A Narrative Review on the Functional Applications, Safety, and Probiotic Characteristics of Pichia
Abstract
1. Introduction
2. The Characteristics of Pichia as a Genus
2.1. Taxonomy and History
2.2. Historical Uses of Pichia Species
3. Regulatory and Safety Profile of Pichia
4. Probiotic Attributes of Pichia
4.1. Gastric Survival and Bile Tolerance
4.2. Cholesterol Assimilation
| Strain | Origin | Cholesterol Assimilation | Survival pH | Survival Bile | Optimal Growth Temperature | Auto Aggregation | Reference |
|---|---|---|---|---|---|---|---|
| P. cecembensis AA19 | Addis Ababa | 89.0% | 95.77% survival at pH 2 | 90.43% survival at 0.3% bile | 15 °C and 37 °C | 69.36–89.39% (after 24 h) | [77] |
| P. kudriavzevii HJ2 | Marine medicinal mangroves | 79.98% degradation at 24 h | 2.0 (83.28% biomass at 24 h) | 3% bile (81.25% biomass at 12 h) | Tolerates extreme temperatures | 92.41% at 180 min | [78] |
| P. kudriavzevii BY10 | Raw milk (China) | 43.2% at 72 h | Survives at pH 1.5, 2.0, 3.0, 5.0 | 16.1% survival at 0.5% bile | Not reported | High adhesion (62 cells/100 HT-29) | [79] |
| P. kudriavzevii BY15 | Raw milk (China) | 44.4% at 72 h | Survives at pH 3.0, 5.0; viable at pH 2 | 18.9% at 0.5% bile | Not reported | Moderate adhesion | |
| P. fermentans BY5 | Raw milk (China) | 40.3% at 72 h | pH 3.0 and 5.0 | 9.5% at 0.5% bile | Not reported | Moderate adhesion | |
| P. guilliermondii BY31 | Raw milk (China) | 81.4% at 0.5% bile | Moderate | ||||
| P. kudriavzevii Y33 | Traditional home-made mango pickle | High cholesterol assimilation of bile and taurocholate, at 88.58 and 86.83%, respectively | 88.62% survival at pH 2 | 95% at 2% of bile | High auto-aggregation ability of 87% after 24 h and 72.45% after 3 h of incubation | [70] | |
| P. kudriavzevii OG32 | Cereal-based functional food (fermented) | Reduced serum TC, TG, LDL-C; increased HDL-C; lowered atherogenic index | Tolerated gut-like pH | Tolerated bile-rich diet | Survived in rat gut (37 °C) | Not reported | [76] |
| P. kudriavzevii YGM091 | Fermented goat milk | Not directly reported; potential implied via bile tolerance | Survived pH 2.0 (80.73%) and pH 3.0 (247.13%) after 3 h | Tolerated 2.0% bile salts with >110% survival after 5 h | Grew well at 25 °C, 37 °C, and 42 °C (growth at all tested temperatures) | 88.64% at 60 min; 89.91% at 90 min | [80] |
| P. kudriavzevii OG32 | Ogi (Nigeria) | 74.05% at 48 h | Survives pH 2.0 (100% at 3 h) | 100% survival in 2% bile (3 h) | Grows at 37 °C (μ = 0.29 h−1) | 91.85% at 24 h | [81] |
| P. guilliermondii CCMA 1753 | Fermented table olives (Brazil) | Not reported | Survived pH 2.0 for 3 h (92.23%) | Survived 0.3% bile for 3 h (92.73%) | 37 °C (tested temp) | Intermediate (~65%) | [82] |
| P. kudriavzevii QAUPK01 | Human feces | 66.7% | 7.2 | Tolerant | 37 | Not reported | [83] |
| P. kudriavzevii QAUPK02 | Human feces | 68.2% | 7.2 | Tolerant | 37 | ||
| P. kudriavzevii QAUPK03 | Human feces | 83.6% | 7.2 | Tolerant | 37 | ||
| P. kudriavzevii QAUPK04 | Human feces | 79.3% | 7.2 | Tolerant | 37 | ||
| P. kudriavzevii QAUPK05 | Human feces | 85.2% | 7.2 | Tolerant | 37 | ||
| P. kudriavzevii GBT37 | Dadih (West Sumatra) | High (exact % not stated) | pH 2–6 | 37 °C | Not specified | [84] | |
| P. occidentalis GBT30 | |||||||
| P. kudriavzevii M26, M28, M29, O9, G6, G5, M30, M31 | Fermented cereal foods (African origin) | Not reported | Tolerated pH 2 (≈31% of isolates survived this stress) | Tolerated 0.3% bile (≈99% of isolates) | Tolerated pH 2 (≈31% of isolates survived this stress) | 12.7–40.9% | [85] |
| P. kudriavzevii O21 | Fermented dairy/non-dairy product | 91.5% | High (OD ~0.85) | Oxgall: ~85%, Cholic: ~89%, Taurocholic: ~91% | Tolerated 60 °C for 5 min | ~85% | [14] |
| P. kudriavzevii O26 | 92.3% | High (OD ~0.83) | Oxgall: ~88%, Cholic: ~90%, Taurocholic: ~90% | Tolerated 60 °C for 5 min | ~83% | ||
| P. kudriavzevii SH55 | 96.5% | High | ~90.5% (24 h, mixed bile salts) | Tolerated 60 °C for 5 min | ~84% | ||
| P. kudriavzevii O12 | 87.2% | High | ~87.4% (oxgall), ~86% (others) | Tolerated 60 °C for 5 min | ~78% | ||
| P. kudriavzevii KT000037/URCS7 | Cryopreserved food sample | Not directly tested | pH 1.5–11; Survives >70% at pH 2 for 120 h | 0.1%: 99%; 0.3%: 84%; 0.5%: 70% after 4 h at 37 °C | Survives 95 °C (2 h), 121 °C (15 min) | 59.12% (5 h), 81.23% (24 h) | [86] |
| P. kudriavzevii YGM091 | Fermented goat milk | Not specified | pH 3.0 (247.13%), pH 2.0 (80.73%) | 0.5% (145.03%), 1% & 2% bile (up to 110%) | 25, 37, 42 °C | 66.56% after 45 | [80] |
| P. kudriavzevii MYSSBYPS10 | Fermented green gram dosa batter | Not reported | pH 2.0 83.79% survival at 2 h 68.31% at 4 h | 0.3% bile 92.95% survival at 2 h 89.65% at 4 h | Broad temp range | 97.2% at 24 h | [12] |
4.3. Auto-Aggregation, Co-Aggregation, and Hydrophobicity
4.4. Epithelial Barrier Function
4.5. Antimicrobial Properties
| Strain | Origin | Target Organism | Inhibition (mm) | Reference |
|---|---|---|---|---|
| P. kudriavzevii Y33 | Traditional home-made mango pickle | S. typhi | 10.50 ± 1.50 | [70] |
| E. coli | 10.00 ± 2.00 | |||
| Shigella | 13.50 ± 1.50 | |||
| P. aeruginosa | 14.00 ± 1.00 | |||
| B. cereus | 12.50 ± 0.50 | |||
