Assessment of CoQ10 Dietary Intake in a Mediterranean Cohort of Familial Hypercholesterolemia Patients: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients’ Cohort
- (a)
- Patients at least 4 years old who attended the Unity of Lipids of the University Hospital San Jorge of Huesca (Spain);
- (b)
- Identification data:
- -
- Medical record number;
- -
- Laboratory number.
- Demographic:
- -
- Date of birth and age at the time of inclusion;
- -
- Gender;
- -
- Ethnicity.
- Clinical:
- -
- LDL-C max;
- -
- Lipid-lowering treatment;
- -
- Time of treatment;
- -
- Statin-associated muscle symptoms (SAMSs);
- -
- Cardiovascular accident;
- -
- Age of first cardiovascular event;
- -
- The results of genetic studies, where available, were recorded (type of mutation and affected gene).
2.2. Biochemical Data, Body Composition Analysis, and Dietary Intake Assessment
2.3. Coenzyme Q10 Intake Estimation
2.4. Statistical Analysis
3. Results
3.1. Characterization of the FH Cohort
3.2. Pilot Subsample and Comparability to the Full Cohort
3.3. Biochemical and Anthropometric Data of the Pilot Subsample
3.4. Dietary CoQ10 Intake and Food Sources
4. Discussion
4.1. Summary of Main Findings
4.2. Comparison with Other Populations and Methodological Limitations
4.3. Physiological Implications
4.4. Dietary Recommendations for CoQ10 and FH
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crane, F.L. Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion 2007, 7, S2–S7. [Google Scholar] [CrossRef]
- Stocker, R.; Bowry, V.W.; Frei, B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc. Natl. Acad. Sci. USA 1991, 88, 1646–1650. [Google Scholar] [CrossRef]
- Ruiz-Pesini, E.; Bayona-Bafaluy, M.P.; Sanclemente, T.; Puzo, J.; Montoya, J.; Pacheu-Grau, D. Mitochondrial Genetic Background May Impact Statins Side Effects and Atherosclerosis Development in Familial Hypercholesterolemia. Int. J. Mol. Sci. 2022, 24, 471. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 1974, 249, 5153–5162. [Google Scholar] [CrossRef]
- Suárez-Rivero, J.M.; de la Mata, M.; Pavón, A.D.; Villanueva-Paz, M.; Povea-Cabello, S.; Cotán, D.; Álvarez-Córdoba, M.; Villalón-García, I.; Ybot-González, P.; Salas, J.J.; et al. Intracellular cholesterol accumulation and coenzyme Q10 deficiency in Familial Hypercholesterolemia. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3697–3713. [Google Scholar] [CrossRef] [PubMed]
- Neil, A.; Cooper, J.; Betteridge, J.; Capps, N.; McDowell, I.; Durrington, P.; Seed, M.; Humphries, S.E. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: A prospective registry study. Eur. Heart J. 2008, 29, 2625–2633. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.P.; Malloy, M.J.; Ports, T.A.; Phillips, N.R.; Diehl, J.C.; Havel, R.J. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 1990, 264, 3007–3012. [Google Scholar] [CrossRef]
- Perez-Calahorra, S.; Laclaustra, M.; Marco-Benedí, V.; Lamiquiz-Moneo, I.; Pedro-Botet, J.; Plana, N.; Sanchez-Hernandez, R.M.; Amor, A.J.; Almagro, F.; Fuentes, F.; et al. Effect of lipid-lowering treatment in cardiovascular disease prevalence in familial hypercholesterolemia. Atherosclerosis 2019, 284, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoğlu, L.; Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef]
- Qu, H.; Meng, Y.Y.; Chai, H.; Liang, F.; Zhang, J.Y.; Gao, Z.Y.; Shi, D.Z. The effect of statin treatment on circulating coenzyme Q10 concentrations: An updated meta-analysis of randomized controlled trials. Eur. J. Med. Res. 2018, 23, 57. [Google Scholar] [CrossRef]
- Christopher-Stine, L. Statin myopathy: An update. Curr. Opin. Rheumatol. 2006, 18, 647–653. [Google Scholar] [CrossRef]
- Antons, K.A.; Williams, C.D.; Baker, S.K.; Phillips, P.S. Clinical perspectives of statin-induced rhabdomyolysis. Am. J. Med. 2006, 119, 400–409. [Google Scholar] [CrossRef]
