Exploring Nutritional Quality and Environmental Impact of Canteen Menus and Meals in Institutional Settings: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection and Data Extraction
3. Results and Discussion
3.1. Geographical Distribution
3.2. Setting Distribution
3.3. Research Trends
3.4. Assessment of Nutritional and Environmental Components
| Author | Year | Nutritional Quality Components | Environmental Impact Components | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Energy | Protein | Carbohydrate | Fat | Vitamins & Minerals | Nutritional Adequacy | GHG Emission | Water Use | Land Use | Energy Use | ||
| Adiyan et al. [41] | 2025 | x | x | x | x | - | - | x | x | - | - |
| Andersen et al. [59] | 2025 | x | x | x | x | x | - | ||||
| Barcina-Perez et al. [60] | 2023 | x | x | x | x | x | x | ||||
| Batista and Diaz [61] | 2024 | - | x | - | - | ||||||
| Biasini et al. [62] | 2024 | x | x | x | x | x | - | ||||
| Blondin et al. [63] | 2020 | x | x | x | x | x | - | ||||
| Boronowski et al. [64] | 2025 | x | - | - | - | ||||||
| Boutata et al. [65] | 2024 | x | x | x | x | x | x | ||||
| Buckinx et al. [66] | 2017 | x | x | x | x | - | x | ||||
| Bux et al. [43] | 2025 | x | - | - | - | ||||||
| Chapman et al. [67] | 2022 | x | x | x | x | x | x | ||||
| Cohen et al. [68] | 2021 | x | x | x | x | x | x | ||||
| Colombo et al. [69] | 2020 | x | x | x | x | x | x | x | - | - | - |
| Compaoré et al. [70] | 2024 | x | x | x | x | x | x | ||||
| Conti et al. [71] | 2024 | x | - | - | - | ||||||
| Cummings et al. [72] | 2014 | x | x | x | x | x | x | ||||
| Dahmani et al. [73] | 2022 | x | x | x | x | x | x | x | - | - | - |
| Deagan and Lawson [74] | 2024 | x | x | - | - | - | - | ||||
| De Laurentiis et al. [75] | 2017 | x | x | - | - | ||||||
| de Oliveira et al. [76] | 2022 | x | x | x | x | x | x | ||||
| De Seymour et al. [77] | 2022 | x | x | x | x | x | x | ||||
| Đermanović et al. [78] | 2016 | - | - | - | - | x | x | ||||
| Dixon et al. [79] | 2016 | x | x | x | x | x | x | ||||
| Doorduijn et al. [80] | 2016 | x | x | - | - | - | x | ||||
| Elinder et al. [81] | 2020 | x | x | x | x | x | x | x | - | - | - |
| Everitt et al. [82] | 2020 | x | - | - | - | x | x | ||||
| Farapti et al. [83] | 2023 | x | x | x | x | x | x | ||||
| Fitriani and Sulistiyani [84] | 2024 | x | x | x | x | - | x | ||||
| Flynn et al. [85] | 2025 | x | - | - | - | ||||||
| Frampton et al. [86] | 2014 | - | x | x | x | x | x | ||||
| Gajdoš Kljusuri et al. [87] | 2016 | x | x | x | x | x | x | ||||
| González-García et al. [88] 1 | 2020 | x | x | x | x | x | - | x | x | - | x |
| González-García et al. [89] | 2021 | x | x | - | - | ||||||
| Harrison et al. [90] | 2024 | x | - | - | - | ||||||
| Hassan et al. [91] | 2025 | x | x | x | x | x | x | ||||
| Hatjiathanassiadou et al. [92] | 2019 | - | x | - | - | ||||||
| Holliday et al. [93] | 2021 | x | x | x | x | x | x | ||||
| Imamura et al. [94] | 2024 | x | x | - | - | x | - | ||||
| Jaworowski et al. [95] | 2018 | x | x | x | x | x | x | ||||
| Jindrich et al. [96] | 2022 | x | x | x | x | x | x | ||||
| Jiyana and Ncube [97] | 2025 | x | x | x | x | x | x | ||||
| Joyce et al. [98] | 2018 | x | x | x | x | x | x | ||||
| Joyce et al. [99] | 2020 | x | x | x | x | x | x | ||||
| Juniusdottir et al. [100] | 2018 | x | x | x | x | x | x | ||||
| Kaiser et al. [101] | 2022 | x | x | x | x | x | x | ||||
| Kesa and Onyenweaku [102] | 2024 | x | x | x | x | x | x | ||||
| Kilian et al. [103] | 2021 | - | x | - | - | ||||||
| Kluczkovski et al. [39] | 2022 | x | x | x | x | x | x | x | - | - | - |
| Knight et al. [104] | 2014 | x | x | x | x | x | x | ||||
| Kuruvilla et al. [105] | 2021 | x | x | - | x | x | x | ||||
| Lavall et al. [106] | 2020 | x | x | x | x | x | x | ||||
| Lavriša et al. [107] | 2024 | x | x | x | x | - | x | ||||
| Lazarevic et al. [108] | 2014 | x | x | x | x | - | x | ||||
| Leão et al. [109] | 2018 | x | x | x | x | x | x | ||||
| Lin et al. [110] | 2024 | x | x | x | x | x | x | ||||
| Lir et al. [111] | 2020 | x | x | x | x | x | x | ||||
| Lizuka et al. [112] | 2022 | x | x | x | x | x | - | ||||
| Makurat et al. [113] | 2017 | x | x | x | x | x | x | ||||
| Martinez-Perez et al. [114] | 2025 | x | x | x | x | x | x | x | - | - | - |
| Martins et al. [115] | 2021 | x | x | x | x | x | x | ||||
| Mendes et al. [116] | 2025 | x | x | x | x | x | x | ||||
| Menis et al. [117] | 2024 | x | x | x | x | - | - | x | x | - | - |
| Mistretta et al. [10] 2 | 2018 | x | - | - | x | ||||||
| Mizéhoun-Adissoda et al. [118] | 2022 | - | - | - | - | x | x | ||||
| Moran et al. [119] | 2015 | x | - | - | x | x | x | ||||
| Moyano et al. [120] | 2020 | x | - | x | x | x | - | ||||
| Myszkowska-Ryciak and Harton [121] | 2018 | x | x | x | x | x | x | ||||
| Myszkowska-Ryciak and Harton [122] | 2019 | x | x | x | x | x | x | ||||
| Nanayakkara et al. [123] | 2019 | x | x | x | x | x | x | ||||
| Neelon et al. [124] | 2013 | x | x | x | x | - | x | ||||
| Nicklas et al. [125] | 2013 | x | x | x | x | - | x | ||||
| Nogueira et al. [126] | 2020 | x | x | x | x | x | x | - | x | - | - |
| Okuda et al. [127] | 2024 | - | - | - | - | x | - | ||||
| Ongan et al. [128] | 2014 | x | x | x | x | x | x | ||||
| Pepito et al. [129] | 2022 | x | x | x | x | x | x | ||||
| Petchoo et al. [130] | 2022 | x | x | x | x | - | x | ||||
| Poličnik et al. [131] | 2021 | x | x | x | x | x | x | ||||