| S. aureus | 13.50 ± 0.50 | |||
| A. hydrophilla | 22.00 ± 2.00 | |||
| L. monoctyogenes | 10.50 ± 1.50 | |||
| P. guilliermondii CCMA 1753 | Table olive fermentation (Brazil) | S. aureus | <10 | [82] |
| S. enteritidis | Between 20 and 30 | |||
| L. monocytogenes | Between 20 and 30 | |||
| P. kudriavzevii GBT37 | Dadih (West Sumatra) | B. cereus | 4.55 ± 0.20 | [84] |
| S. aureus | 4.20 ± 0.33 | |||
| EPEC K.1.1 | 3.68 ± 0.27 | |||
| Listeria sp. | 5.50 ± 0.19 | |||
| P. occidentalis GBT30 | B. cereus | 2.50 ± 0.17 | ||
| S. aureus | 3.40 ± 0.32 | |||
| EPEC K.1.1 | 4.00 ± 0.25 | |||
| Listeria sp. | 7.67 ± 0.17 | |||
| P. cecembensis AA19 | Addis Ababa Ethiopia | E. coli | 19 | [77] |
| S. aureus | 17 | |||
| Salmonella typhi | 15 | |||
| B. cereus | 18 | |||
| P. kudriavzevii KT000037 | Xylose-utilizing yeast from cryopreserved food sample | E. coli | 13 | [86] |
| S. aureus | 19 | |||
| E. faecalis | 26 | |||
| M. luteus | 22 | |||
| K. pneumoniae | 21 | |||
| S. typhi | 22 | |||
| P. aeruginosa | 22 | |||
| S. paratyphi B | 23 | |||
| P. mirabilis | 21 | |||
| V. cholerae | 19 | |||
| S. flexneri | 17 | |||
| P. kudriavzevii C-1 | Traditional Kazakh dairy product | E. coli | 11 | [106] |
| S. aureus | 15 | |||
| Studies with inhibition expressed as % | ||||
| P. pastoris X-33 | Feed additive | S. typhimurium in LB | 43 | [109] |
| S. typhimurium in YPD | 86 | |||
| P. kudriavzevii YGM091 | Fermented goat milk | E. coli | 88.75 | [80] |
| S. aureus | 88.34 | |||
| S. typhimurium | 79.4 | |||
| P. kudriavzevii MYSSBYPS10 | Fermented green gram dosa batter | M. phaseolina | 69.41 | [12] |
| A. niger | 64.72 | |||
| F. oxysporum | 68.6 | |||
| P. anomala | Not specified | C. gloeosporioides | 79.63 | [110] |
| Qualitative Studies | ||||
| P. kudriavzevii G1, O12, O13, O21, O26, O36, 066, SH40, SH45 | Fermented dairy and non-dairy foods | E. coli O157:H7 S. aureus S. typhimurium L. monocytogenes | Strong to moderate (strain-dependent) | [75] |
| P. kudriavzevii MH458240 (M9) | Fermented ogi (Nigeria) | E. coli Pseudomonas sp. S. aureus Klebsiella sp. Proteus sp. | Not reported (qualitative) | [107] |
| P. kudriavzevii MH458239 (M5) | ||||
| P. norvegensis WSYC 592 | Dairy product (milk) | Listeria | 7-log reduction in co-culture and ~1.5 log on Tilsit cheese | [105] |
| P. fermentans | Dairy product (cheese) | Listeria | Reduced Listeria by ~3-log in Camembert curd model | [15] |
| P. anomala (Wickerhamomyces anomalus) | Dairy (Camembert curd) | Listeria | Produced heat-stable anti-listerial peptides; caused pore formation and bacterial cell lysis | |
| P. farinosa | Human oral cavity | Candida albicans | Nutrient competition and protein-mediated virulence inhibition. | [111] |
| Aspergillus | ||||
| Fusarium | ||||
4.6. Antibiotic Resistance
4.7. Immunomodulatory Properties
4.8. Production of Volatile Organic Compounds
5. Pichia in Health
6. Potential Pichia Species as Probiotics
| Pichia Strain | Benefits | Reference |
|---|---|---|
| P. anomola AR2016 |
| [103] |
| P. anomala NCYC 432 |
| [143] |
| P. guilliermondii 25A |
| [144] |
| P. kluyveri LAR001 |
| [145] |
| P. kudriavzevii GBT37 |
| [84] |
| P. kudriavzevii HJ2 |
| [78] |
| P. kudriavzevii M28 | Produces folate and phytases to increase nutritional quality of foods | [85] |
| P. kudriavzevii TS2 |
| [11] |
| P. kudriavzevii YGM091 |
| [80] |
| P. kudriavzevii YS711 |
| [36] |
| P. kudriavzevii Y33 |
| [70] |
| P. manshurica 2A |
| [144] |
| P. manshurica PB54 |
| [91] |
| P. norvegensis NYI |
| [108] |
| P. occidentalis GBT30 |
| [84] |
| P. pastoris X-33 |
| [109] |
7. Gaps in the Literature Regarding Pichia
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GI | Gastrointestinal |
| GRAS | Generally Regarded as Safe |
| ISAPP | International Scientific Association for Probiotics and Prebiotics |
| EFSA | European Food Safety Authority |
| IBS | Irritable bowel syndrome |
| TJ | Tight junction |
| ZO | Zonula occluden |
| IBD | Inflammatory bowel disease |
| DSS | Dextran sodium sulfate |
| LPS | Lipopolysaccharide |
| IL | interleukin |
| IFN | interferon |
| ALP | Alkaline phosphatase |
| TLR-2 | Toll-like receptors 2 |
| TNF-α | Tumor necrosis factor-α |
| T-AOC | Total antioxidative capacity |
| GSH-Px | Glutathione peroxidase |
| SOD | Superoxide dismutase |
| CFS-Y1 | Cell-free supernatant |
| VOC | Volatile organic compound |
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Wilkins, T.; Sequoia, J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am. Fam. Physician 2017, 96, 170–178. [Google Scholar]
- Sanders, M.E.; Akkermans, L.M.; Haller, D.; Hammerman, C.; Heimbach, J.; Hörmannsperger, G.; Huys, G.; Levy, D.D.; Lutgendorff, F.; Mack, D.; et al. Safety assessment of probiotics for human use. Gut Microbes 2010, 1, 164–185. [Google Scholar] [CrossRef]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to Qualify Microorganisms as "Probiotic" in Foods and Dietary Supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Li, B.; Yang, C.; Wang, Y.; Bian, X.; Li, W.; Liu, F.; Huo, G. Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Front. Microbiol. 2019, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Naissinger da Silva, M.; Tagliapietra, B.L.; Flores, V.D.A.; Pereira Dos Santos Richards, N.S. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr. Res. Food Sci. 2021, 4, 320–325. [Google Scholar] [CrossRef]