- Päivä, H.; Thelen, K.M.; Van Coster, R.; Smet, J.; De Paepe, B.; Mattila, K.M.; Laakso, J.; Lehtimäki, T.; von Bergmann, K.; Lütjohann, D.; et al. High-dose statins and skeletal muscle metabolism in humans: A randomized, controlled trial. Clin. Pharmacol. Ther. 2005, 78, 60–68. [Google Scholar] [CrossRef]
- Bell, G.; Thoma, A.; Hargreaves, I.P.; Lightfoot, A.P. The Role of Mitochondria in Statin-Induced Myopathy. Drug Saf. 2024, 47, 643–653. [Google Scholar] [CrossRef]
- Fedacko, J.; Pella, D.; Fedackova, P.; Hänninen, O.; Tuomainen, P.; Jarcuska, P.; Lopuchovsky, T.; Jedlickova, L.; Merkovska, L.; Littarru, G.P. Coenzyme Q10 and selenium in statin-associated myopathy treatment. Can. J. Physiol. Pharmacol. 2013, 91, 165–170. [Google Scholar] [CrossRef]
- Skarlovnik, A.; Janić, M.; Lunder, M.; Turk, M.; Šabovič, M. Coenzyme Q10 supplementation decreases statin-related mild-to-moderate muscle symptoms: A randomized clinical study. Med. Sci. Monit. 2014, 20, 2183–2188. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Maffioli, P. Coenzyme q10 liquid supplementation in dyslipidemic subjects with statin-related clinical symptoms: A double-blind, randomized, placebo-controlled study. Drug Des. Dev. Ther. 2019, 13, 3647–3655. [Google Scholar] [CrossRef]
- Young, J.M.; Florkowski, C.M.; Molyneux, S.L.; McEwan, R.G.; Frampton, C.M.; George, P.M.; Scott, R.S. Effect of coenzyme Q10 supplementation on simvastatin-induced myalgia. Am. J. Cardiol. 2007, 100, 1400–1403. [Google Scholar] [CrossRef] [PubMed]
- Bookstaver, D.A.; Burkhalter, N.A.; Hatzigeorgiou, C. Effect of coenzyme Q10 supplementation on statin-induced myalgias. Am. J. Cardiol. 2012, 110, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.A.; Lorson, L.; White, C.M.; Thompson, P.D. A randomized trial of coenzyme Q10 in patients with confirmed statin myopathy. Atherosclerosis 2015, 238, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Köller, Y.; Surkova, E. Effect of Coenzyme Q10 on statin-associated myalgia and adherence to statin therapy: A systematic review and meta-analysis. Atherosclerosis 2020, 299, 1–8. [Google Scholar] [CrossRef]
- Wei, H.; Xin, X.; Zhang, J.; Xie, Q.; Naveed, M.; Kaiyan, C.; Xiao, P. Effects of coenzyme Q10 supplementation on statin-induced myopathy: A meta-analysis of randomized controlled trials. Ir. J. Med. Sci. 2022, 191, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Bhagavan, H.N.; Chopra, R.K. Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic. Res. 2006, 40, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.M.; Parrado, C.; Santos-Gonzalez, M.; Alcain, F.J. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin. Investig. Drugs 2010, 19, 535–554. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; de la Cruz-Ares, S.; Torres-Peña, J.D.; Alcalá-Diaz, J.F.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 and Cardiovascular Diseases. Antioxidants 2021, 10, 906. [Google Scholar] [CrossRef]
- Pravst, I.; Zmitek, K.; Zmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Podar, A.S.; Semeniuc, C.A.; Ionescu, S.R.; Socaciu, M.I.; Fogarasi, M.; Fărcaș, A.C.; Vodnar, D.C.; Socaci, S.A. An Overview of Analytical Methods for Quantitative Determination of Coenzyme Q10 in Foods. Metabolites 2023, 13, 272. [Google Scholar] [CrossRef]
- Weber, C.; Bysted, A.; Hølmer, G. Coenzyme Q10 in the diet—Daily intake and relative bioavailability. Mol. Asp. Med. 1997, 18 (Suppl. S1), 251–254. [Google Scholar] [CrossRef]
- Mattila, P.; Lehtonen, M.; Kumpulainen, J. Comparison of in-line connected diode array and electrochemical detectors in the high-performance liquid chromatographic analysis of coenzymes Q9 and Q10 in food materials. J. Agric. Food Chem. 2000, 48, 1229–1233. [Google Scholar] [CrossRef]
