Pulse Consumption and Metabolic Syndrome: Findings from the Hispanic Community Health Study/Study of Latinos
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Metabolic Syndrome Definition
2.3. Dietary Assessment and Estimation of Daily Dietary Pulse Consumption
2.4. Sociodemographic and Lifestyle Factors
2.5. Anthropometric Factors
2.6. Statistical Analysis
3. Results
3.1. Sociodemographic, Lifestyle, and Anthropometric Factors
3.2. Daily Pulse Consumption
3.3. Daily Pulse Consumption and Metabolic Syndrome/Latino Heritage
3.4. Association Between Daily Pulse Consumption and Metabolic Syndrome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OR | Odds Ratio | 
| CI | Confidence Interval | 
| U.S. | United States of America | 
| DASH | Dietary Approaches to Stop Hypertension | 
| NHANES | National Health and Nutrition Examination Survey | 
| HCHS/SOL | Hispanic Community Health Study/Study of Latinos | 
| NY | New York | 
| IL | Illinois | 
| FL | Florida | 
| CA | California | 
| HDL-C | High-density lipoprotein cholesterol | 
| NDSR | Nutritional Data System Research | 
| NCI | National Cancer Institute | 
| AHEI | Alternative Healthy Eating Index | 
| EPA | Eicosapentaenoic acid | 
| DHA | Docosahexaenoic acid | 
| PUFA | Polyunsaturated fatty acid | 
| GED | General Education Development | 
| DC | District of Columbia | 
| BMI | Body Mass Index | 
| NC | North Carolina | 
| SD | Standard Deviation | 
| DGA | Dietary Guidelines for Americans | 
| SNAP | Supplemental Nutrition Assistance Program | 
| REF | Reference | 
Appendix A
| Total Sample 2 (n = 6805) | Central American 3 (n = 663) | Cuban 3 (n = 1165) | Dominican 3 (n = 590) | Mexican 3 (n = 2490) | Puerto Rican 3 (n = 1323) | |
|---|---|---|---|---|---|---|
| p | ||||||
| 0.0006 | 0.29 | 0.005 | 0.45 | 0.45 | 0.10 | |
| Pulse consumption | Metabolic Syndrome (95% CI) | |||||
| None | 0.54 (0.50, 0.58) * | 0.51 (0.43, 0.59) | 0.57 (0.51, 0.63) * | 0.55 (0.46, 0.64) | 0.54 (0.48, 0.60) | 0.53 (0.45, 0.61) | 
| Low (<1/2 cup) | 0.63 (0.58, 0.68) * | 0.52 (0.37, 0.67) | 0.77 (0.66, 0.86) * | 0.55 (0.40, 0.69) | 0.57 (0.45, 0.69) | 0.59 (0.51, 0.66) | 
| Moderate (≥1/2 to 3/4 cup) | 0.52 (0.49, 0.55) * | 0.62 (0.52, 0.70) | 0.61 (0.49, 0.71) * | 0.47 (0.38, 0.57) | 0.51 (0.46, 0.56) | 0.46 (0.38, 0.54) | 
| High (>3/4 cup) | 0.49 (0.45, 0.54) * | 0.52 (0.41, 0.63) | 0.55 (0.50, 0.59) * | 0.45 (0.32, 0.58) | 0.45 (0.34, 0.56) | 0.53 (0.37, 0.69) | 
| p | ||||||
| 0.0002 | 0.35 | 0.003 | 0.27 | 0.35 | 0.08 | |
| Pulse consumption | Metabolic Syndrome (95% CI) | |||||
| None | 0.54 (0.50, 0.58) * | 0.51 (0.43, 0.58) | 0.57 (0.51, 0.63) * | 0.55 (0.46, 0.64) | 0.54 (0.48, 0.60) | 0.53 (0.45, 0.61) | 
| Low (<1/2 cup) | 0.63 (0.58, 0.68) * | 0.51 (0.36, 0.65) | 0.77 (0.66, 0.86) * | 0.54 (0.40, 0.68) | 0.57 (0.45, 0.69) | 0.59 (0.51, 0.66) | 