| Pörtner et al. [132] 2 | 2025 | x | x | x | x | x | x | x | x | x | - |
| Poulter et al. [133] | 2024 | x | x | x | x | x | x | ||||
| Rasbold et al. [134] | 2016 | x | x | x | x | x | x | ||||
| Retondario et al. [135] | 2016 | x | x | x | x | x | x | ||||
| Rodríguez-Rejón et al. [136] | 2017 | x | x | x | x | x | x | ||||
| Rosi et al. [42] | 2022 | x | x | x | x | x | x | x | x | x | - |
| Rossi et al. [137] | 2021 | x | x | x | x | x | - | x | - | - | - |
| Sahin and Caferoglu [138] | 2022 | x | x | x | x | x | x | ||||
| Sakai et al. [139] | 2022 | x | x | x | x | x | x | ||||
| Sato et al. [140] | 2025 | x | x | x | x | x | - | ||||
| Seiquer et al. [141] | 2016 | x | x | x | x | x | x | ||||
| Serrem et al. [142] | 2020 | x | x | x | x | x | x | ||||
| Shin [143] | 2014 | - | - | - | - | x | x | ||||
| Simon et al. [40] | 2023 | x | x | - | x | - | - | x | - | - | x |
| Sossen et al. [144] | 2021 | x | x | - | - | - | x | ||||
| Stanikowski et al. [145] | 2020 | x | x | x | x | x | x | ||||
| Takacs et al. [146] 2 | 2025 | x | x | x | x | x | x | x | x | - | - |
| Trafalska [147] | 2014 | x | x | x | x | x | x | ||||
| Trang et al. [148] | 2015 | x | x | x | x | x | x | ||||
| Turner-McGrievy et al. [149] | 2013 | x | x | x | x | x | x | ||||
| Vici et al. [150] | 2025 | x | x | x | x | - | - | x | x | - | - |
| Vidal et al. [151] | 2015 | x | - | - | - | ||||||
| Volanti et al. [152] | 2022 | x | - | - | - | ||||||
| Vucea et al. [153] | 2017 | x | x | x | - | x | x | ||||
| Wall and Pearce [154] | 2023 | x | x | x | x | x | x | ||||
| Wickramasinghe et al. [155] | 2016 | x | - | - | - | x | x | x | - | - | - |
| Wickramasinghe et al. [156] | 2017 | x | x | x | x | x | x | x | - | - | - |
| Wungrath et al. [157] | 2022 | x | x | x | x | x | x | ||||
| Yesildemir [158] | 2025 | x | x | x | x | x | x | x | x | - | - |
| Zailani et al. [159] | 2023 | x | x | x | x | x | x | ||||
| Total | 89 | 86 | 81 | 83 | 80 | 79 | 27 | 14 | 2 | 3 | |
3.5. Assessment of Nutritional and Environmental Adequacy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization. Sustainable Diets and Biodiversity—Directions and Solutions for Policy, Research and Actions. Available online: https://www.fao.org/3/i3004e/i3004e00.htm (accessed on 29 February 2024).
- Food and Agriculture Organization; World Health Organization. Sustainable Healthy Diets: Guiding Principles. Available online: https://www.who.int/publications/i/item/9789241516648 (accessed on 29 February 2024).
- Li, Y.; He, P.; Shan, Y.; Li, Y.; Hang, Y.; Shao, S.; Ruzzenenti, F.; Hubacek, K. Reducing Climate Change Impacts from the Global Food System through Diet Shifts. Nat. Clim. Change 2024, 14, 943–953. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Han, H.; Hu, Y.; Zhu, L.; Rimm, E.B.; Hu, F.B.; Sun, Q. Associations between Plant-Based Dietary Patterns and Risks of Type 2 Diabetes, Cardiovascular Disease, Cancer, and Mortality—A Systematic Review and Meta-Analysis. Nutr. J. 2023, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.; Cappuccio, F.P. Plant-Based Dietary Patterns for Human and Planetary Health. Nutrients 2022, 14, 1614. [Google Scholar] [CrossRef] [PubMed]
- Agriculture. Sustainable Food Systems in Italy: Policies, Movements and Markets. Available online: https://www.mdpi.com/journal/agriculture/special_issues/Sustainable_Food_Systems (accessed on 18 March 2024).
- Michel, M.; Eldridge, A.L.; Hartmann, C.; Klassen, P.; Ingram, J.; Meijer, G.W. Benefits and Challenges of Food Processing in the Context of Food Systems, Value Chains and Sustainable Development Goals. Trends Food Sci. Technol. 2024, 153, 104703. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Sustainable Food Systems Concept and Framework. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/b620989c-407b-4caf-a152-f790f55fec71/content (accessed on 15 March 2024).
- Reinders, M.J.; Battjes-Fries, M.C.E.; Bouwman, E.P.; Meeusen–van Onna, M.J.G. Effectively Implementing Healthy and Sustainable Food Practices in Out-of-Home Food Service Locations: The Perspective of the Catering Staff Members. Appetite 2024, 193, 107152. [Google Scholar] [CrossRef]
- Mistretta, M.; Caputo, P.; Cellura, M.; Cusenza, M.A. Energy and Environmental Life Cycle Assessment of an Institutional Catering Service: An Italian Case Study. Sci. Total Environ. 2019, 657, 1150–1160. [Google Scholar] [CrossRef]
- Edwards, J.S.A. The Foodservice Industry: Eating out Is More than Just a Meal. Food Qual. Prefer. 2013, 27, 223–229. [Google Scholar] [CrossRef]
- Fortune Business Insights. Institutional Food Service Market Size, Share & Industry Analysis, by Restaurant Type (Chained and Independent), by Service Type (Dine-In and Takeout), and Regional Forecast, 2025–2032. Available online: https://www.fortunebusinessinsights.com/institutional-food-service-market-113738 (accessed on 16 October 2025).
- Boyano, A.; Espinosa, N.; Quintero, R.; Neto, R. Revision of the EU GPP Criteria for Food Procurement and Catering Services. Available online: https://susproc.jrc.ec.europa.eu/product-bureau/sites/default/files/contentype/product_group_documents/1581683081/EU_GPP_Food_catering_criteria_TR3.0.pdf (accessed on 3 April 2024).
- Food Service Europe. For the Strategic Deployment of Contract in the Aftermath of COVID-19. Available online: https://foodserviceeurope.org/gallery/152/FSE-Call%20to%20Action.pdf (accessed on 3 April 2024).