- Kubo, H.; Fujii, K.; Kawabe, T.; Matsumoto, S.; Kishida, H.; Hosoe, K. Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet. J. Food Compos. Anal. 2008, 21, 199–210. [Google Scholar] [CrossRef]
- Turkowicz, M.J.; Sleszynska, N.; Karpinska, J. Content of Coenzyme Q10 in Selected Food Products and in Daily Food Rations. Int. J. Sci. Res. 2015, 4, 109–111. [Google Scholar]
- Tiseo, B.C.; Gaskins, A.J.; Hauser, R.; Chavarro, J.E.; Tanrikut, C.; Team, E.S. Coenzyme Q10 Intake From Food and Semen Parameters in a Subfertile Population. Urology 2017, 102, 100–105. [Google Scholar] [CrossRef]
- Zhao, M.; Tian, Z.; Zhao, D.; Liang, Y.; Dai, S.; Xu, Y.; Hou, S.; Yang, Y. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: A national cross-sectional study. Food Funct. 2023, 14, 9815–9824. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Tian, Z.; Zhao, D.; Liang, Y.; Zhong, Z.; Xu, Y.; Hou, S.; Yang, Y. The Association between the Diversity of Coenzyme Q10 Intake from Dietary Sources and the Risk of New-Onset Hypertension: A Nationwide Cohort Study. Nutrients 2024, 16, 1017. [Google Scholar] [CrossRef] [PubMed]
- Lui, D.T.W.; Lee, A.C.H.; Tan, K.C.B. Management of Familial Hypercholesterolemia: Current Status and Future Perspectives. J. Endocr. Soc. 2021, 5, bvaa122. [Google Scholar] [CrossRef] [PubMed]
- WHO Human Genetics Programme. Familial Hypercholesterolaemia (FH): Report of a Second WHO Consultation; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Masana, L.; Civeira, F.; Pedro-Botet, J.; de Castro, I.; Pocoví, M.; Plana, N.; Mateo-Gallego, R.; Jarauta, E.; Pedragosa, À. Expert consensus on the detection and clinical management of familial hypercholesterolemia. Clin. Investig. Arterioscler. 2013, 25, 182–193. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Gibson, S.; Ashwell, M. A simple cut-off for waist-to-height ratio (0·5) can act as an indicator for cardiometabolic risk: Recent data from adults in the Health Survey for England. Br. J. Nutr. 2020, 123, 681–690. [Google Scholar] [CrossRef]
- Vázquez, C.; Alonso, R.; Garriga, M.; de Cos, A.; de la Cruz, J.J.; Fuentes-Jiménez, F.; Salas-Salvadó, J.; Mata, P. Validation of a food frequency questionnaire in Spanish patients with familial hypercholesterolaemia. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 836–842. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Giangrandi, I.; Colombini, B.; Toniolo, L.; Gensini, G.; Sofi, F. Adherence to the Mediterranean diet among Italian adults: Results from the web-based Medi-Lite questionnaire. Int. J. Food Sci. Nutr. 2021, 72, 271–279. [Google Scholar] [CrossRef]
- Lotti, S.; Napoletano, A.; Tristan Asensi, M.; Pagliai, G.; Giangrandi, I.; Colombini, B.; Dinu, M.; Sofi, F. Assessment of Mediterranean diet adherence and comparison with Italian dietary guidelines: A study of over 10,000 adults from 2019 to 2022. Int. J. Food Sci. Nutr. 2024, 75, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ochs-Balcom, H.M.; Ma, C.; Isackson, P.J.; Vladutiu, G.D.; Luzum, J.A. Coenzyme Q10 supplementation for the treatment of statin-associated muscle symptoms. Future Cardiol. 2022, 18, 461–470. [Google Scholar] [CrossRef]
- Strazisar, M.; Fir, M.; Golc-Wondra, A.; Milivojevic, L.; Prosek, M.; Abram, V. Quantitative determination of coenyzme Q10 by liquid chromatography and liquid chromatography/mass spectrometry in dairy products. J. AOAC Int. 2005, 88, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Manzi, P.; Durazzo, A. Rapid determination of coenzyme Q10 in cheese using high-performance liquid chromatography. Dairy Sci. Technol. 2015, 95, 533–539. [Google Scholar] [CrossRef]