- Shahali, A.; Soltani, R.; Akbari, V. Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: A systematic review. Res. Pharm. Sci. 2023, 18, 468–477. [Google Scholar] [CrossRef]
- Staniszewski, A.; Kordowska-Wiater, M. Probiotic and Potentially Probiotic Yeasts-Characteristics and Food Application. Foods 2021, 10, 1306. [Google Scholar] [CrossRef]
- Abid, R.; Waseem, H.; Ali, J.; Ghazanfar, S.; Muhammad Ali, G.; Elasbali, A.M.; Alharethi, S.H. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J. Fungi 2022, 8, 444. [Google Scholar] [CrossRef]
- Ansari, F.; Alian Samakkhah, S.; Bahadori, A.; Jafari, S.M.; Ziaee, M.; Khodayari, M.T.; Pourjafar, H. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit. Rev. Food Sci. Nutr. 2023, 63, 457–485. [Google Scholar] [CrossRef]
- Ganapathiwar, S.; Bhukya, B. In vitro assessment for the probiotic potential of Pichia kudriavzevii. Bioinformation 2023, 19, 441–444. [Google Scholar] [CrossRef]
- Shruthi, B.; Deepa, N.; Somashekaraiah, R.; Adithi, G.; Divyashree, S.; Sreenivasa, M.Y. Exploring biotechnological and functional characteristics of probiotic yeasts: A review. Biotechnol. Rep. 2022, 34, e00716. [Google Scholar] [CrossRef]
- Tamang, J.P.; Lama, S. Probiotic properties of yeasts in traditional fermented foods and beverages. J. Appl. Microbiol. 2022, 132, 3533–3542. [Google Scholar] [CrossRef]
- Alkalbani, N.S.; Osaili, T.M.; Al-Nabulsi, A.A.; Olaimat, A.N.; Liu, S.Q.; Shah, N.P.; Apostolopoulos, V.; Ayyash, M.M. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J. Fungi 2022, 8, 365. [Google Scholar] [CrossRef]
- Hatoum, R.; Labrie, S.; Fliss, I. Antimicrobial and probiotic properties of yeasts: From fundamental to novel applications. Front. Microbiol. 2012, 3, 421. [Google Scholar] [CrossRef] [PubMed]
- Kanak, E.K.; Öztürk Yılmaz, S. Determination of the Probiotic and Functional Properties of Yeasts Isolated from Different Dairy Products. Fermentation 2025, 11, 104. [Google Scholar] [CrossRef]
- Vergara, S.C.; Leiva, M.J.; Mestre, M.V.; Vazquez, F.; Nally, M.C.; Maturano, Y.P. Non-saccharomyces yeast probiotics: Revealing relevance and potential. FEMS Yeast Res. 2023, 23, foad041. [Google Scholar] [CrossRef]
- Tullio, V. Probiotic Yeasts: A Developing Reality? J. Fungi 2024, 10, 489. [Google Scholar] [CrossRef]
- Kurtzman, C.P. Pichia—E.C. Hansen (1904). In The Yeasts, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; pp. 685–707. [Google Scholar]
- Zahrl, R.J.; Peña, D.A.; Mattanovich, D.; Gasser, B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res. 2017, 17, fox068. [Google Scholar] [CrossRef]
- Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. [Google Scholar] [CrossRef]
- Passoth, V.; Fredlund, E.; Druvefors, U.Ä.; Schnürer, J. Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res. 2006, 6, 3–13. [Google Scholar] [CrossRef]
- Petersson, S.; Schnürer, J. Biocontrol of mold growth in high-moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1995, 61, 1027–1032. [Google Scholar] [CrossRef]
- Clemente-Jimenez, J.M.; Mingorance-Cazorla, L.; Martínez-Rodríguez, S.; Las Heras-Vázquez, F.J.; Rodríguez-Vico, F. Influence of sequential yeast mixtures on wine fermentation. Int. J. Food Microbiol. 2005, 98, 301–308. [Google Scholar] [CrossRef]
- Shrivastava, A.; Pal, M.; Sharma, R.K. Pichia as yeast cell factory for production of industrially important bio-products: Current trends, challenges, and future prospects. J. Bioresour. Bioprod. 2023, 8, 108–124. [Google Scholar] [CrossRef]
- Guo, L.C.; Hu, S.; Zhu, H.Y.; Shang, Y.J.; Qiu, Y.J.; Wen, Z.; Chen, S.X.; Bai, F.Y.; Han, P.J. Four new species of Pichia (Pichiales, Pichiaceae) isolated from China. MycoKeys 2025, 114, 115–132. [Google Scholar] [CrossRef]
- Groenewald, M.; Hittinger, C.T.; Bensch, K.; Opulente, D.A.; Shen, X.X.; Li, Y.; Liu, C.; LaBella, A.L.; Zhou, X.; Limtong, S.; et al. A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Stud. Mycol. 2023, 105, 1–22. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J.; Basehoar-Powers, E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. Nov., Lindnera gen. Nov. and Wickerhamomyces gen. Nov. FEMS Yeast Res. 2008, 8, 939–954. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Guo, L.C.; Hu, S.; Wei, Y.H.; Hui, F.L.; Liu, X.Z.; Bai, F.Y. Pichia kurtzmaniana f.a. sp. nov., with the transfer of eight Candida species to Pichia. Int. J. Syst. Evol. Microbiol. 2024, 74, 6306. [Google Scholar] [CrossRef]
- Elkhairy, B.M.; Salama, N.M.; Desouki, A.M.; Abdelrazek, A.B.; Soliman, K.A.; Ibrahim, S.A.; Khalil, H.B. Towards unlocking the biocontrol potential of Pichia kudriavzevii for plant fungal diseases: In vitro and in vivo assessments with candidate secreted protein prediction. BMC Microbiol. 2023, 23, 356. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Kanti, A.; Kawasaki, H. Pichia chibodasensis sp. nov., isolated in Indonesia. Int. J. Syst. Evol. Microbiol. 2017, 67, 1024–1027. [Google Scholar] [CrossRef]