- Kraak, V.I.; Englund, T.; Misyak, S.; Serrano, E.L. A Novel Marketing Mix and Choice Architecture Framework to Nudge Restaurant Customers toward Healthy Food Environments to Reduce Obesity in the United States. Obes. Rev. 2017, 18, 852–868. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, B.A.; Langen, N. Determinants of How Individuals Choose, Eat and Waste: Providing Common Ground to Enhance Sustainable Food Consumption out-of-Home. Int. J. Consum. Stud. 2018, 42, 35–75. [Google Scholar] [CrossRef]
- Kratzer, S.; Theurich, M.A.; Mareis, T.; Proebstl, S.; Holliday, N.; Yan, S.; Leibinger, A.; Monsef, I.; Bach, L.; Camargo, D.R.; et al. Promoting Healthy and Sustainable Diets through Food Service Interventions in University Settings: A Scoping Review. BMC Nutr. 2025, 11, 173. [Google Scholar] [CrossRef]
- Gesteiro, E.; García-Carro, A.; Aparicio-Ugarriza, R.; González-Gross, M. Eating out of Home: Influence on Nutrition, Health, and Policies: A Scoping Review. Nutrients 2022, 14, 1265. [Google Scholar] [CrossRef]
- Silva, M.; Rodrigues, S.S.P.; Correia, D.M.E.; Rei, M.C.C.; Severo, M.; Costa, A.I.A.; Torres, D.P.M.; Lopes, C.M.M. Eating out of Home in Portugal: Characterisation and Effects on Dietary Intake. Br. J. Nutr. 2024, 132, 169–181. [Google Scholar] [CrossRef]
- Pagliarino, E. State School Catering in Italy during the COVID-19 Pandemic: A Qualitative Study. Front. Sustain. Food Syst. 2024, 8, 1387100. [Google Scholar] [CrossRef]
- Thorsen, A.V.; Lassen, A.D.; Andersen, J.S.; Mikkelsen, B.E. Workforce Gender, Company Size and Corporate Financial Support Are Predictors of Availability of Healthy Meals in Danish Worksite Canteens. Public Health Nutr. 2009, 12, 2068–2073. [Google Scholar] [CrossRef] [PubMed]
- Biasini, B.; Tiboni-Oschilewski, O.; Monica, E.; Deon, V.; Rapetti, V.; Scazzina, F.; Rosi, A. Evaluation of the Potential of Promoting Healthy and Sustainable Food Choices in a Worksite Canteen through an App-Based Intervention. Int. J. Food Sci. Nutr. 2025, 76, 634–645. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.S.; Rocha, A.; Viegas, C. Strategies for Increased Adherence to the Mediterranean or Healthy Diet in University Food Services: A Systematic Review. Int. J. Food Sci. Nutr. 2025, 76, 239–264. [Google Scholar] [CrossRef]
- Graça, J.; Campos, L.; Guedes, D.; Roque, L.; Brazão, V.; Truninger, M.; Godinho, C. How to Enable Healthier and More Sustainable Food Practices in Collective Meal Contexts: A Scoping Review. Appetite 2023, 187, 106597. [Google Scholar] [CrossRef]
- Marcotrigiano, V.; Stingi, G.D.; Nugnes, P.T.; Mancano, S.; Lagreca, V.M.; Tarricone, T.; Salerno, G.; Pasquale, P.; Marchet, P.; Sava, G.A.; et al. Collective Catering Activities and Official Controls: Dietary Promotion, Sustainability and Future Perspectives. Healthcare 2023, 11, 1347. [Google Scholar] [CrossRef]
- PubMed. Advanced Search Results. Available online: https://pubmed.ncbi.nlm.nih.gov/advanced/ (accessed on 7 March 2024).
- Scopus. Advanced Search. Available online: https://www.scopus.com/search/form.uri?display=advanced (accessed on 7 March 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Rosalind Franklin University of Medicine and Science. Systematic Reviews, Scoping Reviews & Other Evidence Synthesis Projects. Available online: https://guides.rosalindfranklin.edu/sysreviews/protocols (accessed on 16 September 2025).
- The World Bank. The World by Income and Region. Available online: https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (accessed on 14 October 2024).
- Guimarães, N.S.; Reis, M.G.; Costa, B.V.D.L.; Zandonadi, R.P.; Carrascosa, C.; Teixeira-Lemos, E.; Costa, C.A.; Alturki, H.A.; Raposo, A. Environmental Footprints in Food Services: A Scoping Review. Nutrients 2024, 16, 2106. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, T.; Chen, H.; Rong, Z. Environmental Homogenization or Heterogenization? The Effects of Globalization on Carbon Dioxide Emissions, 1970–2014. Sustainability 2019, 11, 2752. [Google Scholar] [CrossRef]
- Cuevas Garciá-Dorado, S.; Cornselsen, L.; Smith, R.; Walls, H. Economic Globalization, Nutrition and Health: A Review of Quantitative Evidence. Glob. Health 2019, 15, 15. [Google Scholar] [CrossRef]
- Westbury, S.; Ghosh, I.; Jones, H.M.; Mensah, D.; Samuel, F.; Irache, A.; Azhar, N.; Al-Khudairy, L.; Iqbal, R.; Oyebode, O. The Influence of the Urban Food Environment on Diet, Nutrition and Health Outcomes in Low-Income and Middle-Income Countries: A Systematic Review. BMJ Glob. Health 2021, 6, e006358. [Google Scholar] [CrossRef]
- Hart, T.L.; Petersen, K.S.; Kris-Etherton, P.M. Early Nutrition and Development of Cardiovascular Disease. In Early Nutrition and Long-Term Health: Mechanisms, Consequences, and Opportunities, 2nd ed.; Saavedra, J.M., Dattilo, A.M., Eds.; Woodhead Publishing: Kidlington, UK, 2022; pp. 309–325. [Google Scholar]
- NCD Child. Children & Non-Communicable Disease: Global Burden Report. 2019. Available online: https://www.ncdchild.org/2019/01/28/children-non-communicable-disease-global-burden-report-2019/ (accessed on 25 October 2024).
- Alves, J.G.B.; Alves, L.V. Early-Life Nutrition and Adult-Life Outcomes. J. Pediatr. 2024, 100, S4–S9. [Google Scholar] [CrossRef]
- Heidari-Beni, M. Early Life Nutrition and Non-Communicable Disease. Adv. Exp. Med. Biol. 2019, 1121, 33–40. [Google Scholar] [PubMed]
- Kluczkovski, A.; Menezes, C.A.; Tereza da Silva, J.; Bastos, L.; Lait, R.; Cook, J.; Cruz, B.; Cerqueira, B.; Lago, R.M.R.S.; Gomes, A.N.; et al. An Environmental and Nutritional Evaluation of School Food Menus in Bahia, Brazil That Contribute to Local Public Policy to Promote Sustainability. Nutrients 2022, 14, 1519. [Google Scholar] [CrossRef]
- Simon, X.; Copena, D.; Pérez-Neira, D. Assessment of the Diet-Environment-Health-Cost Quadrilemma in Public School Canteens. An LCA Case Study in Galicia (Spain). Environ. Dev. Sustain. 2023, 25, 12543–12567. [Google Scholar] [CrossRef]
- Adiyan, N.N.; Beyhan, Y.; Dayi, T. Evaluation of the Carbon Footprint, Water Footprint, Nutrient Profiles and Cost of Sustainable Menus Planned with Digital Modeling. Food Sci. Nutr. 2025, 13, e70977. [Google Scholar] [CrossRef]
- Rosi, A.; Biasini, B.; Monica, E.; Rapetti, V.; Deon, V.; Scazzina, F. Nutritional Composition and Environmental Impact of Meals Selected in Workplace Canteens before and after an Intervention Promoting the Adherence to the Mediterranean Diet. Nutrients 2022, 14, 4456. [Google Scholar] [CrossRef] [PubMed]
- Bux, C.; Zizzo, G.; Roe, B.E.; Amicarelli, V. A Comparative Assessment of Food Waste and Carbon Footprint toward a More Sustainable Healthcare Foodservice. J. Clean. Prod. 2025, 495, 145102. [Google Scholar] [CrossRef]
- Byerlee, D.; Fanzo, J. The SDG of Zero Hunger 75 years on: Turning Full Circle on Agriculture and Nutrition. Glob. Food Secur. 2019, 21, 52–59. [Google Scholar] [CrossRef]
- Jurkovich, M. Feeding the Hungry: Advocacy and Blame in the Global Fight Against Hunger; Cornell University Press: New York, NY, USA, 2020. [Google Scholar]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef] [PubMed]
- Kohli, K.; Prajapati, R.; Shah, R.; Das, M.; Sharma, B.K. Food Waste: Environmental Impact and Possible Solutions. Sustain. Food Technol. 2024, 2, 70–80. [Google Scholar] [CrossRef]
- Simion, I.M.; Ghinea, C.; Maxineasa, S.G.; Taranu, N.; Bonoli, A.; Gavrilescu, M. Ecological Footprint Applied in the Assessment of Construction and Demolition Waste Integrated Management. Environ. Eng. Manag. J. 2013, 12, 779–788. [Google Scholar] [CrossRef]
- United Nations Climate Change. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 6 November 2024).