- Li, D.; Deng, W.; Xu, H.; Sun, Y.; Wang, Y.; Chen, S.; Ding, X. Electrochemical Investigation of Coenzyme Q10 on Silver Electrode in Ethanol Aqueous Solution and Its Determination Using Differential Pulse Voltammetry. J. Lab. Autom. 2016, 21, 579–589. [Google Scholar] [CrossRef]
- Kettawan, A.; Kunthida, C.; Takahashi, T.; Kishi, T.; Chikazawa, J.; Sakata, Y.; Yano, E.; Watabe, K.; Yamamoto, Y.; Okamoto, T. The quality control assessment of commercially available coenzyme Q10-containing dietary and health supplements in Japan. J. Clin. Biochem. Nutr. 2007, 41, 124–131. [Google Scholar] [CrossRef]
- Purchas, R.W.; Rutherfurd, S.M.; Pearce, P.D.; Vather, R.; Wilkinson, B.H. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004, 66, 629–637. [Google Scholar] [CrossRef]
- Ercan, P.; El, S.N. Changes in content of coenzyme Q10 in beef muscle, beef liver and beef heart with cooking and in vitro digestion. J. Food Compos. Anal. 2011, 24, 1136–1140. [Google Scholar] [CrossRef]
- Tobin, B.D.; O’Sullivan, M.G.; Hamill, R.; Kerry, J.P. Effect of cooking and in vitro digestion on the stability of co-enzyme Q10 in processed meat products. Food Chem. 2014, 150, 187–192. [Google Scholar] [CrossRef]
- Niklowitz, P.; Döring, F.; Paulussen, M.; Menke, T. Determination of coenzyme Q10 tissue status via high-performance liquid chromatography with electrochemical detection in swine tissues (Sus scrofa domestica). Anal. Biochem. 2013, 437, 88–94. [Google Scholar] [CrossRef]
- Szkucik, K.; Pyz-Łukasik, R.; Wjcik, M.; Gondek, M. Ubiquinone Q10 and Protein Contents in Rabbit Meat in Relation to Primal Cut and Rearing System. Bull. Vet. Inst. Pulawy 2013, 57, 107–111. [Google Scholar]
- Román-Pizarro, V.; Fernández-Romero, J.M.; Gómez-Hens, A. Automatic determination of coenzyme Q10 in food using cresyl violet encapsulated into magnetoliposomes. Food Chem. 2017, 221, 864–870. [Google Scholar] [CrossRef]
- Marušić, N.; Aristoy, M.C.; Toldrá, F. Nutritional pork meat compounds as affected by ham dry-curing. Meat Sci. 2013, 93, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Passi, S.; Cataudella, S.; Di Marco, P.; De Simone, F.; Rastrelli, L. Fatty acid composition and antioxidant levels in muscle tissue of different Mediterranean marine species of fish and shellfish. J. Agric. Food Chem. 2002, 50, 7314–7322. [Google Scholar] [CrossRef] [PubMed]
- Souchet, N.; Laplante, S. Seasonal variation of Co-enzyme Q10 content in pelagic fish tissues from Eastern Quebec. J. Food Compos. Anal. 2007, 20, 403–410. [Google Scholar] [CrossRef]
- Borekova, M.; Hojerova, J.; Koprda, V.; Bauerova, K. Nourishing and health benefits of coenzyme Q10. Czech J. Food Sci. 2008, 26, 229–241. [Google Scholar] [CrossRef]
- Al-Faraji, M.S.; Shanshal, M. Determination of Ubiquinone,10 in Ten Different Sorts of Iraqi dates “Phoenix dactylefra” at Different Stages of Fruit Maturation. Jordan J. Chem. 2010, 5, 389–400. [Google Scholar]
- Aydoğan, C.; Beltekin, B.; Demir, N.; Yurt, B.; El Rassi, Z. Nano-Liquid Chromatography with a New Monolithic Column for the Analysis of Coenzyme Q10 in Pistachio Samples. Molecules 2023, 28, 1423. [Google Scholar] [CrossRef]
- Žmitek, K.; Rodríguez Aguilera, J.C.; Pravst, I. Factors Influencing the Contents of Coenzyme Q10 and Q9 in Olive Oils. J. Agric. Food Chem. 2014, 62, 3211–3216. [Google Scholar] [CrossRef]
- Cabrini, L.; Barzanti, V.; Cipollone, M.; Fiorentini, D.; Grossi, G.; Tolomelli, B.; Zambonin, L.; Landi, L. Antioxidants and total peroxyl radical-trapping ability of olive and seed oils. J. Agric. Food Chem. 2001, 49, 6026–6032. [Google Scholar] [CrossRef]
- Venegas, C.; Cabrera-Vique, C.; García-Corzo, L.; Escames, G.; Acuña-Castroviejo, D.; López, L.C. Determination of coenzyme Q10, coenzyme Q9, and melatonin contents in virgin argan oils: Comparison with other edible vegetable oils. J. Agric. Food Chem. 2011, 59, 12102–12108. [Google Scholar] [CrossRef]