- Sipiczki, M. Pichia bruneiensis sp. nov., a biofilm-producing dimorphic yeast species isolated from flowers in Borneo. Int. J. Syst. Evol. Microbiol. 2012, 62, 3099–3104. [Google Scholar] [CrossRef]
- Ren, Y.C.; Liu, S.T.; Li, Y.; Hui, F.L. Pichia dushanensis sp. nov. and Hyphopichia paragotoi sp. nov., two sexual yeast species associated with insects and rotten wood. Int. J. Syst. Evol. Microbiol. 2015, 65, 2875–2881. [Google Scholar] [CrossRef]
- Gao, W.L.; Liu, K.F.; Yao, L.G.; Hui, F.L. Pichia nanzhaoensis sp. nov. and Pichia paraexigua f.a., sp. nov., two yeast species isolated from rotting wood. Int. J. Syst. Evol. Microbiol. 2018, 68, 3311–3315. [Google Scholar] [CrossRef]
- Ganter, P.F.; Cardinali, G.; Boundy-Mills, K. Pichia insulana sp. nov., a novel cactophilic yeast from the Caribbean. Int. J. Syst. Evol. Microbiol. 2010, 60, 1001–1007. [Google Scholar] [CrossRef]
- Guo, C.; Sun, Y.; Chen, H.; Yin, G.; Song, Y. Identification and assessment of Pichia kudriavzevii YS711 isolated from “Jiangshui” with the capacity for uric acid metabolism. Microbiol. Res. 2025, 298, 128200. [Google Scholar] [CrossRef]
- Ninomiya, S.; Mikata, K.; Nakagiri, A.; Nakase, T.; Kawasaki, H. Pichia porticicola sp. nov., a novel ascomycetous yeast related to Pichia acaciae isolated from galleries of ambrosia beetles in Japan. J. Gen. Appl. Microbiol. 2010, 56, 281–286. [Google Scholar] [CrossRef]
- Chai, C.; Lu, D.; Liu, J.; Wang, E.; Han, X.; Hui, F. Three novel Ascomycota (Saccharomycetes, Saccharomycetales) yeast species derived from the traditional Mexican alcoholic beverage Pulque. MycoKeys 2024, 109, 187–206. [Google Scholar] [CrossRef]
- Limtong, S.; Yongmanitchai, W.; Kawasaki, H.; Fujiyama, K. Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Res. 2009, 9, 504–510. [Google Scholar] [CrossRef]
- Groenewald, M.; Lombard, L.; de Vries, M.; Lopez, A.G.; Smith, M.; Crous, P.W. Diversity of yeast species from Dutch garden soil and the description of six novel Ascomycetes. FEMS Yeast Res. 2018, 18, foy076. [Google Scholar] [CrossRef]
- Bhadra, B.; Sreenivas Rao, R.; Naveen Kumar, N.; Chaturvedi, P.; Sarkar, P.K.; Shivaji, S. Pichia cecembensis sp. nov. isolated from a papaya fruit (Carica papaya L., Caricaceae). FEMS Yeast Res. 2007, 7, 579–584. [Google Scholar] [CrossRef]
- Florez, A.B.; Belloch, C.; Alvarez-Martin, P.; Querol, A.; Mayo, B. Candida cabralensis sp. nov., a yeast species isolated from traditional Spanish blue-veined Cabrales cheese. Int. J. Syst. Evol. Microbiol. 2010, 60, 2671–2674. [Google Scholar] [CrossRef]
- Opulente, D.A.; Langdon, Q.K.; Jarzyna, M.; Buh, K.V.; Haase, M.A.B.; Groenewald, M.; Hittinger, C.T. Taxogenomic analysis of a novel yeast species isolated from soil, Pichia galeolata sp. nov. Yeast 2023, 40, 608–615. [Google Scholar] [CrossRef]
- Chu, Y.; Li, M.; Jin, J.; Dong, X.; Xu, K.; Jin, L.; Qiao, Y.; Ji, H. Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J. Fungi 2023, 9, 170. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, J.; Wu, J.; Yang, L.; Fang, H. Current advances of Pichia pastoris as cell factories for production of recombinant proteins. Front. Microbiol. 2022, 13, 1059777. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, N.; Raziq, A.; Khan, M.W.; Khan, N.M.; Shahid, B.; Gul, A.; Ullah, H. Recent Developments in Heterologous Expression of Cellulases Using the Pichia pastoris Expression System: A Comprehensive Literature Review. Appl. Microbiol. 2025, 5, 22. [Google Scholar] [CrossRef]
- Byrne, B. Pichia pastoris as an expression host for membrane protein structural biology. Curr. Opin. Struct. Biol. 2015, 32, 9–17. [Google Scholar] [CrossRef]
- Tachioka, M.; Sugimoto, N.; Nakamura, A.; Sunagawa, N.; Ishida, T.; Uchiyama, T.; Igarashi, K.; Samejima, M. Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. Biotechnol. Biofuels 2016, 9, 199. [Google Scholar] [CrossRef]
- Kang, Z.; Huang, H.; Zhang, Y.; Du, G.; Chen, J. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. World J. Microbiol. Biotechnol. 2017, 33, 19. [Google Scholar] [CrossRef]
- Vicente, J.; Calderon, F.; Santos, A.; Marquina, D.; Benito, S. High Potential of Pichia kluyveri and Other Pichia Species in Wine Technology. Int. J. Mol. Sci. 2021, 22, 1196. [Google Scholar] [CrossRef]
- Miguel, G.A.; Carlsen, S.; Almeida-Faria, R.; Saerens, S.; Arneborg, N. Amino acid preference and fermentation performance of Pichia kluyveri strains in a synthetic wort. LWT 2024, 199, 116059. [Google Scholar] [CrossRef]
- van Wyk, N.; Binder, J.; Ludszuweit, M.; Kohler, S.; Brezina, S.; Semmler, H.; Pretorius, I.S.; Rauhut, D.; Senz, M.; von Wallbrunn, C. The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation. Foods 2023, 12, 1938. [Google Scholar] [CrossRef] [PubMed]
- Vastik, P.; Rosenbergova, Z.; Furdikova, K.; Klempova, T.; Sismis, M.; Smogrovicova, D. Potential of non-Saccharomyces yeast to produce non-alcoholic beer. FEMS Yeast Res. 2022, 22, foac039. [Google Scholar] [CrossRef]
- Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K.J.; Thevelein, J.M. Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol. 2018, 72, 55–66. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. GRAS Notice No. GRN 938: Pichia kluyveri DSM 33235. Available online: https://www.fda.gov/media/152290/download (accessed on 5 October 2005).