- United Nations: Department of Economic and Social Affairs. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 6 November 2024).
- Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/resources/climate-change-in-data/ (accessed on 25 October 2024).
- Xu, Z.; Sun, D.W.; Zeng, X.A.; Liu, D.; Pu, H. Research Developments in Methods to Reduce the Carbon Footprint of the Food System: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1270–1286. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 25 November 2024).
- Water Footprint Network. Frequently Asked Questions. Available online: https://www.waterfootprint.org/water-footprint-2/frequently-asked-questions/ (accessed on 6 November 2024).
- United States Environmental Protection Agency. Land Use. Available online: https://www.epa.gov/report-environment/land-use (accessed on 26 November 2024).
- Elliott, R.J.R.; Sun, P.; Zhu, T. Energy Abundance, the Geographical Distribution of Manufacturing, and International Trade. Rev. World Econ. 2024, 160, 1361–1391. [Google Scholar] [CrossRef]
- Samadi, S.; Fischer, A.; Lechtenböhmer, S. The Renewables Pull Effect: How Regional Differences in Renewable Energy Costs Could Influence Where Industrial Production is Located in the Future. Energy Res. Soc. Sci. 2023, 104, 103257. [Google Scholar] [CrossRef]
- Petersson, T.; Secondi, L.; Magnani, A.; Antonelli, M.; Dembska, K.; Valentini, R.; Varotto, A.; Castaldi, S. A Multilevel Carbon and Water Footprint Dataset of Food Commodities. Sci. Data 2021, 8, 127. [Google Scholar] [CrossRef]
- Andersen, C.J.; Murray, K.; Gaito, A.; Dupree, L.; Cintrón-Rivera, L. Nutritional Quality of University Dining Options Varies by Location, Level of Convenience, and Accessibility: Pilot Study Perspectives on Assessing University Food Environments. J. Agric. Food Res. 2025, 22, 102057. [Google Scholar] [CrossRef]
- Barcina-Pérez, P.; Lucas-Abellán, C.; Abellán-Aynés, O.; Mercader-Ros, M.T.; Victoria-Montesinos, D.; Hernández-Sánchez, P.; Serrano-Martínez, A. Assessment of Nutrient Levels Provided by General Hospital Patient Menus: A Cross-Sectional Study Carried Out in the Region of Murcia (Spain). Healthcare 2023, 11, 2304. [Google Scholar] [CrossRef]
- de Jesus Silva Batista, M.; Dias, G.P. Food and Sustainability: The Water Footprint Assessment of the Menus Served in a University Restaurant. Sustain. Debate 2024, 15, 294–324. [Google Scholar]
- Biasini, B.; Donati, M.; Rosi, A.; Giopp, F.; Colić Barić, I.; Bituh, M.; Brečić, R.; Brennan, M.; Ilić, A.; Quarrie, S.; et al. Nutritional, Environmental and Economic Implications of Children Plate Waste at School: A Comparison between Two Italian Case Studies. Public Health Nutr. 2024, 27, e143. [Google Scholar] [CrossRef]
- Blondin, S.A.; Cash, S.B.; Griffin, T.S.; Goldberg, J.P.; Economos, C.D. Meatless Monday National School Meal Program Evaluation: Impact on Nutrition, Cost, and Sustainability. J. Hunger. Environ. Nutr. 2022, 17, 1–13. [Google Scholar] [CrossRef]
- Boronowsky, R.; Lin-Yang, K.; Natanson, L.; Presley, K.; Reddy, Y.; Shenkiryk, A.; Wang, M.; Slusser, W.; Koch, P.A.; Cleveland, D.A.; et al. The Carbon Footprint of School Lunch: Moving Toward a Healthy and Sustainable Future for the Next Generation. Sustainability 2025, 17, 2955. [Google Scholar] [CrossRef]
- Boutata, F.Z.; Sersar, I.; Bencharif, M. Algerian Initiative Guidelines on Hospital Nutrition. Nutr. Clin. Metab. 2024, 38, 137–143. [Google Scholar] [CrossRef]
- Buckinx, F.; Allepaerts, S.; Paquot, N.; Reginster, J.Y.; de Cock, C.; Petermans, J.; Bruyère, O. Energy and Nutrient Content of Food Served and Consumed by Nursing Home Residents. J. Nutr. Health Aging 2017, 21, 727–732. [Google Scholar] [CrossRef]
- Chapman, L.E.; Richardson, S.; Harb, A.A.; Fear, E.; Daly, T.P.; Olarte, D.A.; Hawley, M.; Zukowski, E.; Schwartz, C.; Maroney, M.; et al. Nutrient Content and Compliance with Sodium Standards in Elementary School Meals in the United States Pre- and Post-COVID-19. Nutrients 2022, 14, 5386. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.F.W.; Richardson, S.; Roberto, C.A.; Rimm, E.B. Availability of Lower-Sodium School Lunches and the Association with Selection and Consumption among Elementary and Middle School Students. J. Acad. Nutr. Diet. 2021, 121, 105–111.e2. [Google Scholar] [CrossRef]
- Eustachio Colombo, P.; Patterson, E.; Lindroos, A.K.; Parlesak, A.; Elinder, L.S. Sustainable and Acceptable School Meals through Optimization Analysis: An Intervention Study. Nutr. J. 2020, 19, 61. [Google Scholar] [CrossRef]
- Compaoré, E.W.R.; Ouédraogo, O.; Souho, T.; Bengaly, M.D.; Simporé, M.P.; Dicko, M.H. Analysis of the Nutritional Composition and Organization of School Meals in the Province of Kadiogo in Burkina Faso: Challenges and Prospects. Front. Nutr. 2023, 10, 1309730. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Opizzi, A.; Binala, J.G.; Cortese, L.; Barone-Adesi, F.; Panella, M. Evaluation of the Climate Impact and Nutritional Quality of Menus in an Italian Long-Term Care Facility. Nutrients 2024, 16, 2815. [Google Scholar] [CrossRef]
- Cummings, P.L.; Welch, S.B.; Mason, M.; Burbage, L.; Kwon, S.; Kuo, T. Nutrient Content of School Meals before and after Implementation of Nutrition Recommendations in Five School Districts across Two U.S. Counties. Prev. Med. 2014, 67, S21–S27. [Google Scholar] [CrossRef]
- Dahmani, J.; Nicklaus, S.; Grenier, J.M.; Marty, L. Nutritional Quality and Greenhouse Gas Emissions of Vegetarian and Non-Vegetarian Primary School Meals: A Case Study in Dijon, France. Front. Nutr. 2022, 9, 997144. [Google Scholar] [CrossRef]
- Deagan, C.; Lawson, N. Using a Pictorial Menu in Hospital Enhances Patient Satisfaction Without Improving Nutritional Intake or Plate Waste: A Pre-Post Mixed-Methods Pilot Study. J. Hum. Nutr. Diet. 2025, 38, e70062. [Google Scholar] [CrossRef] [PubMed]
