthy Adults: A Cross-Sectional Study. Nutrients 2020, 12, 1394. [Google Scholar] [CrossRef]
- Della Corte, K.A.; Della Corte, D.; Titensor, S.; Yang, B.; Liu, S. Development of a national database for dietary glycemic index and load for nutritional epidemiologic studies in the United States. Am. J. Clin. Nutr. 2024, 120, 380–388. [Google Scholar] [CrossRef]
- Kusnadi, D.T.L.; Barclay, A.W.; Brand-Miller, J.C.; Louie, J.C.Y. Changes in dietary glycemic index and glycemic load in Australian adults from 1995 to 2012. Am. J. Clin. Nutr. 2017, 106, 189–198. [Google Scholar] [CrossRef]
- Buyken, A.E.; Goletzke, J.; Joslowski, G.; Felbick, A.; Cheng, G.; Herder, C.; Brand-Miller, J.C. Association between carbohydrate quality and inflammatory markers: Systematic review of observational and interventional studies. Am. J. Clin. Nutr. 2014, 99, 813–833. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Z.; Fei, Y.; Zhou, B.; Zheng, S.; Wang, L.; Huang, L.; Jiang, S.; Liu, Z.; Jiang, J.; et al. The Difference in Nutrient Intakes between Chinese and Mediterranean, Japanese and American Diets. Nutrients 2015, 7, 4661–4688. [Google Scholar] [CrossRef]
- Li, M.; Cui, Z.; Meng, S.; Li, T.; Kang, T.; Ye, Q.; Cao, M.; Bi, Y.; Meng, H. Associations between Dietary Glycemic Index and Glycemic Load Values and Cardiometabolic Risk Factors in Adults: Findings from the China Health and Nutrition Survey. Nutrients 2020, 13, 116. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, X.; Shu, X.-O.; Cai, H.; Li, H.; Ding, D.; Hong, Z.; Xiang, Y.-B.; Gao, Y.-T.; Zheng, W.; et al. Dietary glycemic index, glycemic load, and refined carbohydrates are associated with risk of stroke: A prospective cohort study in urban Chinese women. Am. J. Clin. Nutr. 2016, 104, 1345–1351. [Google Scholar] [CrossRef]
- Murakami, K.; Sasaki, S. Glycemic index and glycemic load of the diets of Japanese adults: The 2012 National Health and Nutrition Survey, Japan. Nutrition 2018, 46, 53–61. [Google Scholar] [CrossRef]
- Vitale, M.; Costabile, G.; Bergia, R.E.; Hjorth, T.; Campbell, W.W.; Landberg, R.; Riccardi, G.; Giacco, R. The effects of Mediterranean diets with low or high glycemic index on plasma glucose and insulin profiles are different in adult men and women: Data from MEDGI-Carb randomized clinical trial. Clin. Nutr. 2023, 42, 2022–2028. [Google Scholar] [CrossRef]
- Bergia, R.E.; Giacco, R.; Hjorth, T.; Biskup, I.; Zhu, W.; Costabile, G.; Vitale, M.; Campbell, W.W.; Landberg, R.; Riccardi, G. Differential Glycemic Effects of Low- versus High-Glycemic Index Mediterranean-Style Eating Patterns in Adults at Risk for Type 2 Diabetes: The MEDGI-Carb Randomized Controlled Trial. Nutrients 2022, 14, 706. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.C. Glycemic Load and Chronic Disease. Nutr. Rev. 2003, 61, S49–S55. [Google Scholar] [CrossRef] [PubMed]
- Clar, C.; Al-Khudairy, L.; Loveman, E.; Kelly, S.A.; Hartley, L.; Flowers, N.; Germanò, R.; Frost, G.; Rees, K. Low glycaemic index diets for the prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2017, 2021, CD004467. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Colditz, G.; Liu, S.; Solomon, C.G.; Willett, W.C. Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. N. Engl. J. Med. 2001, 345, 790–797. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: A Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Nutrients 2019, 11, 1280. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; McKeown-Eyssen, G.; Josse, R.G.; Silverberg, J.; Booth, G.L.; Vidgen, E.; Josse, A.R.; Nguyen, T.H.; Corrigan, S.; et al. Effect of a Low–Glycemic Index or a High–Cereal Fiber Diet on Type 2 Diabetes: A Randomized Trial. JAMA 2008, 300, 2742. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejia, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of Legumes as Part of a Low Glycemic Index Diet on Glycemic Control and Cardiovascular Risk Factors in Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Arch. Intern. Med. 2012, 172, 1653. [Google Scholar] [CrossRef] [PubMed]
- Shahdadian, F.; Saneei, P.; Milajerdi, A.; Esmaillzadeh, A. Dietary glycemic index, glycemic load, and risk of mortality from all causes and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2019, 110, 921–937. [Google Scholar] [CrossRef]