- Rodríguez-Acuña, R.; Brenne, E.; Lacoste, F. Determination of coenzyme Q10 and Q9 in vegetable oils. J. Agric. Food Chem. 2008, 56, 6241–6245. [Google Scholar] [CrossRef]
- Kirkpatrick, S.I.; Baranowski, T.; Subar, A.F.; Tooze, J.A.; Frongillo, E.A. Best Practices for Conducting and Interpreting Studies to Validate Self-Report Dietary Assessment Methods. J. Acad. Nutr. Diet. 2019, 119, 1801–1816. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Schoeneck, M.; Iggman, D. The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef]
- Weber, C.; Bysted, A.; Hłlmer, G. The coenzyme Q10 content of the average Danish diet. Int. J. Vitam. Nutr. Res. 1997, 67, 123–129. [Google Scholar]
- Hargreaves, I.; Heaton, R.A.; Mantle, D. Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int. J. Mol. Sci. 2020, 21, 6695. [Google Scholar] [CrossRef] [PubMed]
- Caso, G.; Kelly, P.; McNurlan, M.A.; Lawson, W.E. Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. Am. J. Cardiol. 2007, 99, 1409–1412. [Google Scholar] [CrossRef]
- Mantle, D.; Dybring, A. Bioavailability of Coenzyme Q10: An overview of the Absorption Process and Subsequent Metabolism. Antioxidants 2020, 9, 386. [Google Scholar] [CrossRef]
- Saini, R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied Sci. 2011, 3, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Wander, G.S.; Rastogi, A.; Shukla, P.K.; Mittal, A.; Sharma, J.P.; Mehrotra, S.K.; Kapoor, R.; Chopra, R.K. Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovasc. Drugs Ther. 1998, 12, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Hosoe, K.; Yamaguchi, T.; Funahashi, I. Lower plasma coenzyme Q10 concentrations in healthy vegetarians and vegans compared with omnivores. Int. J. Nutraceuticals Funct. Foods Nov. Foods 2022, 1, 379–386. [Google Scholar] [CrossRef]
- Suzuki, T. Effect of a Two-Week Diet without Meat and Poultry on Serum Coenzyme Q10 Levels. Dietetics 2024, 3, 227–234. [Google Scholar] [CrossRef]
- Arroyo-Olivares, R.; Alonso, R.; Quintana-Navarro, G.; Fuentes-Jiménez, F.; Mata, N.; Muñiz-Grijalvo, O.; Díaz-Díaz, J.L.; Zambón, D.; Arrieta, F.; García-Cruces, J.; et al. Adults with familial hypercholesterolaemia have healthier dietary and lifestyle habits compared with their non-affected relatives: The SAFEHEART study. Public Health Nutr. 2019, 22, 1433–1443. [Google Scholar] [CrossRef]
- Aumueller, N.; Boushey, C.J.; Franke, A.A.; Cooney, R.V.; Monroe, K.R.; Haiman, C.A.; Wilkens, L.R.; Kolonel, L.N.; Le Marchand, L.; Maskarinec, G. Diet quality measured by four a priori-defined diet quality indices is associated with lipid-soluble micronutrients in the Multiethnic Cohort Study (MEC). Eur. J. Clin. Nutr. 2019, 73, 703–713. [Google Scholar] [CrossRef]
| Family History | Points |
|---|---|
| First-degree relative with known premature (<55 years, men; <60 years, women) coronary heart disease (CHD) OR | 1 |
| First-degree relative with known LDL-C >95th percentile by age and gender for country | 1 |
| First-degree relative with tendon xanthoma and/or corneal arcus OR | 2 |
| Child(ren) <18 years with LDL-C >95th percentile by age and gender for country | 2 |
| Clinical history | |
| Subject has premature (<55 years, men; <60 years, women) CHD | 2 |
| Subject has premature (<55 years, men; <60 years, women) cerebral or peripheral vascular disease | 1 |
| Physical examination | |
| Tendon xanthoma | 6 |
| Corneal arcus in a person <45 years | 4 |
| Biochemical results (LDL cholesterol) | |
| >8.5 mmol/L (>325 mg/dL) | 8 |
| 6.5–8.4 mmol/L (251–325 mg/dL) | 5 |
| 5.0–6.4 mmol/L (191–250 mg/dL) | 3 |
| 4.0–4.9 mmol/L (155–190 mg/dL) | 1 |
| Molecular genetic testing (DNA analysis) | |
