Maternal and Infant Determinants of Zinc Status and Zinc’s Association with Anthropometry in 3-Month-Old Bangladeshi Infants †
Abstract
1. Introduction
2. Methods
2.1. Study Design, Population, and Field Procedures
2.2. Substudy Biospecimen Collection
2.3. Laboratory Analyses
2.4. Statistical Analysis
3. Results
3.1. Study Sample Characteristics
3.2. Distribution of Zinc Concentrations
3.3. Determinants of Infant Plasma Zinc
3.4. Relationship of Infant 3 Mo Anthropometry to Infant Zinc
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F.; Miller, L.V.; Hambidge, K.M. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatr. Int. Child. Health 2014, 34, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Berni Canani, R.; Di Chiara, M.; Pietravalle, A.; Aleandri, V.; Conte, F.; De Curtis, M. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate. Nutrients 2015, 7, 10427–10446. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Imdad, A.; Rogner, J.; Sherwani, R.N.; Sidhu, J.; Regan, A.; Haykal, M.R.; Tsistinas, O.; Smith, A.; Chan, X.H.S.; Mayo-Wilson, E.; et al. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years. Cochrane Database Syst. Rev. 2023, 3, Cd009384. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Raboy, V.; King, J.C. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr. Rev. 2018, 76, 793–804. [Google Scholar] [CrossRef]
- Akhtar, S. Zinc status in South Asian populations--an update. J. Health Popul. Nutr. 2013, 31, 139–149. [Google Scholar] [CrossRef]
- Ahmed, F.; Prendiville, N.; Narayan, A. Micronutrient deficiencies among children and women in Bangladesh: Progress and challenges. J. Nutr. Sci. 2016, 5, e46. [Google Scholar] [CrossRef]
- Institute of Public Health Nutrition; United Nations Children’s Fund (UNICEF); Global Alliance for Improved Nutrition; International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka (ICDDR,B). National Micronutrients Status Survey 2011–12: Final Report. 2013. [Google Scholar]
- Hotz, C.; Peerson, J.M.; Brown, K.H. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: Reanalysis of the second National Health and Nutrition Examination Survey data (1976-1980). Am. J. Clin. Nutr. 2003, 78, 756–764. [Google Scholar] [CrossRef]
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; Hotz, C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar]
- King, J.C. Determinants of maternal zinc status during pregnancy. Am. J. Clin. Nutr. 2000, 71, 1334S–1343S. [Google Scholar] [CrossRef]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef]
- McCormick, N.H.; Hennigar, S.R.; Kiselyov, K.; Kelleher, S.L. The biology of zinc transport in mammary epithelial cells: Implications for mammary gland development, lactation, and involution. J. Mammary Gland. Biol. Neoplasia 2014, 19, 59–71. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Human Milk. Adv. Nutr. 2018, 9, 278s–294s. [Google Scholar] [CrossRef]
- Eneroth, H.; El Arifeen, S.; Persson, L.A.; Kabir, I.; Lönnerdal, B.; Hossain, M.B.; Ekström, E.C. Duration of exclusive breast-feeding and infant iron and zinc status in rural Bangladesh. J. Nutr. 2009, 139, 1562–1567. [Google Scholar] [CrossRef]