- European Food Safety Authority. Qualified Presumtion of Safety. Available online: https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps (accessed on 3 October 2025).
- Hazards, E.P.o.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 20: Suitability of taxonomic units notified to EFSA until March 2024. EFSA J. 2024, 22, e8882. [Google Scholar] [CrossRef]
- Jain, K.; Wang, Y.; Jain, P.; Kalita, B.; Shivarathri, R.; Chauhan, M.; Kaur, H.; Chauhan, N.; Xu, J.; Chowdhary, A. Genomic analyses reveal high diversity and rapid evolution of Pichia kudriavzevii within a neonatal intensive care unit in Delhi, India. Antimicrob. Agents Chemother. 2025, 69, e01709-01724. [Google Scholar] [CrossRef]
- Douglass, A.P.; Offei, B.; Braun-Galleani, S.; Coughlan, A.Y.; Martos, A.A.R.; Ortiz-Merino, R.A.; Byrne, K.P.; Wolfe, K.H. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLoS Pathog. 2018, 14, e1007138. [Google Scholar] [CrossRef]
- Pelletier, R.; Alarie, I.; Lagacé, R.; Walsh, T.J. Emergence of disseminated candidiasis caused by Candida krusei during treatment with caspofungin: Case report and review of literature. Med. Mycol. 2005, 43, 559–564. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Kim, H.Y.; Stocker, S.; Kidd, S.; Alastruey-Izquierdo, A.; Dao, A.; Harrison, T.; Wahyuningsih, R.; Rickerts, V.; Perfect, J.; et al. Pichia kudriavzevii (Candida krusei): A systematic review to inform the World Health Organisation priority list of fungal pathogens. Med. Mycol. 2024, 62, myad132. [Google Scholar] [CrossRef]
- Menezes, A.G.T.; Ramos, C.L.; Cenzi, G.; Melo, D.S.; Dias, D.R.; Schwan, R.F. Probiotic Potential, Antioxidant Activity, and Phytase Production of Indigenous Yeasts Isolated from Indigenous Fermented Foods. Probiotics Antimicrob. Proteins 2020, 12, 280–288. [Google Scholar] [CrossRef]
- Chou, L.S.; Weimer, B. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy. Sci. 1999, 82, 23–31. [Google Scholar] [CrossRef]
- Sturkie, P.D. Secretion of Gastric and Pancreatic Juice, pH of Tract, Digestion in Alimentary Canal, Liver and Bile, and Absorption. In Avian Physiology; Sturkie, P.D., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 196–209. [Google Scholar]
- Dawson, P.A.; Karpen, S.J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 2015, 56, 1085–1099. [Google Scholar] [CrossRef]
- Bustos, A.Y.; Font de Valdez, G.; Fadda, S.; Taranto, M.P. New insights into bacterial bile resistance mechanisms: The role of bile salt hydrolase and its impact on human health. Food Res. Int. 2018, 112, 250–262. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, P.; Zhou, X.; Zheng, J.; Ma, Y.; Liu, C.; Wu, T.; Li, H.; Wang, X.; Wang, H.; et al. Isolation, Identification, and Characterization of an Acid-Tolerant Pichia kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism. Fermentation 2023, 9, 540. [Google Scholar] [CrossRef]
- Akita, H.; Matsushika, A. Transcription Analysis of the Acid Tolerance Mechanism of Pichia kudriavzevii NBRC1279 and NBRC1664. Fermentation 2023, 9, 559. [Google Scholar] [CrossRef]
- Kathade, S.; Aswani, M.; kaur Anand, P.; Nirichan, B. Probiotic characterization and cholesterol assimilation ability of Pichia kudriavzevii isolated from the gut of the edible freshwater snail “Pila globosa”. Egypt. J. Aquat. Biol. Fish. 2020, 24, 23–39. [Google Scholar] [CrossRef]
- Lata, P.; Kumari, R.; Sharma, K.B.; Rangra, S.; Savitri. In vitro evaluation of probiotic potential and enzymatic profiling of Pichia kudriavzevii Y33 isolated from traditional home-made mango pickle. J. Genet. Eng. Biotechnol. 2022, 20, 132. [Google Scholar] [CrossRef]
- Helmy, E.A.M. Detoxification and anti-mycotoxigenic effect of Ochratoxin A produced by Penicillium expansum species utilizing probiotic Pichia kudriavzevii and biogenic-selenium nano-formulations. J. Appl. Pharm. Sci. 2019, 9, 1–8. [Google Scholar]
- Lucena, R.M.; Dolz-Edo, L.; Brul, S.; de Morais, M.A., Jr.; Smits, G. Extreme Low Cytosolic pH Is a Signal for Cell Survival in Acid Stressed Yeast. Genes 2020, 11, 656. [Google Scholar] [CrossRef]
- Fletcher, E.; Feizi, A.; Kim, S.; Siewers, V.; Nielsen, J. RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. Microb. Cell Fact. 2015, 14, 143. [Google Scholar] [CrossRef]
- Kumar, M.; Nagpal, R.; Kumar, R.; Hemalatha, R.; Verma, V.; Kumar, A.; Chakraborty, C.; Singh, B.; Marotta, F.; Jain, S.; et al. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp. Diabetes Res. 2012, 2012, 902917. [Google Scholar] [CrossRef]
- Alkalbani, N.S.; Osaili, T.M.; Al-Nabulsi, A.A.; Obaid, R.S.; Olaimat, A.N.; Liu, S.-Q.; Ayyash, M.M. In Vitro Characterization and Identification of Potential Probiotic Yeasts Isolated from Fermented Dairy and Non-Dairy Food Products. J. Fungi 2022, 8, 544. [Google Scholar] [CrossRef]
- Ogunremi, O.R.; Sanni, A.I.; Agrawal, R. Hypolipidaemic and antioxidant effects of functional cereal-mix produced with probiotic yeast in rats fed high cholesterol diet. J. Funct. Foods 2015, 17, 742–748. [Google Scholar] [CrossRef]
- Gebre, T.S.; Emire, S.A.; Chelliah, R.; Aloo, S.O.; Oh, D.-H. Isolation, functional activity, and safety of probiotics from Ethiopian traditional cereal-based fermented beverage, “Borde”. LWT 2023, 184, 115076. [Google Scholar] [CrossRef]
- Li, Y.; Mo, X.; Xiong, J.; Huang, K.; Zheng, M.; Jiang, Q.; Su, G.; Ou, Q.; Pan, H.; Jiang, C. Deciphering the probiotic properties and safety assessment of a novel multi-stress-tolerant aromatic yeast Pichia kudriavzevii HJ2 from marine mangroves. Food Biosci. 2023, 56, 103248. [Google Scholar] [CrossRef]