| Causative mutation shown in the LDLR, APOB, or PCSK9 genes | 8 |
| Diagnosis (based on the total number of points obtained) | |
| |
| Total 261 (100) | Male 115 (44.1) | Female 146 (55.9) | |
|---|---|---|---|
| Age (years) | 52.6 ± 16.0 | 53.0 ± 14.3 | 52.2 ± 17.3 |
| Ethnicity | |||
| Caucasian | 260 (99.6) | 115 (100) | 145 (99.3) |
| Other | 1 (0.4) | 0 (0.0) | 1 (0.7) |
| LDL-c máx (mg/dL) | 218.9 ± 56.1 | 218.4 ± 61.7 | 219.2 ± 51.5 |
| Highest LDL-c máx (mg/dL) | 415.1 | 403.6 | 415.1 |
| Cardiovascular accident | |||
| Yes | 21 (8.0) | 13 (11.3) | 7 (4.8) |
| No | 240 (92.0) | 102 (88.7) | 139 (95.2) |
| Age of first cardiovascular event (years) (age range) | 50.6 ± 11.8 (25–78) | 49.8 ± 9.4 (33–72) | 52.1 ± 16.1 (25–78) |
| Total 122 (100) | Male 59 (48.4) | Female 63 (51.6) | |
|---|---|---|---|
| Lpa (mg/dL) | 52.1 [14.6–110.3] | 60.7 [7.7–108.0] | 49.2 [20.4–111.0] |
| Total 196 (100) | Male 93 (47.4) | Female 103 (52.6) | |
|---|---|---|---|
| Statin treatment | 182 (92.9) | 85 (91.4) | 97 (94.5) |
| Monotherapy with statins | 64 (32.7) | 25 (26.9) | 39 (37.9) |
| Statins + ezetimibe | 111 (56.6) | 57 (61.3) | 54 (52.4) |
| Statins + fibrates | 3 (1.5) | 2 (2.2) | 1 (1.0) |
| Statins + ezetimibe + fibrates | 4 (2.0) | 1 (1.1) | 3 (2.9) |
| Other treatments | |||
| Monotherapy with ezetimibe | 13 (6.6) | 8 (8.6) | 5 (4.9) |
| Monotherapy with fibrates | 1 (0.5) | 0 (0.0) | 1 (1.1) |
| Years on statin treatment | 3.7 ± 2.8 | 4.0 ± 2.9 | 3.4 ± 2.8 |
| Type of Statin | Total 182 (100) | Male 85 (100) | Female 97 (100) |
|---|---|---|---|
| Rosuvastatin | 102 (56.0) | 49 (57.6) | 53 (54.6) |
| Atorvastatin | 51 (28.0) | 21 (24.7) | 30 (30.9) |
| Simvastatin | 16 (8.8) | 7 (8.2) | 9 (9.3) |
| Pitavastatin | 7 (3.8) | 3 (3.5) | 4 (4.1) |
| Pravastatin | 3 (1.6) | 2 (2.4) | 1 (1.0) |
| Fluvastatin | 3 (1.6) | 1 (1.2) | 2 (2.1) |
| Type of Statin | Total 40 (100) | Male 17 (42.5) | Female 23 (57.5) |
|---|---|---|---|
| Rosuvastatin | 11 (27.5) | 3 (27.3) | 8 (72.7) |
| Atorvastatin | 12 (30.0) | 5 (41.7) | 7 (58.3) |
| Simvastatin | 4 (10.0) | 1 (25.0) | 3 (75.0) |
| Pitavastatin | 7 (17.5) | 5 (71.4) | 2 (28.6) |
| Pravastatin | 0 (0.0) | - | - |
| Fluvastatin | 1 (2.5) | 1 (100.0) | 0 (0.0) |
| Intolerance to multiple statins | 5 (12.5) | 2 (40.0) | 3 (60.0) |
| Total 12 (100) | Male 4 (33.3) | Female 8 (66.7) | |
|---|---|---|---|
| Age (years) | 52.8 ± 11.5 | 52.3 ± 16.2 | 53.0 ± 9.7 |
| Ethnicity | |||
| Caucasian | 12 (100) | 4 (100) | 8 (100) |
| LDL-c máx (mg/dL) | 221.0 ± 30.3 | 219.2 ± 26.4 | 221.9 ± 33.8 |
| Highest LDL-c máx (mg/dL) | 285.2 | 247.0 | 285.2 |
| SAMS | 11 (100.0) | 4 (100.0) | 7 (100.0) |
| Yes | 1 (9.1) | 0 (0.0) | 1 (14.3) |
| No | 10 (90.9) | 4 (100.0) | 6 (85.7) |
| Cardiovascular accident | |||
| Yes | 1 (8.3) | 1 (25.0) | 0 (0) |
| No | 11 (91.7) | 4 (75.0) | 8 (100) |
| Age of first cardiovascular event (years) | 61 | 61 | - |
| Total 11 (100.0) | Male 4 (36.4) | Female 7 (63.6) | |
|---|---|---|---|
| Statin treatment | 10 (90.9) | 4 (100.0) | 6 (85.7) |
| Monotherapy with statins | 2 (18.2) | 0 (0.0) | 2 (28.6) |
| Statins + ezetimibe | 8 (72.7) | 4 (100.0) | 4 (57.1) |
| Other treatments | |||
| Monotherapy with ezetimibe | 1 (9.1) | 0 (0.0) | 1 (14.3) |
| Years on statin treatment | 5.0 ± 2.9 | 4.0 ± 2.6 | 5.0 ± 3.3 |
| Type of Statin | Total 10 (100) | Male 4 (40) | Female 97 (60) |
|---|---|---|---|
| Rosuvastatin | 5 (50.0) | 2 (50.0) | 3 (50.0) |
| Atorvastatin | 2 (20.0) | 1 (25.0) | 2 (33.3) |
| Simvastatin | 3 (30.0) | 1 (25.0) | 1 (16.7) |
| Total 12 (100) | Male 4 (33.3) | Female 8 (66.7) | |
|---|---|---|---|
| Glucose (mg/dL) | 97.3 ± 23.0 | 88.3 ± 12.2 | 101.9 ± 26.4 |
| Urea (mg/dL) | 31.8 ± 10.5 | 37.0 ± 5.8 | 29.1 ± 11.6 |
| Creatinine (mg/dL) | 0.82 ± 0.22 | 1.05 ± 0.07 | 0.70 ± 0.15 |