| Moderate/High (≥1/2 cup) | 0.51 (0.48, 0.53) * | 0.57 (0.51, 0.63) | 0.56 (0.52, 0.60) * | 0.46 (0.40, 0.53) | 0.50 (0.45, 0.54) | 0.47 (0.39, 0.55) | 
| Total Sample 2 (n = 6786) | Central American 3 (n = 661) | Cuban 3 (n = 1159) | Dominican 3 (n = 589) | Mexican 3 (n = 2484) | Puerto Rican 3 (n = 1320) | |
|---|---|---|---|---|---|---|
| p | ||||||
| 0.31 | 0.39 | 0.36 | 0.31 | 0.57 | 0.31 | |
| Pulse consumption | Abdominal Obesity 4 (95% CI) | |||||
| None | 0.68 (0.65, 0.70) | 0.65 (0.57, 0.73) | 0.64 (0.59, 0.69) | 0.68 (0.59, 0.75) | 0.70 (0.65, 0.75) | 0.71 (0.66, 0.76) | 
| Low (<1/2 cup) | 0.69 (0.64, 0.74) | 0.75 (0.57, 0.87) | 0.68 (0.47, 0.83) | 0.69 (0.50, 0.83) | 0.73 (0.62, 0.81) | 0.65 (0.58, 0.72) | 
| Moderate (≥1/2 to 3/4 cup) | 0.65 (0.62, 0.68) | 0.71 (0.62, 0.79) | 0.72 (0.63, 0.79) | 0.61 (0.51, 0.70) | 0.67 (0.62, 0.71) | 0.65 (0.57, 0.72) | 
| High (>3/4 cup) | 0.65 (0.62, 0.69) | 0.61 (0.52, 0.69) | 0.65 (0.60, 0.70) | 0.58 (0.47, 0.69) | 0.70 (0.62, 0.77) | 0.72 (0.58, 0.82) | 
| p | ||||||
| 0.17 | 0.62 | 0.77 | 0.17 | 0.53 | 0.25 | |
| Pulse consumption | Abdominal Obesity 4 (95% CI) | |||||
| None | 0.68 (0.65, 0.70) | 0.65 (0.57, 0.72) | 0.64 (0.59, 0.69) | 0.68 (0.59, 0.75) | 0.70 (0.65, 0.75) | 0.71 (0.66, 0.76) | 
| Low (<1/2 cup) | 0.69 (0.64, 0.74) | 0.73 (0.56, 0.86) | 0.67 (0.47, 0.83) | 0.68 (0.50, 0.82) | 0.73 (0.62, 0.81) | 0.66 (0.59, 0.72) | 
| Moderate/High (≥1/2 cup) | 0.65 (0.63, 0.68) | 0.66 (0.60, 0.71) | 0.66 (0.62, 0.71) | 0.60 (0.54, 0.66) | 0.68 (0.64, 0.72) | 0.66 (0.58, 0.72) | 
| Total Sample 2 (n = 6806) | Central American 3 (n = 663) | Cuban 3 (n = 1165) | Dominican 3 (n = 590) | Mexican 3 (n = 2490) | Puerto Rican 3 (n = 1324) | |
|---|---|---|---|---|---|---|
| p | ||||||
| 0.03 | 0.03 | 0.79 | 0.67 | 0.0001 | 0.57 | |
| Pulse consumption | High Blood Pressure 4 (95% CI) | |||||
| None | 0.67 (0.63, 0.71) * | 0.70 (0.64, 0.76) * | 0.74 (0.68, 0.78) | 0.73 (0.63, 0.80) | 0.59 (0.53, 0.64) * | 0.69 (0.61, 0.76) | 
| Low (<1/2 cup) | 0.73 (0.69, 0.77) * | 0.64 (0.52, 0.75) * | 0.78 (0.68, 0.85) | 0.72 (0.54, 0.85) | 0.71 (0.63, 0.77) * | 0.74 (0.67, 0.80) | 
| Moderate (≥1/2 to 3/4 cup) | 0.66 (0.62, 0.69) * | 0.68 (0.60, 0.75) * | 0.74 (0.63, 0.82) | 0.72 (0.64, 0.79) | 0.58 (0.53, 0.63) * | 0.66 (0.56, 0.76) | 
| High (>3/4 cup) | 0.64 (0.60, 0.69) * | 0.52 (0.42, 0.63) * | 0.75 (0.71, 0.79) | 0.80 (0.69, 0.88) | 0.44 (0.34, 0.55) * | 0.62 (0.46, 0.76) | 
| p | ||||||
| 0.01 | 0.10 | 0.59 | 0.89 | 0.001 | 0.44 | |
| Pulse consumption | High Blood Pressure 4 (95% CI) | |||||
| None | 0.67 (0.63, 0.71) * | 0.70 (0.63, 0.76) | 0.74 (0.68, 0.78) | 0.73 (0.63, 0.80) | 0.59 (0.53, 0.64) * | 0.69 (0.61, 0.76) | 
| Low (<1/2 cup) | 0.73 (0.69, 0.77) * | 0.62 (0.49, 0.73) | 0.78 (0.68, 0.85) | 0.73 (0.55, 0.86) | 0.71 (0.63, 0.78) * | 0.74 (0.67, 0.80) | 
| Moderate/High (≥1/2 cup) | 0.65 (0.63, 0.68) * | 0.61 (0.56, 0.66) | 0.75 (0.72, 0.78) | 0.75 (0.70, 0.80) | 0.55 (0.50, 0.60) * | 0.66 (0.55, 0.75) | 