- Chen, O.; Yi, L.; Deng, L.; Ruan, C.; Zeng, K. Screening antagonistic yeasts against citrus green mold and the possible biocontrol mechanisms of Pichia galeiformis (BAF03). J. Sci. Food Agric. 2020, 100, 3812–3821. [Google Scholar] [CrossRef]
- Tran, K.D.; Le-Thi, L.; Vo, H.H.; Dinh-Thi, T.V.; Nguyen-Thi, T.; Phan, N.H.; Nguyen, K.U. Probiotic Properties and Safety Evaluation in the Invertebrate Model Host Galleria mellonella of the Pichia kudriavzevii YGM091 Strain Isolated from Fermented Goat Milk. Probiotics Antimicrob. Proteins 2024, 16, 1288–1303. [Google Scholar] [CrossRef]
- Ogunremi, O.R.; Sanni, A.I.; Agrawal, R. Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J. Appl. Microbiol. 2015, 119, 797–808. [Google Scholar] [CrossRef]
- Simões, L.A.; Cristina de Souza, A.; Ferreira, I.; Melo, D.S.; Lopes, L.A.A.; Magnani, M.; Schwan, R.F.; Dias, D.R. Probiotic properties of yeasts isolated from Brazilian fermented table olives. J. Appl. Microbiol. 2021, 131, 1983–1997. [Google Scholar] [CrossRef]
- Madeeha, I.R.; Ikram, A.; Imran, M. A preliminary insight of correlation between human fecal microbial diversity and blood lipid profile. Int. J. Food Sci. Nutr. 2016, 67, 865–871. [Google Scholar] [CrossRef]
- Chihombori, T.; Mustopa, A.; Astuti, R.; Mutiara, I.; Refli, R.; Umami, R.; Fatimah, F.; Irawan, H.; Ekawati, N.; Trinugroho, J.; et al. Potential Probiotic Yeasts of the Pichia Genus Isolated from ‘Dadih’, a Traditional Fermented Food of West Sumatra, Indonesia. HAYATI J. Biosci. 2025, 32, 320–340. [Google Scholar] [CrossRef]
- Greppi, A.; Saubade, F.; Botta, C.; Humblot, C.; Guyot, J.P.; Cocolin, L. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiol. 2017, 62, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, R.; Ramakrishnan, S.R.; Prabhu, P.R.; Antony, U. Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast 2016, 33, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Orłowski, A.; Bielecka, M. Preliminary Characteristics Of Lactobacillus And Bifidobacterium Strains As Probiotic Candidates. Pol. J. Food Nutr. Sci. 2006, 56, 269–275. [Google Scholar]
- Kos, B.; Susković, J.; Vuković, S.; Simpraga, M.; Frece, J.; Matosić, S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 2003, 94, 981–987. [Google Scholar] [CrossRef]
- Alander, M.; Satokari, R.; Korpela, R.; Saxelin, M.; Vilpponen-Salmela, T.; Mattila-Sandholm, T.; von Wright, A. Persistence of Colonization of Human Colonic Mucosa by a Probiotic Strain, Lactobacillus rhamnosusGG, after Oral Consumption. Appl. Environ. Microbiol. 1999, 65, 351–354. [Google Scholar] [CrossRef]
- Suvarna, S.; Dsouza, J.; Ragavan, M.L.; Das, N. Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Sci. Biotechnol. 2018, 27, 745–753. [Google Scholar] [CrossRef]
- Alvarez, S.C.V.; Pendón, M.D.; Bengoa, A.A.; Leiva Alaniz, M.J.; Maturano, Y.P.; Garrote, G.L. Probiotic Potential of Yeasts Isolated from Fermented Beverages: Assessment of Antagonistic Strategies Against Salmonella enterica Serovar Enteritidis. J. Fungi 2024, 10, 878. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Wang, Z.; Yuan, Y.; Yue, T. Novel selenium-enriched Pichia kudriavzevii as a dietary supplement to alleviate dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and host metabolism. Food Funct. 2024, 15, 10698–10716. [Google Scholar] [CrossRef]
- Das, R.; Tamang, B.; Najar, I.N.; Bam, M.; Rai, P.K. Probiotic yeast characterization and fungal amplicon metagenomics analysis of fermented bamboo shoot products from Arunachal Pradesh, northeast India. Heliyon 2024, 10, e39500. [Google Scholar] [CrossRef]
- Wu, D.q.; Ding, X.S.; Zhao, B.; An, Q.; Guo, J.S. The essential role of hydrophobic interaction within extracellular polymeric substances in auto-aggregation of P. stutzeri strain XL-2. Int. Biodeterior. Biodegrad. 2022, 171, 105404. [Google Scholar] [CrossRef]
- Merchán, A.V.; Benito, M.J.; Galván, A.I.; Ruiz-Moyano Seco de Herrera, S. Identification and selection of yeast with functional properties for future application in soft paste cheese. LWT 2020, 124, 109173. [Google Scholar] [CrossRef]
- Salimi, F.; Imanparast, S. Characterization of Probiotic Pichia sp. DU2-Derived Exopolysaccharide with Oil-in-Water Emulsifying and Anti-biofilm Activities. Appl. Biochem. Biotechnol. 2023, 195, 3345–3365. [Google Scholar] [CrossRef]
- Yildiran, H.; Kiliç, G.B.; Çakmakçi, A.G.K. Characterization and comparison of yeasts from different sources for some probiotic properties and exopolysaccharide production. Food Sci. Technol. 2019, 39, 646–653. [Google Scholar] [CrossRef]
- Takiishi, T.; Fenero, C.I.M.; Câmara, N.O.S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017, 5, e1373208. [Google Scholar] [CrossRef]
- Garcia, M.A.; Nelson, W.J.; Chavez, N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb. Perspect. Biol. 2018, 10, a029181. [Google Scholar] [CrossRef]
- Edelblum, K.L.; Turner, J.R. The tight junction in inflammatory disease: Communication breakdown. Curr. Opin. Pharmacol. 2009, 9, 715–720. [Google Scholar] [CrossRef]