- Osendarp, S.J.; Santosham, M.; Black, R.E.; Wahed, M.A.; van Raaij, J.M.; Fuchs, G.J. Effect of zinc supplementation between 1 and 6 mo of life on growth and morbidity of Bangladeshi infants in urban slums. Am. J. Clin. Nutr. 2002, 76, 1401–1408. [Google Scholar] [CrossRef]
- Elizabeth, K.E.; Krishnan, V.; Vijayakumar, T. Umbilical cord blood nutrients in low birth weight babies in relation to birth weight & gestational age. Indian. J. Med. Res. 2008, 128, 128–133. [Google Scholar]
- Jyotsna, S.; Amit, A.; Kumar, A. Study of serum zinc in low birth weight neonates and its relation with maternal zinc. J. Clin. Diagn. Res. 2015, 9, Sc01–Sc03. [Google Scholar] [CrossRef]
- West, K.P., Jr.; Shamim, A.A.; Mehra, S.; Labrique, A.B.; Ali, H.; Shaikh, S.; Klemm, R.D.; Wu, L.S.; Mitra, M.; Haque, R.; et al. Effect of maternal multiple micronutrient vs iron-folic acid supplementation on infant mortality and adverse birth outcomes in rural Bangladesh: The JiVitA-3 randomized trial. JAMA 2014, 312, 2649–2658. [Google Scholar] [CrossRef]
- Schulze, K.J.; Mehra, S.; Shaikh, S.; Ali, H.; Shamim, A.A.; Wu, L.S.; Mitra, M.; Arguello, M.A.; Kmush, B.; Sungpuag, P.; et al. Antenatal Multiple Micronutrient Supplementation Compared to Iron-Folic Acid Affects Micronutrient Status but Does Not Eliminate Deficiencies in a Randomized Controlled Trial Among Pregnant Women of Rural Bangladesh. J. Nutr. 2019, 149, 1260–1270. [Google Scholar] [CrossRef]
- Schulze, K.J.; Gernand, A.D.; Khan, A.Z.; Wu, L.S.; Mehra, S.; Shaikh, S.; Ali, H.; Shamim, A.A.; Sungpuag, P.; Udomkesmalee, E.; et al. Newborn micronutrient status biomarkers in a cluster-randomized trial of antenatal multiple micronutrient compared with iron folic acid supplementation in rural Bangladesh. Am. J. Clin. Nutr. 2020, 112, 1328–1337. [Google Scholar] [CrossRef]
- SRM 1598a; Inorganic Constituents in Animal Serum. National Institute of Standards and Technology (NIST); U.S. Department of Commerce: Gaithersburg, MD, USA, 2024.
- Nóbrega, J.A.; Santos, M.C.; de Sousa, R.A.; Cadore, S.; Barnes, R.M.; Tatro, M. Sample preparation in alkaline media. Spectrochim. Acta Part. B At. Spectrosc. 2006, 61, 465–495. [Google Scholar] [CrossRef]
- Lee, J.; Park, Y.-S.; Lee, H.-J.; Koo, Y.E. Microwave-assisted digestion method using diluted nitric acid and hydrogen peroxide for the determination of major and minor elements in milk samples by ICP-OES and ICP-MS. Food Chem. 2022, 373, 131483. [Google Scholar] [CrossRef]
- SRM 1954; Organic Contaminants in Fortified Human Milk. National Institute of Standards and Technology (NIST); U.S. Department of Commerce: Gaithersburg, MD, USA, 2025.
- SRM 1849a; Infant/Adult Nutritional Formula I (Milk-Based). National Institute of Standards and Technology (NIST); U.S. Department of Commerce: Gaithersburg, MD, USA, 2018.
- World Health Organization. WHO Child Growth Standards. Available online: https://www.who.int/tools/child-growth-standards (accessed on 28 August 2025).