| Total Sample 2 (n = 6806) | Central American 3 (n = 663) | Cuban 3 (n = 1165) | Dominican 3 (n = 590) | Mexican 3 (n = 2490) | Puerto Rican 3 (n = 1324) | |
|---|---|---|---|---|---|---|
| p | ||||||
| 0.79 | 0.45 | 0.41 | 0.87 | 0.29 | 0.52 | |
| Pulse consumption | Low HDL-cholesterol 4 (95% CI) | |||||
| None | 0.39 (0.36, 0.42) | 0.36 (0.28, 0.44) | 0.42 (0.35, 0.48) | 0.39 (0.30, 0.49) | 0.42 (0.36, 0.48) | 0.35 (0.29, 0.43) | 
| Low (<1/2 cup) | 0.38 (0.33, 0.42) | 0.41 (0.27, 0.57) | 0.35 (0.24, 0.47) | 0.33 (0.21, 0.48) | 0.31 (0.22, 0.42) | 0.40 (0.34, 0.47) | 
| Moderate (≥1/2 to 3/4 cup) | 0.38 (0.35, 0.41) | 0.43 (0.35, 0.52) | 0.33 (0.24, 0.43) | 0.39 (0.32, 0.48) | 0.41 (0.36, 0.46) | 0.33 (0.26, 0.42) | 
| High (>3/4 cup) | 0.36 (0.32, 0.40) | 0.43 (0.34, 0.54) | 0.36 (0.31, 0.40) | 0.37 (0.26, 0.50) | 0.35 (0.25, 0.47) | 0.37 (0.23, 0.55) | 
| p | ||||||
| 0.68 | 0.27 | 0.26 | 0.73 | 0.21 | 0.37 | |
| Pulse consumption | Low HDL-cholesterol 4 (95% CI) | |||||
| None | 0.39 (0.36, 0.42) | 0.36 (0.28, 0.44) | 0.42 (0.35, 0.48) | 0.39 (0.30, 0.49) | 0.42 (0.36, 0.48) | 0.35 (0.29, 0.43) | 
| Low (<1/2 cup) | 0.37 (0.33, 0.42) | 0.41 (0.28, 0.56) | 0.35 (0.24, 0.48) | 0.33 (0.21, 0.48) | 0.31 (0.22, 0.42) | 0.40 (0.34, 0.47) | 
| Moderate/High (≥1/2 cup) | 0.37 (0.35, 0.40) | 0.43 (0.37, 0.50) | 0.35 (0.31, 0.39) | 0.39 (0.33, 0.44) | 0.40 (0.35, 0.44) | 0.34 (0.27, 0.42) | 
| Total Sample 2 (n = 6761) | Central American 3 (n = 660) | Cuban 3 (n = 1163) | Dominican 3 (n = 588) | Mexican 3 (n = 2476) | Puerto Rican 3 (n = 1303) | |
|---|---|---|---|---|---|---|
| p | ||||||
| 0.79 | 0.36 | 0.16 | 0.33 | 0.88 | 0.84 | |
| Pulse consumption | High Triglycerides 4 (95% CI) | |||||
| None | 0.37 (0.34, 0.40) | 0.41 (0.33, 0.49) | 0.39 (0.33, 0.45) | 0.20 (0.14, 0.28) | 0.41 (0.36, 0.46) | 0.32 (0.26, 0.39) | 
| Low (<1/2 cup) | 0.39 (0.33, 0.45) | 0.43 (0.26, 0.62) | 0.58 (0.41, 0.73) | 0.26 (0.15, 0.41) | 0.39 (0.28, 0.52) | 0.31 (0.25, 0.38) | 
| Moderate (≥1/2 to 3/4 cup) | 0.38 (0.35, 0.42) | 0.51 (0.42, 0.61) | 0.39 (0.29, 0.51) | 0.31 (0.21, 0.42) | 0.41 (0.36, 0.46) | 0.30 (0.24, 0.37) | 
| High (>3/4 cup) | 0.38 (0.34, 0.42) | 0.49 (0.38, 0.59) | 0.42 (0.38, 0.47) | 0.18 (0.11, 0.28) | 0.37 (0.28, 0.47) | 0.26 (0.15, 0.42) | 
| p | ||||||
| 0.59 | 0.21 | 0.08 | 0.58 | 0.93 | 0.77 | |
| Pulse consumption | High Triglycerides 4 (95% CI) | |||||
| None | 0.37 (0.34, 0.40) | 0.41 (0.33, 0.49) | 0.39 (0.33, 0.45) | 0.20 (0.14, 0.28) | 0.41 (0.36, 0.46) | 0.32 (0.26, 0.39) | 
| Low (<1/2 cup) | 0.39 (0.33, 0.45) | 0.43 (0.26, 0.62) | 0.58 (0.41, 0.73) | 0.24 (0.14, 0.38) | 0.39 (0.28, 0.52) | 0.31 (0.25, 0.38) | 
| Moderate/High (≥1/2 cup) | 0.38 (0.36, 0.41) | 0.50 (0.44, 0.56) | 0.42 (0.38, 0.46) | 0.25 (0.19, 0.32) | 0.40 (0.36, 0.45) | 0.30 (0.23, 0.36) | 