| Total proteins (g/dL) | 7.2 ± 0.5 | 111.5 ± 66.6 | 80.8 ± 18.3 |
| Albumin (g/dL) | 4.4 ± 0.3 | 4.7 ± 0.2 | 4.3 ± 0.2 |
| Total bilirubin (mg/dL) | 0.67 ± 0.35 | 0.92 ± 0.47 | 0.55 ± 0.21 |
| Sodium | 139.8 ± 1.2 | 140.3 ± 1.0 | 139.5 ± 1.3 |
| Potassium | 4.45 ± 0.38 | 4.55 ± 0.53 | 4.40 ± 0.32 |
| Chloride | 104.8 ± 1.6 | 103.5 ± 1.3 | 105.4 ± 1.4 |
| ALT (UI/L) | 25.2 ± 10.2 | 32.8 ± 12.7 | 21.4 ± 6.6 |
| AST (UI/L) | 29.3 ± 6.4 | 33.0 ± 5.4 | 27.5 ± 6.4 |
| ALP (UI/L) | 74.3 ± 18.7 | 71.8 ± 20.8 | 75.6 ± 18.8 |
| GGT (UI/L) | 38.7 ± 48.8 | 72.8 ± 79.1 | 21.6 ± 7.7 |
| LDH (UI/L) | 184.5 ± 33.9 | 188.0 ± 21.2 | 182.8 ± 40.1 |
| CPK (UI/L) | 116.8 ± 96.5 | 119.8 ± 35.7 | 115.4 ± 118.6 |
| Total cholesterol (mg/dL) | 194.5 ± 42.5 | 162.1 ± 37.2 | 210.8 ± 36.7 |
| HDL-C (mg/dL) | 76.7 ± 15.5 | 68.8 ± 3.9 | 80.6 ± 17.8 |
| LDL-C (mg/dL) | 102.9 ± 33.9 | 75.2 ± 16.8 | 116.7 ± 32.2 |
| Triglycerides (TG) (mg/dL) | 91.0 ± 40.6 | 111.5 ± 66.6 | 80.8 ± 18.3 |
| TC/HDL-C | 2.6 ± 0.6 | 2.3 ± 0.4 | 2.7 ± 0.7 |
| Non-HDL-C (mg/dL) | 117.9 ± 39.2 | 93.3 ± 33.7 | 130.1 ± 37.6 |
| Total 12 (100) | Male 4 (33.3) | Female 8 (66.7) | |
|---|---|---|---|
| Height (cm) | 165 ± 8 | 170 ± 7 | 162 ± 7 |
| Weight (kg) | 67.4 ± 15.7 | 75.9 ± 11.2 | 63.2 ± 16.5 |
| BMI (kg/m2) | 24.6 ± 4.2 | 26.3 ± 2.9 | 23.8 ± 4.7 |
| Underweight | 1 (8.3) | 0 (0) | 1 (12.5) |
| Normal | 5 (41.7) | 2 (50) | 3 (37.5) |
| Overweight | 4 (33.3) | 1 (25) | 3 (37.5) |
| Obese | 2 (16.7) | 1 (25) | 1 (12.5) |
| Waist circumference (cm) | 85.0 ± 13.4 | 93.5 ± 12.0 | 80.8 ± 12.6 |
| Healthy | 7 (58.3) | 2 (50) | 5 (62.5) |
| No weight gain | 2 (16.7) | 1 (25) | 1 (12.5) |
| Weight reduction | 3 (25) | 1 (25) | 2 (25) |
| Waist-to-Height Ratio | 0.52 ± 0.07 | 0.55 ± 0.07 | 0.50 ± 0.07 |
| Healthy | 7 (58.3) | 2 (50) | 5 (62.5) |
| Central obesity | 5 (41.7) | 2 (50) | 3 (37.5) |
| % Fat Mass (BIA) | 27.6 ± 8.3 | 23.7 ± 4.5 | 29.5 ± 9.3 |
| Low | 3 (25) | 0 (0) | 3 (37.5) |
| Healthy | 4 (33.3) | 2 (50) | 2 (25) |
| High | 4 (33.3) | 2 (50) | 2 (25) |
| Obesity | 1 (8.3) | 0 (0) | 1 (125) |
| % Muscular Mass (BIA) | 65.7 ± 12.4 | 63.3 ± 19.1 | 66.9 ± 8.8 |
| Foods | mg CoQ10/kg * | Class by mg/kg | Serving Size (g) | mg CoQ10 per Serving | Class by mg/Serving | References |
|---|---|---|---|---|---|---|
| Dairy Products | ||||||
| Whole milk (UHT 3.5% fat) | 1.70 | D | 200 | 0.340 | IV | [46] |
| Semi-skimmed milk (UHT 1.6% fat) | 1.16 | D | 200 | 0.232 | IV | [46] |
| Skimmed milk (UHT 0.5% fat) | 0.46 | E | 200 | 0.092 | V | [46] |
| Milk cream (35% fat) | 0.92 | E | 100 | 0.092 | V | [46] |
| Yogurt (3.2% fat, natural/with fruits) | 0.93 (0.72–1.13) | E | 125 | 0.116 | V | [46] |
| Yogurt (0.0% fat) | 0.08 | E | 125 | 0.010 | V | [46] |
| Cottage cheese or curd | 0.62 | E | 100 | 0.062 | V | [46] |
| Cream cheese | 0.29 | E | 25 | 0.007 | V | [28] |
| Cured or semi-cured cheese: Edam, Manchego, Emmental, Provolone, … | 1.37 (1.20–1.58) | D | 50 | 0.068 | V | [29,30,47] |
| Eggs | ||||||
| Eggs | 1.43 (0.73–2.30) | D | 60 | 0.086 | V | [28,29,30] |
| Meat | ||||||
| Chicken/turkey with/without skin | 16.86 (11.44–25.00) | B | 150 | 2.529 | II | [28,29,30,48,49] |
| Beef | 34.68 (23.47–48.78) | B | 150 | 5.202 | I | [28,29,30,49,50,51,52] |
| Pork | 23.07 (13.08–45.00) | B | 150 | 3.461 | I | [28,29,30,48,49,52,53] |
| Lamb | 24.80 (18.70–30.50) | B | 150 | 3.720 | I | [50] |
| Rabbit | 103.00 (95.20–110.80) | A | 150 | 15.450 | I | [54] |
| Liver (chicken, beef, pork) | 48.02 (21.63–116.2) | B | 100 | 4.802 | I | [29,30,48,49,50,51,53,55] |
| Other offal: heart (chicken, beef, pork) | 130.63 (60.50–192.00) | A | 100 | 13.063 | I | [29,30,49,50,51,53] |
| Dry-cured ham | 10.10 | B | 30 | 0.303 | IV | [56] |
| Boiled ham | 7.40 | C | 30 | 0.222 | IV | [28] |
