Effects of Mulberry Leaf and Corn Silk Extracts Against α-Amylase and α-Glucosidase In Vitro and on Postprandial Glucose in Prediabetic Individuals: A Randomized Crossover Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Experiments
2.1.1. Chemicals and Reagents
2.1.2. α-Amylase Inhibitory Assay
2.1.3. α-Glucosidase Inhibitory Assay
2.1.4. Inhibitory Effect of Mulberry Leaf and Corn Silk Combinations on the Two Enzymes
2.2. In Vivo Experiments
2.2.1. Research Design
2.2.2. Participant Eligibility Criteria
2.2.3. Interventions
2.2.4. Measurement
2.2.5. Sample Size Calculation
2.3. Statistical Analysis
3. Results
3.1. Inhibitory Activity of Mulberry Leaf Extracts on α-Amylase and α-Glucosidase
3.2. Inhibitory Activity of Corn Silk Extracts on α-Amylase and α-Glucosidase
3.3. Inhibitory Effects of Mulberry Leaf and Corn Silk Extracts Combination on α-Amylase and α-Glucosidase
3.4. Impact of Milk Supplemented with Mulberry Leaf, Corn Silk Extracts, and Resistant Dextrin on Postprandial Glucose
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Ehlert, B.; Metwally, A.A.; Perelman, D.; Park, H.; Brooks, A.W.; Abbasi, F.; Michael, B.; Celli, A.; Bejikian, C.; et al. Individual Variations in Glycemic Responses to Carbohydrates and Underlying Metabolic Physiology. Nat. Med. 2025, 31, 2232–2243. [Google Scholar] [CrossRef]
- Rooney, M.R.; Fang, M.; Ogurtsova, K.; Ozkan, B.; Echouffo-Tcheugui, J.B.; Boyko, E.J.; Magliano, D.J.; Selvin, E. Global Prevalence of Prediabetes. Diabetes Care 2023, 46, 1388–1394. [Google Scholar] [CrossRef]
- WenJun, T.; Yimeng, X.; Ding, N. The Prevalence and Treatment of Diabetes in China From 2013 to 2018. JAMA 2022, 327, 1706. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, C.; Liu, F.; Hu, T.; Shen, W.; Li, E.; Liao, S.; Zou, Y. Mulberry Leaf Polyphenols Attenuated Postprandial Glucose Absorption via Inhibition of Disaccharidases Activity and Glucose Transport in Caco-2 Cells. Food Funct. 2020, 11, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Tolmie, M.; Bester, M.J.; Apostolides, Z. Inhibition of A-glucosidase and A-amylase by Herbal Compounds for the Treatment of Type 2 Diabetes: A Validation of In Silico Reverse Docking with In Vitro Enzyme Assays. J. Diabetes 2021, 13, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Tshiyoyo, K.S.; Rabbad, A.; Yusuf, A.A.; Malgas, S. Combination of Citrus Peel-Derived Essential Oils with Acarbose to Inhibit Amylolytic Enzymes—A Potential Type II Diabetes Treatment Approach. Int. J. Biol. Macromol. 2025, 306, 141504. [Google Scholar] [CrossRef]
- Chanida, H.; Jun, K. Alpha-glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 2006, 77, 568–573. [Google Scholar]
- Wood, I.S.; Trayhurn, P. Glucose Transporters (GLUT and SGLT): Expanded Families of Sugar Transport Proteins. Br. J. Nutr. 2003, 89, 3–9. [Google Scholar] [CrossRef]
- Peng, T.; Jiang, D.; Chen, Y.; Wang, Y.; Lai, F.; Chen, Z.; Huang, L. Optimization of Decolorization Process of Mulberry Leaf Extract by Response Surface Methodology and Its Inhibitory Activity on α-Glucosidase. Food Ferment. Sci. Technol. 2024, 60, 62–69. [Google Scholar]
- Wang, Z.; Zhang, L.; Wang, M.; Ding, Z.; Ren, D.; Duan, S. Discovery of Vitexin as a Novel α-Glucosidase Inhibitors in Mulberry (Morus alba L.) by Untargeted Metabolomics Combined with Molecular Docking: A Comprehensive Study from Mechanism to Synergy Effects. eFood 2024, 5, e144. [Google Scholar] [CrossRef]
- He, Z.; Wu, X.; Xiang, Z.; Bai, G.; Wang, Y.; Li, S.; Du, Z.; Dai, X. Research Progress on Bioactive Components, Efficacy and Extraction Methods of Maize Silk. J. North. Agric. 2023, 51, 96–104. [Google Scholar]
- Wang, K.-J.; Zhao, J.-L. Corn Silk (Zea mays L.), a Source of Natural Antioxidants with α-Amylase, α-Glucosidase, Advanced Glycation and Diabetic Nephropathy Inhibitory Activities. Biomed. Pharmacother. 2019, 110, 510–517. [Google Scholar] [CrossRef]