- Maione, A.; Imparato, M.; Buonanno, A.; Galdiero, M.; de Alteriis, E.; Guida, M.; Galdiero, E. Protective and immunomodulatory effects of the novel probiotic yeast Pichia kudriavzevii isolated from a home-made kefir during infection in human colon epithelial cells: An exploratory study. J. Funct. Foods 2025, 125, 106666. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, J.; Yu, T.; Li, Y.; Li, Y.; Lu, S.; Guo, X. Supplementation of citrus pectin with whole-cell pectinase PG5 on Pichia pastoris promotes recovery of colitis and enhances intestinal barrier function in DSS-treated mice. Int. J. Biol. Macromol. 2024, 264, 130476. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, Z.; Zeng, Y.; Hu, P.; Sun, W.; Liu, Y.; Hu, H.; Rao, Z.; Tang, Z. Isolation, Identification and Function of Pichia anomala AR(2016) and Its Effects on the Growth and Health of Weaned Pigs. Animals 2021, 11, 1179. [Google Scholar] [CrossRef]
- Filho-Lima, J.V.; Vieira, E.C.; Nicoli, J.R. Antagonistic effect of Lactobacillus acidophilus, Saccharomyces boulardii and Escherichia coli combinations against experimental infections with Shigella flexneri and Salmonella enteritidis subsp. typhimurium in gnotobiotic mice. J. Appl. Microbiol. 2000, 88, 365–370. [Google Scholar] [CrossRef]
- Goerges, S.; Koslowsky, M.; Velagic, S.; Borst, N.; Bockelmann, W.; Heller, K.J.; Scherer, S. Anti-listerial potential of food-borne yeasts in red smear cheese. Int. Dairy J. 2011, 21, 83–89. [Google Scholar] [CrossRef]
- Anuarbekova, S.; Bekshin, Z.; Shaikhin, S.; Alzhanova, G.; Sadykov, A.; Temirkhanov, A.; Sarmurzina, Z.; Kanafin, Y. Exploring the Antimicrobial and Probiotic Potential of Microorganisms Derived from Kazakh Dairy Products. Microbiol. Res. 2024, 15, 1298–1318. [Google Scholar] [CrossRef]
- Alakeji, T.P.; Oloke, J.K. Association of probiotic potential of strains of Pichia kudriavzevii isolated from ogi with the number of open reading frame (ORF) in the nucleotide sequences. Afr. J. Biotechnol. 2020, 19, 148–155. [Google Scholar] [CrossRef]
- Utama, G.L.; Suraloka, M.P.A.; Rialita, T.; Balia, R.L. Antifungal and Aflatoxin-Reducing Activity of β-Glucan Isolated from Pichia norvegensis Grown on Tofu Wastewater. Foods 2021, 10, 2619. [Google Scholar] [CrossRef] [PubMed]
- França, R.C.; Conceição, F.R.; Mendonça, M.; Haubert, L.; Sabadin, G.; de Oliveira, P.D.; Amaral, M.G.; Silva, W.P.; Moreira, Â.N. Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella typhimurium. Appl. Microbiol. Biotechnol. 2015, 99, 7953–7961. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, I.M.; Sharma, M.; Sharma, K.; Sharma, A. Effectiveness of fungal, bacterial and yeast antagonists for management of mango anthracnose (Colletotrichum gloeosporioides). Egypt. J. Biol. Pest Control. 2021, 31, 135. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Chandra, J.; Retuerto, M.; Sikaroodi, M.; Brown, R.E.; Jurevic, R.; Salata, R.A.; Lederman, M.M.; Gillevet, P.M.; Ghannoum, M.A. Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog. 2014, 10, e1003996. [Google Scholar] [CrossRef]
- Sarita, B.; Samadhan, D.; Hassan, M.Z.; Kovaleva, E.G. A comprehensive review of probiotics and human health-current prospective and applications. Front. Microbiol. 2024, 15, 1487641. [Google Scholar] [CrossRef]
- Caetano, C.F.; Gaspar, C.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A.; Rolo, J. The Role of Yeasts in Human Health: A Review. Life 2023, 13, 924. [Google Scholar] [CrossRef]
- Anisimova, E.; Gorokhova, I.; Karimullina, G.; Yarullina, D. Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics 2022, 11, 1557. [Google Scholar] [CrossRef]
- Moriguchi, K.; Yamamoto, S.; Tanaka, K.; Kurata, N.; Suzuki, K. Trans-Kingdom Horizontal DNA Transfer from Bacteria to Yeast Is Highly Plastic Due to Natural Polymorphisms in Auxiliary Nonessential Recipient Genes. PLoS ONE 2013, 8, e74590. [Google Scholar] [CrossRef]
- Gonçalves, P.; Gonçalves, C. Horizontal gene transfer in yeasts. Curr. Opin. Genet. Dev. 2022, 76, 101950. [Google Scholar] [CrossRef]
- Wang, B.; Rutherfurd-Markwick, K.; Liu, N.; Zhang, X.X.; Mutukumira, A.N. Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand. Curr. Res. Food Sci. 2024, 8, 100711. [Google Scholar] [CrossRef]
- Jang, S.-A.; Park, S.-K.; Lim, J.-D.; Kang, S.-C.; Yang, K.-H.; Pyo, S.-K.; Sohn, E.-H. The Comparative Immunomodulatory Effects of β-Glucans from Yeast, Bacteria, and Mushroom on the Function of Macrophages. Prev. Nutr. Food Sci. 2009, 14, 102–108. [Google Scholar] [CrossRef]
- Zhu, Y.; He, D.; Gao, X.; Wang, A.; Yu, J.; Wang, S.; Cui, B.; Mu, G.; Ma, C.; Tuo, Y. β-Glucan Extracted from Pichia kudriavzevii DPUL-51–6Y, Kluyveromyces marxianus DPUL-F15, and Saccharomyces cerevisiae DPUL-C6 Shows Ameliorating Effects on DSS-Induced Ulcerative Colitis on BALB/c Mice. J. Agric. Food Chem. 2025, 73, 10265–10278. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and immune health. Curr. Opin. Gastroenterol. 2011, 27, 496–501. [Google Scholar] [CrossRef]
- Aziz, N.; Bonavida, B. Activation of Natural Killer Cells by Probiotics. For. Immunopathol. Dis. Therapy 2016, 7, 41–55. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Q.; Wang, J.; Tan, H.; Jin, X.; Fan, Y.; Liu, J.; Zhao, S.; Zheng, J.; Peng, N. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets. Food Funct. 2023, 14, 3463–3474. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef]
- Grondin, E.; Shum Cheong Sing, A.; James, S.; Nueno-Palop, C.; François, J.M.; Petit, T. Flavour production by Saprochaete and Geotrichum yeasts and their close relatives. Food Chem. 2017, 237, 677–684. [Google Scholar] [CrossRef]