| Fish | ||||||
| Lean fish: Flatfish, hake, cod, brill, red mullet, … | 2.56 (1.80–3.70) | D | 150 | 0.384 | IV | [30,57] |
| Oily fish: Rainbow trout, mackerel, tuna, salmon, herring, sardine, … | 10.73 (3.64–30.20) | B | 150 | 1.394 | II | [28,29,30,48,49,57,58] |
| Oysters, clams, mussels, … | 5.75 (3.42–9.52) | C | 60 | 0.345 | IV | [30,57] |
| Octopus, squid, cuttlefish, … | 4.00 (0.37–8.24) | D | 200 | 0.801 | III | [30,49,57] |
| Shrimps, prawns, crayfish, … | 1.66 | D | 200 | 0.332 | IV | [30] |
| Fish and shellfish, canned in oil (sardines, anchovies, bonito, tuna) | 15.4 (14.9–15.9) | B | 50 | 0.770 | III | [29,30] |
| Vegetables | ||||||
| Chard, spinach | 10.00 (6.99–13.00) | C | 200 | 1.999 | II | [48,55] |
| Cabbage, cauliflower, broccoli | 5.45 (2.70–10.93) | C | 200 | 1.089 | II | [28,29,30,48,49] |
| Tomato | 1.65 (0.90–2.41) | D | 150 | 0.248 | IV | [29,48] |
| Carrot, pumpkin | 2.97 (1.70–4.23) | D | 200 | 0.297 | IV | [29,48] |
| Beans | 1.80 | D | 200 | 0.360 | IV | [29] |
| Eggplants, zucchini, cucumbers | 1.10 (0.08–2.20) | D | 200 | 0.219 | IV | [30,49] |
| Asparagus | 2.16 | D | 200 | 0.432 | IV | [30] |
| Onion | 0.87 (0.67–1.07) | E | 50 | 0.044 | V | [30] |
| Garlic | 3.45 | D | 2 | 0.007 | V | [30] |
| French fries | 0.69 (0.5–1.05) | E | 150 | 0.104 | V | [28,29,30] |
| Cooked and roast potatoes | 0.69 (0.5–1.05) | E | 200 | 0.138 | V | [28,29,30] |
| Fruits and Nuts | ||||||
| Orange, grapefruit, or clementine | 1.74 (0.90–3.60) | D | 150 | 0.261 | IV | [28,29,30,48] |
| Banana | 0,82 | E | 100 | 0.082 | V | [30] |
| Apple, pear | 1.20 (1.10–1.30) | D | 150 | 0.181 | V | [28,29,30] |
| Strawberries | 0.96 (0.51–1.40) | D | 60 | 0.057 | V | [29,30] |
| Cherries, cherry blossoms, plums | 13.34 | B | 150 | 2.000 | II | [48] |
| Peach, apricot, nectarine | 4.34 | D | 150 | 0.651 | III | [48] |
| Kiwi | 2.35 | D | 100 | 0.235 | [48] | |
| Grapes | 4.56 (1.48–9.02) | D | 150 | 0.683 | III | [59] |
| Dates, dried figs, raisins, prunes | 21.06 (8.32–67.43) | B | 50 | 1.053 | II | [60] |
| Almonds, peanuts, hazelnuts, pistachios, pine nuts | 17.40 (4.99–26.19) | B | 30 | 0.522 | III | [30,48,55,61] |
| Vegetable Oils | ||||||
| Olive oil | 54.00 | A | 10 | 0.540 | III | [62] |
| Virgin olive oil | 76.58 (52.00–114.10) | A | 10 | 0.766 | III | [62,63,64] |
| Corn oil | 139.10 | A | 10 | 1.391 | II | [63] |
| Sunflower oil | 12.20 (8.70–15.70) | B | 10 | 0.122 | V | [65] |
| Soy oil | 188.45 (97.60–279.30) | A | 10 | 1.885 | II | [63,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanclemente, T.; Carazo, A.; Silvestre-Muñoz, T.; Montoya, J.; Ruiz-Pesini, E.; Puzo, J.; Pacheu-Grau, D. Assessment of CoQ10 Dietary Intake in a Mediterranean Cohort of Familial Hypercholesterolemia Patients: A Pilot Study. Nutrients 2025, 17, 3512. https://doi.org/10.3390/nu17223512
Sanclemente T, Carazo A, Silvestre-Muñoz T, Montoya J, Ruiz-Pesini E, Puzo J, Pacheu-Grau D. Assessment of CoQ10 Dietary Intake in a Mediterranean Cohort of Familial Hypercholesterolemia Patients: A Pilot Study. Nutrients. 2025; 17(22):3512. https://doi.org/10.3390/nu17223512
Chicago/Turabian StyleSanclemente, Teresa, Alicia Carazo, Tania Silvestre-Muñoz, Julio Montoya, Eduardo Ruiz-Pesini, José Puzo, and David Pacheu-Grau. 2025. "Assessment of CoQ10 Dietary Intake in a Mediterranean Cohort of Familial Hypercholesterolemia Patients: A Pilot Study" Nutrients 17, no. 22: 3512. https://doi.org/10.3390/nu17223512
APA StyleSanclemente, T., Carazo, A., Silvestre-Muñoz, T., Montoya, J., Ruiz-Pesini, E., Puzo, J., & Pacheu-Grau, D. (2025). Assessment of CoQ10 Dietary Intake in a Mediterranean Cohort of Familial Hypercholesterolemia Patients: A Pilot Study. Nutrients, 17(22), 3512. https://doi.org/10.3390/nu17223512