- De Laurentiis, V.; Hunt, D.V.L.; Rogers, C.D.F. Contribution of School Meals to Climate Change and Water Use in England. Energy Procedia 2017, 123, 204–211. [Google Scholar] [CrossRef]
- de Oliveira, E.C.V.; Madruga, F.P.; Retondario, A.; Jagher, A.; de Oliveira, P.D.P.; Alves, R.C.; Almeida, C.C.B.; Cerqueira, M.M.O. de School Food in Child Daycare Centers: Poor in Macro and Micronutrients. Clin. Nutr. Open Sci. 2022, 43, 28–41. [Google Scholar] [CrossRef]
- de Seymour, J.; Stollenwerk Cavallaro, A.; Wharemate-Keung, L.; Ching, S.; Jackson, J. Nutrient-Level Evaluation of Meals Provided on the Government-Funded School Lunch Program in New Zealand. Nutrients 2022, 14, 5087. [Google Scholar] [CrossRef]
- Đermanović, M.; Miletić, I.; Pavlović, Z. A Comparative Analysis of the Contents of Iron, Zinc, Copper, Manganese, and Calcium in the Collective Diet Of Preschool Children in the Northwestern Region of Bosnia. Biol. Trace Elem. Res. 2017, 175, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.B.; Breck, A.; Kettel Khan, L. Comparison of Children’s Food and Beverage Intakes with National Recommendations in New York City Child-Care Centres. Public Health Nutr. 2016, 19, 2451–2457. [Google Scholar] [CrossRef]
- Doorduijn, A.S.; van Gameren, Y.; Vasse, E.; de Roos, N.M. At Your Request Room Service Dining Improves Patient Satisfac-tion, Maintains Nutritional Status, and Offers Opportunities to Improve Intake. Clin. Nutr. 2016, 35, 1174–1180. [Google Scholar] [CrossRef]
- Elinder, L.S.; Colombo, P.E.; Patterson, E.; Parlesak, A.; Lindroos, A.K. Successful Implementation of Climate-Friendly, Nu-tritious, and Acceptable School Meals in Practice: The OPTIMATTM Intervention Study. Sustainability 2020, 12, 8475. [Google Scholar] [CrossRef]
- Everitt, T.; Engler-Stringer, R.; Martin, W.; Vatanparast, H. Comparing Diet Quality of School Meals versus Food Brought from Home. Can. J. Diet. Pract. Res. 2020, 81, 179–185. [Google Scholar] [CrossRef]
- Farapti, F.; Wangi, M.P.; Adiningsih, S. The Assessment of Daily Menus in Nursing Home Residents for Improving Intake and Nutritional Status in Elderly. Amerta Nutr. 2023, 7, 262–266. [Google Scholar] [CrossRef]
- Fitriani, J.I. Sulistiyani Student Characteristics, Acceptability, and Suitability of Portion Standards with Recommended Dietary Allowance in School Meals at Al Furqan Primary School, Jember Regency. Amerta Nutr. 2024, 8, 285–294. [Google Scholar] [CrossRef]
- Flynn, A.N.; Takahashi, T.; Sim, A.; Brunstrom, J.M. Dish Swap across a Weekly Menu Can Deliver Health and Sustainability Gains. Nat. Food 2025, 6, 843–847. [Google Scholar] [CrossRef]
- Frampton, A.M.; Sisson, S.B.; Horm, D.; Campbell, J.E.; Lora, K.; Ladner, J.L. What’s for Lunch? An Analysis of Lunch Menus in 83 Urban and Rural Oklahoma Child-Care Centers Providing All-Day Care to Preschool Children. J. Acad. Nutr. Diet. 2014, 114, 1367–1374. [Google Scholar] [CrossRef]
- Gajdoš Kljusurić, J.; Bosanac, V.; Šanko, K.; Colić Barić, I. Establishing Energy-Nutritional Variety of Boarding School Daily Menus as a Result of Regional Differences Using Multivariate Analysis. J. Food Compos. Anal. 2016, 51, 61–68. [Google Scholar] [CrossRef]
- González-García, S.; González-García, R.; González Vázquez, L.; Moreira, M.T.; Leis, R. Tracking the Environmental Footprints of Institutional Restaurant Service in Nursery Schools. Sci. Total Environ. 2020, 728, 138939. [Google Scholar] [CrossRef]
- González-García, S.; Esteve-Llorens, X.; González-García, R.; González, L.; Feijoo, G.; Moreira, M.T.; Leis, R. Environmental Assessment of Menus for Toddlers Serviced at Nursery Canteen Following the Atlantic Diet Recommendations. Sci. Total Environ. 2021, 770, 145342. [Google Scholar] [CrossRef]
- Harrison, L.; Herrmann, A.; Quitmann, C.; Stieglbauer, G.; Zeitz, C.; Franke, B.; Danquah, I. Effects of a Cafeteria-Based Sustainable Diet Intervention on the Adherence to the EAT-Lancet Planetary Health Diet and Greenhouse Gas Emissions of Consumers: A Quasi-Experimental Study at a Large German Hospital. Nutr. J. 2024, 23, 80. [Google Scholar] [CrossRef]
- Hassan, H.F.; Malli, D.; Antar, E.; Khattar, M.; Badereddine, N.; Fattouh, F.; El Cheikh Mohamad, J.; Khatib, S.E.; Abiad, M.; Hoteit, M. Evaluating Adherence of Hospital Meals to Mediterranean Diet: The Case of a Developing Country. J. Health Popul. Nutr. 2025, 44, 75. [Google Scholar] [CrossRef]
- Hatjiathanassiadou, M.; de Souza, S.R.G.; Nogueira, J.P.; de Medeiros Oliveira, L.; Strasburg, V.J.; Rolim, P.M.; Seabra, L.M.A.J. Environmental Impacts of University Restaurant Menus: A Case Study in Brazil. Sustainability 2019, 11, 5157. [Google Scholar] [CrossRef]
- Holliday, M.K.; Richardson, K.M. Nutrition in Midwestern State Department of Corrections Prisons: A Comparison of Nutritional Offerings with Commonly Utilized Nutritional Standards. J. Correct. Health Care 2021, 27, 154–160. [Google Scholar] [CrossRef]
- Imamura, T.; Narang, N.; Kinugawa, K. Validation of Artificial Intelligence-Based Application to Estimate Nutrients in Daily Meals. J. Cardiol. 2025, 85, 424–425. [Google Scholar] [CrossRef]
- Jaworowska, A.; Rotaru, G.; Christides, T. Nutritional Quality of Lunches Served in South East England Hospital Staff Canteens. Nutrients 2018, 10, 1843. [Google Scholar] [CrossRef]
- Jindrich, C.; Joyce, J.; Daniels, E.; Procter, S.B.; Sauer, K.; Jindrich, C.; Joyce, J.; Daniels, E.; Procter, S.B.; Sauer, K.; et al. The Nutritional Adequacy and Diet Quality of Vegetarian Menu Substitutions in Urban Kansas Childcare Centers. Nutrients 2022, 14, 3464. [Google Scholar] [CrossRef] [PubMed]
- Jiyana, M.J.; Ncube, L.J. Nutrient Composition of Meals Served to Adult Inpatients in Public Hospitals in North West, South Africa. Health SA Gesondheid 2025, 30, 7. [Google Scholar] [CrossRef]
- Joyce, J.M.; Rosenkranz, R.R.; Rosenkranz, S.K. Variation in Nutritional Quality of School Lunches with Implementation of National School Lunch Program Guidelines. J. Sch. Health 2018, 88, 636–643. [Google Scholar] [CrossRef]