- Landeros-Martínez, L.-L.; Campos-Almazán, M.I.; Sánchez-Bojorge, N.-A.; Flores, R.; Palomares-Báez, J.P.; Rodríguez-Valdez, L.M. Theoretical Studies for the Discovery of Potential Sucrase-Isomaltase Inhibitors from Maize Silk Phytochemicals: An Approach to Treatment of Type 2 Diabetes. Molecules 2023, 28, 6778. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, S.; Body, J.-J.; Bruyère, O.; Bergmann, P.; Brandi, M.L.; Cooper, C.; Devogelaer, J.-P.; Gielen, E.; Goemaere, S.; Kaufman, J.-M.; et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs—A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2016, 98, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bi, M.; Liu, Y.; Wang, J.; Li, S.; Mao, X.; Zhou, Z.; Xing, H.; Yan, Q.; Zhao, W.; Zhang, F.; et al. Research Report on the High-quality Development Strategy of China’s Dairy Industry. China Dairy Cattle. 2023, 11, 1–15. [Google Scholar]
- Zhang, F.; Debras, C.; Matta, J.; Wang, D. Consumption of a milk low in lactose high in intrinsic fiber is associated with improved nutrient intake adequacies in Chinese adults: A diet modelling study. Proc. Nutr. Soc. 2024, 83, E375. [Google Scholar] [CrossRef]
- Schulz, P.; Rizvi, S.S.H. Hydrolysis of Lactose in Milk: Current Status and Future Products. Food Rev. Int. 2023, 39, 2875–2894. [Google Scholar] [CrossRef]
- Sharp, E.; D’Cunha, N.M.; Ranadheera, C.S.; Vasiljevic, T.; Panagiotakos, D.B.; Naumovski, N. Effects of Lactose-Free and Low-Lactose Dairy on Symptoms of Gastrointestinal Health: A Systematic Review. Int. Dairy J. 2021, 114, 104936. [Google Scholar] [CrossRef]
- Liburdi, K.; Esti, M. Galacto-Oligosaccharide (GOS) Synthesis during Enzymatic Lactose-Free Milk Production: State of the Art and Emerging Opportunities. Beverages 2022, 8, 21. [Google Scholar] [CrossRef]
- Dehghan, H.; Salehi, P.; Amiri, M.S. Bioassay-Guided Purification of α-Amylase, α-Glucosidase Inhibitors and DPPH Radical Scavengers from Roots of Rheum turkestanicum. Ind. Crops Prod. 2018, 117, 303–309. [Google Scholar] [CrossRef]
- Akkarachiyasit, S.; Yibchok-Anun, S.; Wacharasindhu, S.; Adisakwattana, S. In Vitro Inhibitory Effects of Cyandin-3-rutinoside on Pancreatic α-Amylase and Its Combined Effect with Acarbose. Molecules 2011, 16, 2075–2083. [Google Scholar] [CrossRef]
- Tao, Q.; Li, J.; Cao, W.; Chen, N. Inhibitory Mechanism and Stability of Peptide Tyr-Pro-Ile-Trp (YPIW) on α-Glucosidase. Food Sci. 2025, 46, 43–50. [Google Scholar]
- Zheng, Y.; Tian, J.; Yang, W.; Chen, S.; Liu, D.; Fang, H.; Zhang, H.; Ye, X. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chem. 2020, 317, 126346. [Google Scholar] [CrossRef]
- Chou, T.-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Verboven, K.; Van Ryckeghem, L.; Schweiggert, R.; B-Steingass, C.; Gojevic, T.; H-S Ruxton, C.; Hansen, D. Acute glycaemic response of orange juice consumption with breakfast in individuals with type 2 diabetes: A randomized cross-over trial. Nutr. Diabetes 2025, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Suarez, F.L.; Savaiano, D.A.; Levitt, M.D. A Comparison of Symptoms after the Consumption of Milk or Lactose-Hydrolyzed Milk by People with Self-Reported Severe Lactose Intolerance. N. Engl. J. Med. 1995, 333, 1–4. [Google Scholar] [CrossRef]
- Zhu, D.; Chinese Diabetes Society. Guideline for the Prevention and Treatment of Type 2 Diabetes Mellitus in China (2020 Edition) (Part 1). Chin. J. Pract. Intern. Med. 2021, 41, 668–6925. [Google Scholar]
- American Diabetes Association Professional Practice Committee. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47 (Suppl. 1), S20–S42. [Google Scholar] [CrossRef]
- WS/T 428-2013; Determination of Adult Body Weight. China Standards Press: Beijing, China, 2013.