| Total Sample 2 (n = 6805) | Central American 3 (n = 663) | Cuban 3 (n = 1165) | Dominican 3 (n = 590) | Mexican 3 (n = 2490) | Puerto Rican 3 (n = 1323) | |
|---|---|---|---|---|---|---|
| p | ||||||
| 0.13 | 0.43 | 0.40 | 0.29 | 0.83 | 0.08 | |
| Pulse consumption | Glucose Intolerance 4 (95% CI) | |||||
| None | 0.50 (0.47, 0.54) | 0.50 (0.42, 0.59) | 0.52 (0.47, 0.58) | 0.54 (0.42, 0.64) | 0.49 (0.44, 0.55) | 0.51 (0.44, 0.58) | 
| Low (<1/2 cup) | 0.57 (0.52, 0.62) | 0.41 (0.26, 0.58) | 0.64 (0.51, 0.76) | 0.51 (0.38, 0.65) | 0.53 (0.41, 0.64) | 0.61 (0.54, 0.68) | 
| Moderate (≥1/2 to 3/4 cup) | 0.52 (0.49, 0.55) | 0.56 (0.47, 0.65) | 0.53 (0.40, 0.65) | 0.44 (0.36, 0.53) | 0.52 (0.47, 0.56) | 0.50 (0.43, 0.57) | 
| High (>3/4 cup) | 0.51 (0.47, 0.56) | 0.52 (0.42, 0.63) | 0.54 (0.49, 0.58) | 0.58 (0.45, 0.70) | 0.48 (0.37, 0.59) | 0.48 (0.32, 0.65) | 
| p | ||||||
| 0.058 | 0.34 | 0.26 | 0.76 | 0.85 | 0.03 | |
| Pulse consumption | Glucose Intolerance 4 (95% CI) | |||||
| None | 0.50 (0.47, 0.54) | 0.50 (0.42, 0.59) | 0.52 (0.47, 0.58) | 0.54 (0.42, 0.65) | 0.49 (0.44, 0.55) | 0.51 (0.44, 0.58) * | 
| Low (<1/2 cup) | 0.57 (0.52, 0.62) | 0.40 (0.25, 0.57) | 0.64 (0.51, 0.76) | 0.53 (0.41, 0.65) | 0.53 (0.41, 0.64) | 0.61 (0.54, 0.67) * | 
| Moderate/High (≥1/2 cup) | 0.52 (0.49, 0.54) | 0.54 (0.47, 0.61) | 0.54 (0.49, 0.58) | 0.50 (0.43, 0.56) | 0.51 (0.46, 0.56) | 0.50 (0.43, 0.57) * | 
References
- Heiss, G.; Snyder, M.L.; Teng, Y.; Schneiderman, N.; Llabre, M.M.; Cowie, C.; Carnethon, M.; Kaplan, R.; Giachello, A.; Gallo, L.; et al. Prevalence of metabolic syndrome among Hispanics/Latinos of diverse background: The Hispanic Community Health Study/Study of Latinos. Diabetes Care 2014, 37, 2391–2399. [Google Scholar] [CrossRef]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14, E24. [Google Scholar] [CrossRef]
- Heron, M. Deaths: Leading Causes for 2016. Natl. Vital Stat. Rep. 2018, 67, 1–77. [Google Scholar]
- Khambaty, T.; Schneiderman, N.; Llabre, M.M.; Elfassy, T.; Moncrieft, A.E.; Daviglus, M.; Talavera, G.A.; Isasi, C.R.; Gallo, L.C.; Reina, S.A.; et al. Elucidating the Multidimensionality of Socioeconomic Status in Relation to Metabolic Syndrome in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Int. J. Behav. Med. 2020, 27, 188–199. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Zhu, L.; Jiao, S.; Chen, Y.; Sun, Y. Metabolic disorders and risk of cardiovascular diseases: A two-sample mendelian randomization study. BMC Cardiovasc. Disord. 2023, 23, 529. [Google Scholar] [CrossRef]
- Marott, S.C.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Benn, M. Components of the Metabolic Syndrome and Risk of Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 3212–3221. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Didinger, C.; Thompson, H.J. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients 2021, 13, 1100. [Google Scholar] [CrossRef]