- Joyce, J.M.; Rosenkranz, R.R.; Rosenkranz, S.K. Evaluation of Variability in Dietary Quality of School Lunches Meeting Na-tional School Lunch Program Guidelines by Socioeconomic Status and Rurality. Int. J. Environ. Res. Public Health 2020, 17, 8012. [Google Scholar] [CrossRef] [PubMed]
- Juniusdottir, R.; Hörnell, A.; Gunnarsdottir, I.; Lagstrom, H.; Waling, M.; Olsson, C.; Talvia, S.; Olafsdottir, A.S. Composition of School Meals in Sweden, Finland, and Iceland: Official Guidelines and Comparison with Practice and Availability. J. Sch. Health 2018, 88, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.; Hamlin, D. The National School Lunch Program and Healthy Eating: An Analysis of Food Selection and Con-sumption in an Urban Title I Middle School. Educ. Urban. Soc. 2022, 56, 143–163. [Google Scholar] [CrossRef]
- Kesa, H.; Onyenweaku, E. Menu Evaluation versus Health and Well-Being of Children Participating in School Feeding Programmes in South Africa. Int. J. Sch. Health 2024, 11, 2–13. [Google Scholar]
- Kilian, L.; Triches, R.M.; Ruiz, E.N.F. Food and Sustainability at University Restaurants: Analysis of Water Footprint and Consumer Opinion. Sustain. Debate 2021, 12, 79–89. [Google Scholar] [CrossRef]
- Knight, K.B.; Hickey, R.; Aloia, C.R.; Oakley, C.B.; Bomba, A.K. The Use of the USDA Nutrient Analysis Protocol in the Evaluation of Child-Care Menus in North Mississippi. Early Child. Dev. Care 2015, 185, 538–546. [Google Scholar] [CrossRef]
- Kuruvilla, A.; Panchasara, K.; Panchal, N. Improving Maternal Nutrition in Public Health Facilities by Strengthening the Dietary Component of Janani Shishu Suraksha Karyakram—A Government of India Programme. Malays. J. Nutr. 2021, 27, 421–431. [Google Scholar] [CrossRef]
- Lavall, M.J.; Blesa, J.; Frigola, A.; Esteve, M.J. Nutritional Assessment of the School Menus Offered in Spain’s Mediterranean Area. Nutrition 2020, 78, 110872. [Google Scholar] [CrossRef]
- Lavriša, Ž.; Pravst, I.; Krušič, S.; Hren, N.; Gregorič, N.; Hren, I.; Koroušić Seljak, B.; Hristov, H. Nutrition among Nursing Home Residents: Results from the NutriCare Study. Front. Nutr. 2024, 11, 1423658. [Google Scholar] [CrossRef]
- Lazarevic, K.; Stojanovic, D.; Bogdanović, D. Energy and nutritional value of the meals in kindergartens in Nis (Serbia). Rocz. Panstw. Zakl. Hig. 2014, 65, 127–131. [Google Scholar]
- Leão, P.V.; Dias, R.M.; Das Graças Ferreira Frazão, A.; Dias, I.A.; Da Silva, I.R.P.; Corrêa, N.A.F.; Cavalcanti, C.D.T.D. Nutri-tional Analysis of the School Feeding Program Menus Offered in a Municipality of Pará. Mundo Saúde 2018, 42, 181–198. [Google Scholar]
- Lin, X.; Li, Y.; Wu, Q.; Lv, Y.; Zhu, Y.; Liu, J.; He, L.; Wang, Z. Quality and Quantity of School Lunch in Nanjing: Based on Data from the Sunshine Restaurant Supervision Platform. Nutrients 2024, 16, 2184. [Google Scholar] [CrossRef] [PubMed]
- Lir, D.N.; Perevalov, A.Y.; Tapeshkina, N.V.; Sherstobitova, A.V.; Misharina, E.A. Analyzing Nutrition Rations at Pre-School Children Facilities in a Large Industrial City in Russia. Health Risk Anal. 2020, 1, 52–58. [Google Scholar] [CrossRef]
- Iizuka, K.; Ishihara, T.; Watanabe, M.; Ito, A.; Sarai, M.; Miyahara, R.; Suzuki, A.; Saitoh, E.; Sasaki, H. Nutritional Assessment of Hospital Meals by Food-Recording Applications. Nutrients 2022, 14, 3754. [Google Scholar] [CrossRef]
- Makurat, J.; Pillai, A.; Wieringa, F.T.; Chamnan, C.; Krawinkel, M.B. Estimated Nutritive Value of Low-Price Model Lunch Sets Provided to Garment Workers in Cambodia. Nutrients 2017, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Perez, N.; Barrena-Barbadillo, R.; Irastorza-Terradillos, I. Nutritional and Environmental Assessment of School Meals Served, Consumed and Wasted in Primary Schools in Spain: A Comparison of Public and Charter Schools. Public Health Nutr. 2025, 28, e172. [Google Scholar] [CrossRef]
- Liz Martins, M.; Rodrigues, S.S.P.; Cunha, L.M.; Rocha, A. School Lunch Nutritional Adequacy: What Is Served, Consumed and Wasted. Public Health Nutr. 2021, 24, 4277–4285. [Google Scholar] [CrossRef]
- Mendes, B.; Gunes Bayir, A.; Aksoy, A.S.; Toluk, O. A Retrospective Study: Do Hospital Menus Carry a Risk of Malnutrition? Food Sci. Nutr. 2025, 13, e70669. [Google Scholar] [CrossRef]
- Menis, D.; Fiori, F.; Cautero, P.; Zago, D.; Beorchia, Y.; Dallan, L.; Vettorazzo, P.; Lesa, L.; Conte, A.; Scarpis, E.; et al. Sustainability and Nutritional Composition of Food Offer and Choices in Three Hospital Canteens in Italy. Heliyon 2024, 10, e39317. [Google Scholar] [CrossRef]
- Mizéhoun-Adissoda, C.; Alouki, K.; Adjobimey, M.; Yémoa, A.; Itiblitse, R.; Alihonou, F.; Aglago, E.K.; Desport, J.C. Nutri-tional and Hygienic Quality of Meals Served in School Canteens in Togo: A Cross-Sectional Study. Food Control 2022, 135, 108680. [Google Scholar] [CrossRef]
- Moran, A.; Lederer, A.; Johnson Curtis, C. Use of Nutrition Standards to Improve Nutritional Quality of Hospital Patient Meals: Findings from New York City’s Healthy Hospital Food Initiative. J. Acad. Nutr. Diet. 2015, 115, 1847–1854. [Google Scholar] [CrossRef]
- Moyano, D.; Rodriguez, E.R.; Perovic, N.R. An Analysis of Policy Interventions Regarding School Lunch Programs and Their Role in the Healthy Nutrition of Children in Córdoba, Argentina. Salud Colect. 2021, 16, e2636. [Google Scholar] [CrossRef]
- Myszkowska-Ryciak, J.; Harton, A. Implementation of Dietary Reference Intake Standards in Preschool Menus in Poland. Nutrients 2018, 10, 592. [Google Scholar] [CrossRef]
- Myszkowska-Ryciak, J.; Harton, A. Eating Healthy, Growing Healthy: Outcome Evaluation of the Nutrition Education Program Optimizing the Nutritional Value of Preschool Menus, Poland. Nutrients 2019, 11, 2438. [Google Scholar] [CrossRef]