- Manta, A.; Paschou, S.; Isari, G.; Mavroeidi, I.; Kalantaridou, S.; Peppa, M. Glycemic Index and Glycemic Load Estimates in the Dietary Approach of Polycystic Ovary Syndrome. Nutrients 2023, 15, 3483. [Google Scholar] [CrossRef] [PubMed]
- Mavroeidi, I.; Manta, A.; Asimakopoulou, A.; Syrigos, A.; Paschou, S.A.; Vlachaki, E.; Nastos, C.; Kalantaridou, S.; Peppa, M. The Role of the Glycemic Index and Glycemic Load in the Dietary Approach of Gestational Diabetes Mellitus. Nutrients 2024, 16, 399. [Google Scholar] [CrossRef] [PubMed]
| Total n = 3951 n (%) | Females n = 2115 (52%) n (%) | Males n = 1836 (48%) n (%) | |
|---|---|---|---|
| Age group | |||
| 18–34 years | 968 (24.3) | 519 (23.2) | 449 (25.5) |
| 35–44 years | 757 (18.3) | 408 (17.7) | 349 (18.9) |
| 45–54 years | 742 (17.5) | 402 (17.1) | 340 (17.9) |
| 55–64 years | 669 (14.9) | 361 (15.1) | 308 (14.7) |
| 65+ years | 806 (25) | 416 (26.9) | 390 (23) |
| BMI category | |||
| Underweight (<20 kg/m2) | 121 (2.7) | 105 (4.4) | 16 (0.9) |
| Normal (20–24.9 kg/m2) | 1007 (25) | 646 (28.1) | 361 (21.6) |
| Overweight (25–29.9 kg/m2) | 1491 (37.4) | 666 (31.9) | 825 (43.5) |
| Obese (≥30 kg/m2) | 1266 (34.8) | 670 (35.6) | 596 (34) |
| Educational level | |||
| Low | 1116 (39.6) | 644 (44) | 472 (34.9) |
| Intermediate | 1613 (38.3) | 877 (35.7) | 736 (41.2) |
| High | 1222 (22) | 594 (20.3) | 628 (23.9) |
| Employment status | |||
| Employed | 1641 (41.5) | 707 (31.7) | 934 (52) |
| All other | 2310 (58.5) | 1408 (68.3) | 902 (48) |
| Smoking | |||
| Never | 1647 (43) | 1080 (54.9) | 567 (30.2) |
| Ex smoker | 840 (21.2) | 290 (12.8) | 550 (30.3) |
| Current smoker | 1452 (35.8) | 741 (32.3) | 711 (39.5) |
| Med. Diet Adherence Category | |||
| Low | 1725 (44.9) | 997 (48.2) | 728 (41.4) |
| Med | 1622 (40.1) | 856 (38.9) | 766 (41.4) |
| High | 604 (15) | 262 (12.8) | 342 (17.3) |
| Males | Females | |||
|---|---|---|---|---|
| β * (95% CI) | p-Value | β * (95% CI) | p-Value | |
| Age group | ||||
| 18–54 years | 0 | 0 | ||
| 55+ years | −1.26 (−2.06 to −0.46) | 0.002 | −1.58 (−2.25 to −0.90) | <0.001 |
| Educational level | ||||
| Low | 0 | 0 | ||
| Intermediate | −1.04 (−1.75 to −0.33) | 0.005 | −1.11 (−1.92 to −0.30) | 0.008 |
| High | −2.23 (−2.95 to −1.50) | <0.001 | −2.20 (−3.09 to −1.32) | <0.001 |
| Smoking | ||||
| Never | 0 | 0 | ||
| Ex smoker | −0.25 (−1.12 to 0.61) | 0.564 | −0.59 (−1.46 to 0.29) | 0.185 |
| Current smoker | 1.32 (0.59 to 2.05) | <0.001 | 0.68 (−0.01 to 1.36) | 0.053 |
| Med. Diet Adherence Category | ||||
| Low | 0 | |||
| Med | −1.22 (−1.98 to −0.47) | 0.002 | ||
| High | −1.20 (−2.30 to −0.10) | 0.033 |
| Males | Females | |||
|---|---|---|---|---|
| β * (95% CI) | p-Value | β * (95% CI) | p-Value | |
| Age group | ||||
| 18–54 years | 0 | 0 | ||
| 55+ years | −1.77 (−3.27 to −0.28) | 0.02 | −2.58 (−3.75 to −1.41) | <0.001 |
| Educational Level | ||||
| Low | 0 | |||
| Med | −1.43 (−2.84 to −0.02) | 0.047 | −2.16 (−3.55 to −0.77) | 0.003 |
| High | −4.80 (−6.28 to −3.32) | <0.001 | −4.19 (−5.77 to −2.61) | <0.001 |
| Smoking | ||||
| Never | 0 | 0 | ||
| Ex smoker | 0.00 (−1.70 to 1.70) | 0.997 | −1.04 (−2.63 to 0.55) | 0.197 |
| Current smoker | 3.93 (2.34 to 5.51) | <0.001 | 1.73 (0.79 to 2.67) | <0.001 |
| Med. Diet Adherence Category | ||||
| Low | 0 | |||
| Med | −2.66 (−4.07 to −1.24) | <0.001 | ||
| High | −2.72 (−4.69 to −0.75) | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vourli, G.; Augustin, L.; La Vecchia, C.; Peppa, E.; Trichopoulou, A. Estimates of the Dietary Glycemic Index and Load in a Representative Sample of the Greek Population. Nutrients 2025, 17, 3596. https://doi.org/10.3390/nu17223596
Vourli G, Augustin L, La Vecchia C, Peppa E, Trichopoulou A. Estimates of the Dietary Glycemic Index and Load in a Representative Sample of the Greek Population. Nutrients. 2025; 17(22):3596. https://doi.org/10.3390/nu17223596
Chicago/Turabian StyleVourli, Georgia, Livia Augustin, Carlo La Vecchia, Eleni Peppa, and Antonia Trichopoulou. 2025. "Estimates of the Dietary Glycemic Index and Load in a Representative Sample of the Greek Population" Nutrients 17, no. 22: 3596. https://doi.org/10.3390/nu17223596
APA StyleVourli, G., Augustin, L., La Vecchia, C., Peppa, E., & Trichopoulou, A. (2025). Estimates of the Dietary Glycemic Index and Load in a Representative Sample of the Greek Population. Nutrients, 17(22), 3596. https://doi.org/10.3390/nu17223596