- Åberg, S.; Mann, J.; Neumann, S.; Ross, A.B.; Reynolds, A.N. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes Care 2020, 43, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zheng, D.; Zhang, X.; Du, B.; Sun, Q. Analysis of Chemical Composition and Biological Activity of Mulberry Leaf Polysaccharides in Cold Regions. Food Sci. 2024, 45, 59–66. [Google Scholar]
- Gong, C.; Li, Y.; Lian, Y.; Zheng, C.; Sun, C.; Wang, T. Study on Isolation, Purification, Structural Characterization and Hypoglycemic Activity of Maize Silk Polysaccharides. Food Ferment. Ind. 2025; 1–13. [Google Scholar] [CrossRef]
- Tracey, M.; Gregory, M.; Fahim, A.; Cindy, L.; Gerald, R. Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metab. Clin. Exp. 2004, 53, 495–499. [Google Scholar]
- Augustynowicz, G.; Lasocka, M.; Paweł Szyller, H.; Dziedziak, M.; Mytych, A.; Braksator, J.; Pytrus, T. The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review. J. Clin. Med. 2025, 14, 4933. [Google Scholar] [CrossRef] [PubMed]
- Lange, O.; Proczko-Stepaniak, M.; Mika, A. Short-Chain Fatty Acids-A Product of the Microbiome and Its Participation in Two-Way Communication on the Microbiome-Host Mammal Line. Curr. Obes. Rep. 2023, 12, 108–126. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Wang, J.; Kang, T.; Xu, F.; Ma, A. Effects of Resistant Starch on Glycaemic Control: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 1260–1269. [Google Scholar] [CrossRef]



| Experimental Grouping | Mulberry Leaf (mg/mL):Corn Silk (mg/mL) | α-Amylase | Mulberry Leaf (mg/mL):Corn Silk (mg/mL) | α-Glucosidase | ||
|---|---|---|---|---|---|---|
| Inhibition Rate (%) | CI | Inhibition Rate (%) | CI | |||
| 1 | 0.38:0.27 | 49.7 | 0.601 | 0.29:0.87 | 54.1 | 0.641 |
| 2 | 0.38:1.06 | 57.6 | 0.848 | 0.29:2.61 | 65.4 | 0.778 |
| 3 | 0.38:5.88 | 83.1 | 0.850 | 0.29:7.83 | 85.2 | 0.623 |
| 4 | 1.13:0.27 | 60.1 | 0.539 | 0.71:0.87 | 66.1 | 0.757 |
| 5 | 1.13:1.06 | 76.0 | 0.254 | 0.71:2.61 | 72.3 | 0.844 |
| 6 | 1.13:5.88 | 86.0 | 0.795 | 0.71:7.83 | 87.8 | 0.623 |
| 7 | 14.06:0.27 | 84.8 | 0.277 | 1.72:0.87 | 83.1 | 0.740 |
| 8 | 14.06:1.06 | 89.4 | 0.222 | 1.72:2.61 | 85 | 0.773 |
| 9 | 14.06:5.88 | 90.8 | 0.753 | 1.72:7.83 | 91.6 | 0.631 |
| Characteristics | All (n = 11) |
|---|---|
| Age (years, mean ± SD) | 54 ± 9 |
| Sex (%) | |
| Male | 1 (9.1) |
| Female | 10 (90.9) |
| Education level, N (%) | |
| Junior high school and below | 1 (9.1) |
| Senior high school and above | 10 (90.9) |
| BMI (kg/m2, mean ± SD) | 26.26 ± 4.61 |
| BMI group, N (%) | |
| Normal weight | 3 (27.3) |
| Overweight | 5 (45.4) |
| Obese | 3 (27.3) |
| Smoking status, N (%) | |
| Non-current smoker | 9 (81.8) |
| Current smoker | 1 (9.1) |
| Former smoker | 1 (9.1) |
| Drinking status (%) | |
| Current drinker | 1 (9.1) |
| Non-drinker | 10 (90.9) |
| FBG (mmol/L) | 5.47 ± 0.5 |
| Family history of diabetes (%) | |
| Yes | 6 (54.5) |
| No | 5 (45.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Niu, X.; Wang, Y.; Zhang, Q.; Liu, Y.; He, J.; Xu, L.; Wang, R.; Guo, J. Effects of Mulberry Leaf and Corn Silk Extracts Against α-Amylase and α-Glucosidase In Vitro and on Postprandial Glucose in Prediabetic Individuals: A Randomized Crossover Trial. Nutrients 2025, 17, 3438. https://doi.org/10.3390/nu17213438
Sun Y, Niu X, Wang Y, Zhang Q, Liu Y, He J, Xu L, Wang R, Guo J. Effects of Mulberry Leaf and Corn Silk Extracts Against α-Amylase and α-Glucosidase In Vitro and on Postprandial Glucose in Prediabetic Individuals: A Randomized Crossover Trial. Nutrients. 2025; 17(21):3438. https://doi.org/10.3390/nu17213438
Chicago/Turabian StyleSun, You, Xiaokang Niu, Yifan Wang, Qi Zhang, Yan Liu, Jingjing He, Lingling Xu, Ran Wang, and Jie Guo. 2025. "Effects of Mulberry Leaf and Corn Silk Extracts Against α-Amylase and α-Glucosidase In Vitro and on Postprandial Glucose in Prediabetic Individuals: A Randomized Crossover Trial" Nutrients 17, no. 21: 3438. https://doi.org/10.3390/nu17213438
APA StyleSun, Y., Niu, X., Wang, Y., Zhang, Q., Liu, Y., He, J., Xu, L., Wang, R., & Guo, J. (2025). Effects of Mulberry Leaf and Corn Silk Extracts Against α-Amylase and α-Glucosidase In Vitro and on Postprandial Glucose in Prediabetic Individuals: A Randomized Crossover Trial. Nutrients, 17(21), 3438. https://doi.org/10.3390/nu17213438