- Islam, M.R.; Rahman, S.M.; Tarafder, C.; Rahman, M.M.; Rahman, A.; Ekström, E.-C. Exploring Rural Adolescents’ Dietary Diversity and Its Socioeconomic Correlates: A Cross-Sectional Study from Matlab, Bangladesh. Nutrients 2020, 12, 2230. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Huybregts, L.; Sanghvi, T.G.; Tran, L.M.; Frongillo, E.A.; Menon, P.; Ruel, M.T. Dietary Diversity Predicts the Adequacy of Micronutrient Intake in Pregnant Adolescent Girls and Women in Bangladesh, but Use of the 5-Group Cutoff Poorly Identifies Individuals with Inadequate Intake. J. Nutr. 2018, 148, 790–797. [Google Scholar] [CrossRef]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007, 28, S403–S429. [Google Scholar] [CrossRef]
- Lowe, N.M.; Medina, M.W.; Stammers, A.L.; Patel, S.; Souverein, O.W.; Dullemeijer, C.; Serra-Majem, L.; Nissensohn, M.; Hall Moran, V. The relationship between zinc intake and serum/plasma zinc concentration in adults: A systematic review and dose-response meta-analysis by the EURRECA Network. Br. J. Nutr. 2012, 108, 1962–1971. [Google Scholar] [CrossRef]
- Wieringa, F.T.; Dijkhuizen, M.A.; Fiorentino, M.; Laillou, A.; Berger, J. Determination of zinc status in humans: Which indicator should we use? Nutrients 2015, 7, 3252–3263. [Google Scholar] [CrossRef]
- Donangelo, C.M.; King, J.C. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation. Nutrients 2012, 4, 782–798. [Google Scholar] [CrossRef]
- Whittaker, P. Iron and zinc interactions in humans. Am. J. Clin. Nutr. 1998, 68, 442S–446S. [Google Scholar] [CrossRef]
- Hochepied, T.; Berger, F.G.; Baumann, H.; Libert, C. Alpha(1)-acid glycoprotein: An acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor. Rev. 2003, 14, 25–34. [Google Scholar] [CrossRef]
- McDonald, C.M.; Suchdev, P.S.; Krebs, N.F.; Hess, S.Y.; Wessells, K.R.; Ismaily, S.; Rahman, S.; Wieringa, F.T.; Williams, A.M.; Brown, K.H.; et al. Adjusting plasma or serum zinc concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2020, 111, 927–937. [Google Scholar] [CrossRef]
- Brown, K.H.; Peerson, J.M.; Rivera, J.; Allen, L.H. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2002, 75, 1062–1071. [Google Scholar] [CrossRef]
- Altigani, M.; Murphy, J.F.; Gray, O.P. Plasma zinc concentration and catch up growth in preterm infants. Acta Paediatr. Scand. Suppl. 1989, 357, 20–33. [Google Scholar] [CrossRef]
- Wastney, M.E.; Long, J.M.; McDonald, C.M.; Krebs, N.F.; Islam, M.M.; Ahmed, T.; Khandaker, A.M.; Sthity, R.A.; Westcott, J.E.; King, J.C. Zinc Kinetics Correlate With Length-for-Age z Scores in Bangladeshi Infants. J. Pediatr. Gastroenterol. Nutr. 2022, 75, e81–e86. [Google Scholar] [CrossRef]
- MacDonald, R.S. The Role of Zinc in Growth and Cell Proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef]

| All (n = 317) | Male (n = 179) | Female (n = 138) | ||
|---|---|---|---|---|
| Maternal | Age at enrollment, yrs | 22.89 ± 5.35 | 22.82 ± 5.22 | 22.98 ± 5.54 | 
| <20 | 96 (30.3%) | 50 (27.9%) | 46 (33.3%) | |
| 20–30 | 185 (58.4%) | 113 (63.1%) | 72 (52.2%) | |
| ≥30 | 36 (11.4%) | 16 (8.9%) | 20 (14.5%) | |
| Parity | ||||