- Juárez-Chairez, M.F.; Meza-Márquez, O.G.; Márquez-Flores, Y.K.; Jiménez-Martínez, C. Potential anti-inflammatory effects of legumes: A review. Br. J. Nutr. 2022, 128, 2158–2169. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet. Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Mattei, J.; Sotres-Alvarez, D.; Daviglus, M.L.; Gallo, L.C.; Gellman, M.; Hu, F.B.; Tucker, K.L.; Willett, W.C.; Siega-Riz, A.M.; Van Horn, L.; et al. Diet Quality and Its Association with Cardiometabolic Risk Factors Vary by Hispanic and Latino Ethnic Background in the Hispanic Community Health Study/Study of Latinos. J. Nutr. 2016, 146, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Mattei, J.; Hu, F.B.; Campos, H. A higher ratio of beans to white rice is associated with lower cardiometabolic risk factors in Costa Rican adults. Am. J. Clin. Nutr. 2011, 94, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Leterme, P.; Carmenza Muñoz, L. Factors influencing pulse consumption in Latin America. Br. J. Nutr. 2002, 88 (Suppl. S3), S251–S255. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Concepts, Definitions and Classifications. 2011. Crops Statistics. January 2011. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/f828ddf0-df62-4540-b4cb-1db8db8ced0a/content (accessed on 11 August 2025).
- Dietary Guidelines Advisory Committee. Scientific Report of the 2025 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and Secretary of Agriculture. 2024. Available online: http://www.dietaryguidelines.gov/sites/default/files/2024-12/Scientific_Report_of_the_2025_Dietary_Guidelines_Advisory_Committee_508c.pdf (accessed on 2 January 2025).
- Siega-Riz, A.M.; Sotres-Alvarez, D.; Ayala, G.X.; Ginsberg, M.; Himes, J.H.; Liu, K.; Loria, C.M.; Mossavar-Rahmani, Y.; Rock, C.L.; Rodriguez, B.; et al. Food-group and nutrient-density intakes by Hispanic and Latino backgrounds in the Hispanic Community Health Study/Study of Latinos. Am. J. Clin. Nutr. 2014, 99, 1487–1498. [Google Scholar] [CrossRef]
- Gallo, L.C.; Carlson, J.A.; Sotres-Alvarez, D.; Sallis, J.F.; Jankowska, M.M.; Roesch, S.C.; Gonzalez, F., II; Geremia, C.M.; Talavera, G.A.; Rodriguez, T.M.; et al. The Hispanic Community Health Study/Study of Latinos Community and Surrounding Areas Study: Sample, design, and procedures. Ann. Epidemiol. 2019, 30, 57–65. [Google Scholar] [CrossRef]
- Lipsy, R.J. The National Cholesterol Education Program Adult Treatment Panel III guidelines. J. Manag. Care Pharm. 2003, 9 (Suppl. S2), 2–5. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Subar, A.F.; Thompson, F.; Reedy, J.; Schap, T.R.; Rodgers, A.B.; Kirkpatrick, S.; Freedman, L.S.; Kipnis, V.; Dodd, K.W.; et al. 24-Hour Dietary Recall (24HR) At a Glance. National Institutes of Health. Available online: https://dietassessmentprimer.cancer.gov/profiles/recall/ (accessed on 30 December 2024).