- Nanayakkara, W.S.; Skidmore, P.; O’Brien, L.; Wilkinson, T.; Frampton, C.; Gearry, R. From Menu to Mouth: The Decay Pathway of Nutrient Intake from Planned Menu to Consumed and Characteristics of Residents in an Aged Care Facility with Greater Nutrient Decay Rates: A Cross-Sectional Study. BMJ Open 2019, 9, e024044. [Google Scholar] [CrossRef]
- Benjamin Neelon, S.E.; Reyes-Morales, H.; Haines, J.; Gillman, M.W.; Taveras, E.M. Nutritional Quality of Foods and Beverages on Child-Care Centre Menus in Mexico. Public Health Nutr. 2013, 16, 2014–2022. [Google Scholar] [CrossRef]
- Nicklas, T.A.; Liu, Y.; Stuff, J.E.; Fisher, J.O.; Mendoza, J.A.; O’Neil, C.E. Characterizing Lunch Meals Served and Consumed by Pre-School Children in Head Start. Public Health Nutr. 2013, 16, 2169–2177. [Google Scholar] [CrossRef]
- Nogueira, J.P.; Hatjiathanassiadou, M.; de Souza, S.R.G.; Strasburg, V.J.; Rolim, P.M.; Seabra, L.M.A.J. Sustainable Perspective in Public Educational Institutions Restaurants: From Foodstuffs Purchase to Meal Offer. Sustainability 2020, 12, 4340. [Google Scholar] [CrossRef]
- Okuda, N.; Higashiyama, A.; Tanno, K.; Yonekura, Y.; Miura, M.; Kuno, H.; Nakajima, T.; Nagahata, T.; Taniguchi, H.; Kosami, K.; et al. Na and K Intake from Lunches Served in a Japanese Company Cafeteria and the Estimated Improvement in the Dietary Na/K Ratio Using Low-Na/K Seasonings and Dairy to Prevent Hypertension. Nutrients 2024, 16, 1433. [Google Scholar] [CrossRef] [PubMed]
- Ongan, D.; Inanc, N.; Cicek, B. Comparing School Lunch and Canteen Foods Consumption of Children in Kayseri, Turkey. Pak. J. Med. Sci. 2014, 30, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Pepito, B.M.; Dawes, J.; Hildebrand, D.; Joyce, J. Analysis of a State Police Academy Menu Cycle for Dietary Quality and Performance Nutrition Adequacy. Int. J. Environ. Res. Public Health 2022, 19, 12642. [Google Scholar] [CrossRef]
- Petchoo, J.; Kaewchutima, N.; Tangsuphoom, N. Nutritional Quality of Lunch Meals and Plate Waste in School Lunch Pro-gramme in Southern Thailand. J. Nutr. Sci. 2022, 11, e35. [Google Scholar] [CrossRef]
- Poličnik, R.; Rostohar, K.; Škrjanc, B.; Seljak, B.K.; Blaznik, U.; Farkaš, J. Energy and Nutritional Composition of School Lunches in Slovenia: The Results of a Chemical Analysis in the Framework of the National School Meals Survey. Nutrients 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, L.M.; Schlenger, L.; Gabrysch, S.; Lambrecht, N.J. Dietary Quality and Environmental Footprint of Health-Care Foodservice: A Quantitative Analysis Using Dietary Indices and Lifecycle Assessment Data. Lancet Planet. Health 2025, 9, 101274. [Google Scholar] [CrossRef] [PubMed]
- Poulter, M.; Coe, S.; Graham, C.A.M.; Leach, B.; Tammam, J. Menu Provision in a Young Offenders Institution, Comparison with Dietary Guidelines, and Previous Menu Allocation: A Cross-Sectional Nutritional Analysis. J. Nutr. Sci. 2024, 13, e55. [Google Scholar] [CrossRef]
- Rasbold, A.H.; Adamiec, R.; Anderson, M.P.; Campbell, J.E.; Horm, D.M.; Sitton, L.K.; Sisson, S.B. Macronutrient and Micro-nutrient Intakes of Children in Oklahoma Child-Care Centres, USA. Public Health Nutr. 2016, 19, 1498–1505. [Google Scholar] [CrossRef]
- Retondario, A.; Silva, D.L.F.; Salgado, S.M.; De Oliveira Alves, M.A.; Ferreira, S.M.R. Nutritional Composition of School Meals Serving Children from 7 to 36 Months of Age in Municipal Day-Care Centres in the Metropolitan Area of Curitiba, Paraná, Brazil. Br. J. Nutr. 2016, 115, 2203–2211. [Google Scholar] [CrossRef]
- Rodríguez-Rejón, A.I.; Ruiz-López, M.D.; Malafarina, V.; Puerta, A.; Zuñiga, A.; Artacho, R. Menus Offered in Long-Term Care Homes: Quality of Meal Service and Nutritional Analysis. Nutr. Hosp. 2017, 34, 584–592. [Google Scholar] [CrossRef]
- Rossi, L.; Ferrari, M.; Martone, D.; Benvenuti, L.; De Santis, A. The Promotions of Sustainable Lunch Meals in School Feeding Programs: The Case of Italy. Nutrients 2021, 13, 1571. [Google Scholar] [CrossRef]
- Aytekin Sahin, G.; Caferoglu, Z. The Food Service Quality and Its Effects on Nutritional Status in Nursing Home Residents. Clin. Nutr. ESPEN 2022, 47, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Rahayu, Y.Y.S.; Araki, T. Nutritional Value of Canteen Menus and Dietary Habits and Intakes of University Students in Indonesia. Nutrients 2022, 14, 1911. [Google Scholar] [CrossRef]
- Sato, Y.; Inagaki, R.; Shimamoto, K.; Tsuji, H. Validating Nutritional Values of Daycare Lunches Using Recipe Calculation Based on Standard Tables of Food Composition in Japan. J. Food Compos. Anal. 2025, 143, 107614. [Google Scholar] [CrossRef]
- Seiquer, I.; Haro, A.; Cabrera-Vique, C.; Muñoz-Hoyos, A.; Galdó, G. Nutritional Assessment of the Menus Served in Municipal Nursery Schools in Granada. An. De Pediatría 2016, 85, 197–203. [Google Scholar] [CrossRef]
- Serrem, K.; Dunay, A.; Serrem, C.; Atubukha, B.; Oláh, J.; Illés, C.B. Paucity of Nutrition Guidelines and Nutrient Quality of Meals Served to Kenyan Boarding High School Students. Sustainability 2020, 12, 3463. [Google Scholar] [CrossRef]
- Shin, D. Analysis of Micromineral Contents of School Meals. Nutr. Res. Pract. 2014, 8, 439–444. [Google Scholar] [CrossRef]
- Sossen, L.; Bonham, M.; Porter, J. An Investigation of Recommended Serve Food Portions and Attaining Energy and Protein Requirements in Older Adults Living in Residential Care. J. Hum. Nutr. Diet. 2021, 34, 374–383. [Google Scholar] [CrossRef]
- Stanikowski, P.; Michalak-majewska, M.; Domagała, D.; Jabłońska-ryś, E.; Sławińska, A. Implementation of Dietary Reference Intake Standards in Prison Menus in Poland. Nutrients 2020, 12, 728. [Google Scholar] [CrossRef] [PubMed]
- Takacs, B.; Kalea, A.Z.; Borrion, A. Menu Dilemmas: An Integrated Assessment of the Nutritional Quality, Environmental Impact, and Cost of Vegan, Vegetarian, and Meat-Based Versions of Meals. Nutrients 2025, 17, 1569. [Google Scholar] [CrossRef] [PubMed]
- Trafalska, E. Assessing Diets for Energy and Nutrients Content in Nursery School Children from Lodz, Poland. Rocz. Panstw. Zakl. Hig. 2014, 65, 27–33. [Google Scholar]