| 0 | 115 (36.3%) | 67 (37.4%) | 48 (34.8%) | |
| 1 | 100 (31.6%) | 58 (32.4%) | 42 (30.4%) | |
| ≥2 | 102 (32.2%) | 54 (30.2%) | 48 (34.8%) | |
| Literacy, % | 198 (62.5%) | 115 (64.3%) | 83 (60.1%) | |
| Height, cm | 148.61 ± 5.19 | 148.78 ± 5.02 | 148.38 ± 5.42 | |
| Early pregnancy weight, kg | 43.74 ± 5.78 | 43.66 ± 5.66 | 43.85 ± 5.97 | |
| Early pregnancy (baseline) zinc, µmol/L | 11.00 ± 2.56 | 10.98 ± 2.31 | 11.04 ± 2.86 | |
| Late pregnancy (third trimester) zinc, µmol/L | 10.37 ± 5.16 | 10.52 ± 5.19 | 10.18 ± 5.13 | |
| Postpartum zinc 2, µmol/L | 9.43 ± 3.70 | 9.53 ± 3.59 | 9.31 ± 3.86 | |
| Breastmilk zinc 2, µmol/L | 25.05 ± 15.52 | 23.86 ± 12.28 | 26.62 ± 18.90 | |
| Intervention (MMS) 3, % | 162 (51.1%) | 91 (50.8%) | 71 (51.5%) | |
| Infant Birth | Gestational age, wk | 39.35 ± 2.43 | 39.40 ±2.41 | 39.32 ± 2.46 | 
| Weight, kg | 2.60 ± 0.04 | 2.63 ± 0.40 | 2.55 ± 0.39 | |
| Length, cm ** | 46.79 ± 1.97 | 47.07 ± 2.00 | 46.43 ± 1.88 | |
| Weight z-score | −1.60 ± 0.96 | −1.60 ± 0.94 | −1.59 ± 0.99 | |
| Length z-score | −1.53 ± 1.04 | −1.54 ± 1.06 | −1.51 ± 1.02 | |
| Weight-for-length z-score | −0.81 ± 1.03 | −0.86 ± 1.06 | −0.74 ±0.78 | |
| LBW, % | 133 (42.0%) | 69 (38.6%) | 64 (46.4%) | |
| SGA, % | 207 (67.4%) | 123 (70.3%) | 84 (63.6%) | |
| Preterm,% | 36 (11.7%) | 21 (12.0%) | 15 (11.4%) | |
| Cord blood zinc, µmol/L | 14.76 ± 3.74 | 14.65 ± 3.74 | 14.92 ± 3.79 | |
| Infant, 3 mo | Age, day | 95.44 ± 6.33 | 94.98 ± 5.27 | 96.04 ± 7.47 | 
| Weight, kg *** | 5.28 ± 0.73 | 5.51 ± 0.65 | 5.01 ± 0.72 | |
| Length, cm *** | 58.31 ± 2.30 | 59.1 ± 2.08 | 57.40 ± 2.25 | |
| Weight z-score | −1.39 ± 1.06 | −1.38 ± 0.98 | −1.40 ± 1.16 | |
| Length z-score | −1.33 ± 1.01 | −1.34 ± 1.01 | −1.31 ± 1.03 | |
| Weight-for-length z-score | −0.43 ± 1.18 | −0.43 ± 0.98 | −0.43 ± 1.41 | |
| Rate of weight gain 4, gram/d *** | 28.50 ± 6.11 | 30.58 ± 5.01 | 25.80 ± 6.36 | |
| Rate of length gain 5, cm/month *** | 3.64 ± 0.51 | 3.80 ± 0.47 | 3.45 ± 0.48 | |
| Breastfeeding, % ** | ||||
| Partial | 22 (6.9%) | 14 (7.8%) | 8 (5.8%) | |
| Predominant | 32 (10.1%) | 26 (14.5%) | 6 (4.4%) | |
| Exclusive | 263 (83.0%) | 139 (77.7%) | 124 (89.9%) | |
| Ferritin, µg/L * | 147.16 ± 96.76 | 135.24 ± 91.21 | 161.91 ± 101.66 | |
| AGP, g/L | 0.93 ± 0.35 | 0.95 ± 0.34 | 0.91 ± 0.36 | |
| Zinc, µmol/L | 15.34 ± 6.39 | 15.17 ± 6.41 | 15.57 ± 6.38 | 
| Unadjusted | Adjusted 2 | |||||
|---|---|---|---|---|---|---|
| β Coefficient | 95% CI | p-Value | β Coefficient | 95% CI | p-Value | |
| Maternal Age (Ref: <20) | ||||||
| 20–30 years | 0.072 | −0.037, 0.182 | 0.195 | 0.110 | 0.019, 0.201 | 0.018 | 
| ≥30 years | 0.172 | 0.004, 0.340 | 0.045 | 0.278 | 0.094, 0.461 | 0.003 | 
| Parity (Ref: Nulliparous) | ||||||
| Parity 1 | −0.072 | −0.193, 0.049 | 0.242 | −0.060 | −0.187, 0.066 | 0.351 | 
| Parity ≥ 2 | −0.010 | −0.134, 0.115 | 0.877 | −0.131 | −0.234, −0.027 | 0.013 | 
| Early Pregnancy Zinc (µmol/L) | 0.020 | 0.008 0.033 | 0.001 | 0.012 | 0.003, 0.022 | 0.011 | 
| Intervention (Ref: Iron–Folic Acid) | −0.018 | −0.104, 0.068 | 0.679 | −0.054 | −0.134, 0.026 | 0.183 | 