- Pagans, E.; Font, X.; Sánchez, A. Emission of volatile organic compounds from composting of different solid wastes: Abatement by biofiltration. J. Hazard. Mater. 2006, 131, 179–186. [Google Scholar] [CrossRef]
- Ogunremi, O.R.; Agrawal, R.; Sanni, A. Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. J. Genet. Eng. Biotechnol. 2020, 18, 16. [Google Scholar] [CrossRef]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Ortíz-Castro, R.; Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; López-Bucio, J. The role of microbial signals in plant growth and development. Plant Signal Behav. 2009, 4, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Banerjee, D. Volatile Organic Compounds from Endophytic Fungi. In Recent Advancement in White Biotechnology Through Fungi: Perspective for Value-Added Products and Environments; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 2, pp. 149–175. [Google Scholar]
- Stotzky, G.; Schenck, S. Volatile organic compounds and microorganisms. CRC Crit. Rev. Microbiol. 1976, 4, 333–382. [Google Scholar] [CrossRef]
- Korpi, A.; Järnberg, J.; Pasanen, A.L. Microbial volatile organic compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. [Google Scholar] [CrossRef]
- Zhang, H.; Du, H.; Xu, Y. Volatile Organic Compound-Mediated Antifungal Activity of Pichia spp. and Its Effect on the Metabolic Profiles of Fermentation Communities. Appl. Environ. Microbiol. 2021, 87, e02992-20. [Google Scholar] [CrossRef]
- Choińska, R.; Piasecka-Jóźwiak, K.; Chabłowska, B.; Dumka, J.; Łukaszewicz, A. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie Van. Leeuwenhoek 2020, 113, 1135–1146. [Google Scholar] [CrossRef]
- Sampaolesi, S.; Pérez-Través, L.; Briand, L.E.; Querol, A. Bioactive volatiles of brewer’s yeasts: Antifungal action of compounds produced during wort fermentation on Aspergillus sp. Int. J. Food Microbiol. 2024, 417, 110692. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, J.; Zhou, Y.; Deng, L.; Yao, S.; Zeng, K. Inhibitory effect of Pichia membranaefaciens and Kloeckera apiculata against Monilinia fructicola and their biocontrol ability of brown rot in postharvest plum. Biol. Control. 2017, 114, 51–58. [Google Scholar] [CrossRef]
- Masoud, W.; Poll, L.; Jakobsen, M. Influence of volatile compounds produced by yeasts predominant during processing of Coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Yeast 2005, 22, 1133–1142. [Google Scholar] [CrossRef]
- Roman, Y.M. The Role of Uric Acid in Human Health: Insights from the Uricase Gene. J. Pers. Med. 2023, 13, 1409. [Google Scholar] [CrossRef]
- Lee, I.R.; Yang, L.; Sebetso, G.; Allen, R.; Doan, T.H.; Blundell, R.; Lui, E.Y.; Morrow, C.A.; Fraser, J.A. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans. PLoS ONE 2013, 8, e64292. [Google Scholar] [CrossRef]
- Karasawa, Y. Ammonia production from uric acid, urea, and amino acids and its absorption from the ceca of the cockerel. J. Exp. Zool. 1989, 252, 75–80. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Adeseluka, O.Y.; Ogunremi, O.R.; Ayeni, K.I.; Banwo, K.; Šarkanj, B.; Kovač, T.; Adetunji, M.C.; Akinyemi, M.O.; Mwanza, M.; et al. Probiotic and mycotoxin reduction potentials of heat-tolerant Pichia kudriavzevii strains from maize- and sorghum-pap. World Mycotoxin J. 2025, 18, 31–56. [Google Scholar] [CrossRef]
- Rahbar Saadat, Y.; Yari, A.; Movassaghpour, A.; Talebi, M.; Pourghassem Gargari, B. Modulatory role of exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as probiotic yeasts from dairy products in human colon cancer cells. J. Funct. Foods 2019, 64, 103675. [Google Scholar] [CrossRef]
- Saber, A.; Alipour, B.; Faghfoori, Z.; Mousavi Jam, A.; Yari Khosroushahi, A. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines. Nutr. Res. 2017, 41, 36–46. [Google Scholar] [CrossRef]
- İzgü, F.; Altınbay, D.; Acun, T. Killer toxin of Pichia anomala NCYC 432; purification, characterization and its exo-β-1,3-glucanase activity. Enzym. Microb. Technol. 2006, 39, 669–676. [Google Scholar] [CrossRef]
- Oliveira, T.; Ramalhosa, E.; Nunes, L.; Pereira, J.A.; Colla, E.; Pereira, E.L. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food Sci. Emerg. Technol. 2017, 44, 167–172. [Google Scholar] [CrossRef]
- Piraine, R.E.A.; Retzlaf, G.; Gonçalves, V.; Cunha, R.; Leite, F.P.L. Brewing and Probiotic Potential Activity of Wild Yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001. Res. Sq. 2021, 249, 133–148. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samiksha, F.; San Valentin, E.M.D.; Li, G.; Blazer, M.; McCormick, T.S.; Ghannoum, M. A Narrative Review on the Functional Applications, Safety, and Probiotic Characteristics of Pichia. Nutrients 2025, 17, 3594. https://doi.org/10.3390/nu17223594
Samiksha F, San Valentin EMD, Li G, Blazer M, McCormick TS, Ghannoum M. A Narrative Review on the Functional Applications, Safety, and Probiotic Characteristics of Pichia. Nutrients. 2025; 17(22):3594. https://doi.org/10.3390/nu17223594
Chicago/Turabian StyleSamiksha, Fnu, Erin Marie D. San Valentin, Grace Li, Maya Blazer, Thomas S. McCormick, and Mahmoud Ghannoum. 2025. "A Narrative Review on the Functional Applications, Safety, and Probiotic Characteristics of Pichia" Nutrients 17, no. 22: 3594. https://doi.org/10.3390/nu17223594
APA StyleSamiksha, F., San Valentin, E. M. D., Li, G., Blazer, M., McCormick, T. S., & Ghannoum, M. (2025). A Narrative Review on the Functional Applications, Safety, and Probiotic Characteristics of Pichia. Nutrients, 17(22), 3594. https://doi.org/10.3390/nu17223594