- Trang, S.; Fraser, J.; Wilkinson, L.; Steckham, K.; Oliphant, H.; Fletcher, H.; Tzianetas, R.; Arcand, J. A Multi-Center Assessment of Nutrient Levels and Foods Provided by Hospital Patient Menus. Nutrients 2015, 7, 9256–9264. [Google Scholar] [CrossRef] [PubMed]
- Turner-McGrievy, G.M.; Hales, S.B.; Baum, A.C. Transitioning to New Child-Care Nutrition Policies: Nutrient Content of Preschool Menus Differs by Presence of Vegetarian Main Entrée. J. Acad. Nutr. Diet. 2014, 114, 117–123. [Google Scholar] [CrossRef]
- Vici, G.; Giustozzi, D.; Camilletti, D.; Zufolino, S.; Malandrino, L.; Renzi, S.; Pucciarelli, S.; Vincenzetti, S.; Belli, L.; Polzonetti, V. An Evaluation and Optimization of Nutrition, Environmental Footprint, and Food Waste in Italian Primary School Menus: A Case Study. J. Transl. Med. 2025, 23, 643. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Pikula, A.; Mena-Nieto, A.; Ortega, A. Comparison of the Carbon Footprint of Different Patient Diets in a Spanish Hospital. J. Health Serv. Res. Policy 2015, 20, 39–44. [Google Scholar] [CrossRef]
- Volanti, M.; Arfelli, F.; Neri, E.; Saliani, A.; Passarini, F.; Vassura, I.; Cristallo, G. Environmental Impact of Meals: How Big Is the Carbon Footprint in the School Canteens? Foods 2022, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Vucea, V.; Keller, H.H.; Morrison, J.M.; Duncan, A.M.; Duizer, L.M.; Carrier, N.; Lengyel, C.O.; Slaughter, S.E. Nutritional Quality of Regular and Pureed Menus in Canadian Long Term Care Homes: An Analysis of the Making the Most of Mealtimes (M3) Project. BMC Nutr. 2017, 3, 80. [Google Scholar] [CrossRef]
- Wickramasinghe, K.K.; Rayner, M.; Goldacre, M.; Townsend, N.; Scarborough, P. Contribution of Healthy and Unhealthy Primary School Meals to Greenhouse Gas Emissions in England: Linking Nutritional Data and Greenhouse Gas Emission Data of Diets. Eur. J. Clin. Nutr. 2016, 70, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.J.; Pearce, J. Energy and Nutrient Content of School Lunches Provided for Children Attending School-Based Nurseries: A Cross-Sectional Study. Public Health Nutr. 2023, 26, 2641–2651. [Google Scholar] [CrossRef]
- Wickramasinghe, K.; Rayner, M.; Goldacre, M.; Townsend, N.; Scarborough, P. Environmental and Nutrition Impact of Achieving New School Food Plan Recommendations in the Primary School Meals Sector in England. BMJ Open 2017, 7, e013840. [Google Scholar] [CrossRef]
- Wungrath, J.; Yutabootr, S.; Limvilai, T.; Kapheak, K. Nutritional Value of Lunches Served in the Remote Rural Area Child-Care Centers in Chiang Mai, Thailand. Open Public Health J. 2022, 15, e187494452208182. [Google Scholar] [CrossRef]
- Yesildemir, O. Energy and Nutritional Content of Lunch Menus in Turkish Universities: The Impact on Ecological Footprint. Food Sci. Nutr. 2025, 13, e70149. [Google Scholar] [CrossRef]
- Zailani, H.; Owolabi, O.A.; Sallau, A.B. Contribution of School Meals to the Recommended Nutrient and Energy Intake of Children Enrolled in the National Homegrown School Feeding Program in Zaria, Nigeria. Arch. Pédiatrie 2023, 30, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Mclaren, S.; Berardy, A.; Henderson, A.; Holden, N.; Huppertz, T.; Jolliet, O.; De Camillis, C.; Renouf, M.; Ru-Gani, B.; Saarinen, M.; et al. Integration of Environment and Nutrition in Life Cycle Assessment of Food Items: Opportunities and Challenges; FAO: Rome, Italy, 2021. [Google Scholar]
- Food and Agriculture Organization. Contribution of Terrestrial Animal Source Food to Healthy Diets for Improved Nutrition and Health Outcomes—An Evidence and Policy Overview on the State of Knowledge and Gaps; FAO: Rome, Italy, 2023. [Google Scholar]
- Leonard, U.M.; Leydon, C.L.; Arranz, E.; Kiely, M.E. Impact of Consuming an Environmentally Protective Diet on Micronutrients: A Systematic Literature Review. Am. J. Clin. Nutr. 2024, 119, 927–948. [Google Scholar] [CrossRef] [PubMed]



| All Articles (n = 107) | |
|---|---|
| Study Design | |
| Observational | 91 (85%) |
| Cross-sectional | 84 |
| Longitudinal | 7 |
| Interventional | 10 (9%) |
| Uncontrolled | 7 |
| Controlled | 3 |
| Modeling | 4 (4%) |
| Other | 2 (2%) |
| Nutritional vs. Environmental | |
| Nutritional | 76 (71%) |
| Environmental | 13 (12%) |
| Both | 18 (17%) |
| Study Setting 1 | |
| Nursery/Preschool | 22 (21%) |
| School | 38 (37%) |
| University | 10 (10%) |
| Nursing Home | 9 (9%) |
| Hospital/community health | 16 (16%) |
| Worksite | 5 (5%) |
| Prison | 3 (3%) |
| Menu vs. Meal | |
| Menus | 92 (86%) |
| Meals | 15 (14%) |
| Type of Menus/Meals | |
| Lunch | 58 (54%) |
| Dinner | 1 (1%) |
| Half day (breakfast and lunch) 2 | 12 (11%) |
| Full day (breakfast, lunch, and dinner) | 29 (27%) |
| Unspecified | 7 (7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chehade, L.; Tucci, M.; Del Bo’, C.; Riso, P.; Martini, D. Exploring Nutritional Quality and Environmental Impact of Canteen Menus and Meals in Institutional Settings: A Scoping Review. Nutrients 2025, 17, 3550. https://doi.org/10.3390/nu17223550
Chehade L, Tucci M, Del Bo’ C, Riso P, Martini D. Exploring Nutritional Quality and Environmental Impact of Canteen Menus and Meals in Institutional Settings: A Scoping Review. Nutrients. 2025; 17(22):3550. https://doi.org/10.3390/nu17223550
Chicago/Turabian StyleChehade, Lara, Massimiliano Tucci, Cristian Del Bo’, Patrizia Riso, and Daniela Martini. 2025. "Exploring Nutritional Quality and Environmental Impact of Canteen Menus and Meals in Institutional Settings: A Scoping Review" Nutrients 17, no. 22: 3550. https://doi.org/10.3390/nu17223550
APA StyleChehade, L., Tucci, M., Del Bo’, C., Riso, P., & Martini, D. (2025). Exploring Nutritional Quality and Environmental Impact of Canteen Menus and Meals in Institutional Settings: A Scoping Review. Nutrients, 17(22), 3550. https://doi.org/10.3390/nu17223550