| Infant Age (day) | −0.002 | −0.008, 0.004 | 0.484 | 0.004 | −0.003, 0.010 | 0.275 | 
| Infant Sex (Ref: Male) | 0.033 | −0.066, 0.118 | 0.410 | 0.033 | −0.050, 0.116 | 0.440 | 
| Breastfeeding Status (Ref: Exclusive) | ||||||
| Predominant | −0.031 | −0.203, 0.142 | 0.728 | −0.087 | −0.199, 0.026 | 0.132 | 
| Partial | −0.065 | −0.254, 0.125 | 0.504 | −0.151 | −0.294, −0.008 | 0.038 | 
| Breast Milk Zinc (µmol/L) | 0.049 | −0.028, 0.126 | 0.213 | 0.050 | −0.015, 0.115 | 0.130 | 
| Infant Ferritin (µg/L) | 0.0005 | 0.0002, 0.001 | 0.007 | 0.001 | 0.0002, 0.001 | 0.007 | 
| Infant AGP 3 (g/L) | 0.153 | 0.050, 0.256 | 0.004 | 0.063 | −0.025, 0.150 | 0.160 | 
| Unadjusted | Adjusted 2 | |||||
|---|---|---|---|---|---|---|
| β Coef. 3 | 95% CI | p-Value | β Coef. 3 | 95% CI | p-Value | |
| Late Pregnancy (n = 238) | 0.004 | −0.007, 0.014 | 0.503 | 0.004 | −0.007, 0.015 | 0.498 | 
| 3 mo Postpartum (n = 235) | 0.0002 | −0.007, 0.007 | 0.958 | 0.001 | −0.008, 0.010 | 0.772 | 
| Cord Blood (n = 65) | 0.001 | −0.024, 0.027 | 0.927 | 0.007 | −0.008, 0.021 | 0.378 | 
| Unadjusted | Adjusted 2 | |||||
|---|---|---|---|---|---|---|
| β Coef. | 95% CI | p-Value | β Coef. | 95% CI | p-Value | |
| Length-For-Age Z-score | 0.017 | 0.003, 0.316 | 0.018 | 0.015 | 0.0002, 0.030 | 0.047 | 
| Weight-For-Age Z-score | 0.006 | −0.007, 0.019 | 0.205 | 0.005 | −0.010, 0.020 | 0.479 | 
| Weight-For-Length Z-score | −0.012 | −0.027, 0.069 | 0.176 | −0.014 | −0.029, 0.001 | 0.060 | 
| Rate of Length Gain 3 | 0.001 | −0.001, 0.004 | 0.336 | 0.006 | −0.001, 0.014 | 0.095 | 
| Rate of Weight Gain 4 | −0.0004 | −0.003, 0.002 | 0.709 | −0.022 | −0.088, 0.044 | 0.521 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, X.; Stephenson, K.K.; Wu, L.S.-F.; Baker, S.; Ali, H.; Shaikh, S.; West, K.P., Jr.; Christian, P.; Schulze, K.J. Maternal and Infant Determinants of Zinc Status and Zinc’s Association with Anthropometry in 3-Month-Old Bangladeshi Infants. Nutrients 2025, 17, 3393. https://doi.org/10.3390/nu17213393
Ge X, Stephenson KK, Wu LS-F, Baker S, Ali H, Shaikh S, West KP Jr., Christian P, Schulze KJ. Maternal and Infant Determinants of Zinc Status and Zinc’s Association with Anthropometry in 3-Month-Old Bangladeshi Infants. Nutrients. 2025; 17(21):3393. https://doi.org/10.3390/nu17213393
Chicago/Turabian StyleGe, Ximing, Katherine K. Stephenson, Lee S.-F. Wu, Sarah Baker, Hasmot Ali, Saijuddin Shaikh, Keith P. West, Jr., Parul Christian, and Kerry J. Schulze. 2025. "Maternal and Infant Determinants of Zinc Status and Zinc’s Association with Anthropometry in 3-Month-Old Bangladeshi Infants" Nutrients 17, no. 21: 3393. https://doi.org/10.3390/nu17213393
APA StyleGe, X., Stephenson, K. K., Wu, L. S.-F., Baker, S., Ali, H., Shaikh, S., West, K. P., Jr., Christian, P., & Schulze, K. J. (2025). Maternal and Infant Determinants of Zinc Status and Zinc’s Association with Anthropometry in 3-Month-Old Bangladeshi Infants. Nutrients, 17(21), 3393. https://doi.org/10.3390/nu17213393
 
        
 
                                                
 
       