- Freedman, L.S.; Guenther, P.M.; Dodd, K.W.; Krebs-Smith, S.M.; Midthune, D. The population distribution of ratios of usual intakes of dietary components that are consumed every day can be estimated from repeated 24-hour recalls. J. Nutr. 2010, 140, 111–116. [Google Scholar] [CrossRef]
- Kipnis, V.; Midthune, D.; Buckman, D.W.; Dodd, K.W.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Tooze, J.A.; Carroll, R.J.; Freedman, L.S. Modeling data with excess zeros and measurement error: Application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 2009, 65, 1003–1010. [Google Scholar] [CrossRef]
- Food and Drug Administration. Food labeling: Serving sizes of foods that can reasonably be consumed at one eating occasion; dual-column labeling; updating, modifying, and establishing certain reference amounts customarily consumed; serving size for breath mints; and technical amendments. Final rule. Fed. Regist. 2016, 81, 34000–34047. [Google Scholar]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Stat. Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Daviglus, M.L.; Loria, C.M.; Colangelo, L.A.; Spring, B.; Moller, A.C.; Lloyd-Jones, D.M. Healthy lifestyle through young adulthood and the presence of low cardiovascular disease risk profile in middle age: The Coronary Artery Risk Development in (Young) Adults (CARDIA) study. Circulation 2012, 125, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Daviglus, M.L.; Talavera, G.A.; Avilés-Santa, M.L.; Allison, M.; Cai, J.; Criqui, M.H.; Gellman, M.; Giachello, A.L.; Gouskova, N.; Kaplan, R.C.; et al. Prevalence of major cardiovascular risk factors and cardiovascular diseases among Hispanic/Latino individuals of diverse backgrounds in the United States. Jama 2012, 308, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Marin, G.; Sabogal, F.; Marin, B.V.; Otero-Sabogal, R.; Perez-Stable, E.J. Development of a short acculturation scale for Hispanics. Hisp. J. Behav. Sci. 1987, 9, 183–205. [Google Scholar] [CrossRef]
- Herrmann, S.D.; Heumann, K.J.; Der Ananian, C.A.; Ainsworth, B.E. Validity and reliability of the global physical activity questionnaire (GPAQ). Meas. Phys. Educ. Exerc. Sci. 2013, 17, 221–235. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; ISBN 9241208945.
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Aryannezhad, S.; Mok, A.; Imamura, F.; Wareham, N.J.; Brage, S.; Forouhi, N.G. Combined associations of physical activity, diet quality and their changes over time with mortality: Findings from the EPIC-Norfolk study, United Kingdom. BMC Med. 2024, 22, 464. [Google Scholar] [CrossRef]
- Hu, F. Assessment of Physical Activity in Nutritional Epidemiology. In Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013; Volume 40, pp. 241–259. [Google Scholar]
- Hu, F. Implications of Total Energy Intake for Epidemiologic Analyses. In Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013; Volume 40, pp. 260–286. [Google Scholar]
- Reverri, E.J.; Randolph, J.M.; Kappagoda, C.T.; Park, E.; Edirisinghe, I.; Burton-Freeman, B.M. Assessing beans as a source of intrinsic fiber on satiety in men and women with metabolic syndrome. Appetite 2017, 118, 75–81. [Google Scholar] [CrossRef]
- Micheli, L.; Lucarini, E.; Trallori, E.; Avagliano, C.; De Caro, C.; Russo, R.; Calignano, A.; Ghelardini, C.; Pacini, A.; Di Cesare Mannelli, L. Phaseolus vulgaris L. Extract: Alpha-Amylase Inhibition against Metabolic Syndrome in Mice. Nutrients 2019, 11, 1778. [Google Scholar] [CrossRef]
- Kadyan, S.; Sharma, A.; Arjmandi, B.H.; Singh, P.; Nagpal, R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022, 14, 1726. [Google Scholar] [CrossRef]
- Torheim, L.E.; Fadnes, L.T. Legumes and pulses––A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2024, 68, 10484. [Google Scholar] [CrossRef]
- Kim, S.J.; de Souza, R.J.; Choo, V.L.; Ha, V.; Cozma, A.I.; Chiavaroli, L.; Mirrahimi, A.; Blanco Mejia, S.; Di Buono, M.; Bernstein, A.M.; et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 1213–1223. [Google Scholar] [CrossRef]
- Yanni, A.E.; Iakovidi, S.; Vasilikopoulou, E.; Karathanos, V.T. Legumes: A Vehicle for Transition to Sustainability. Nutrients 2023, 16, 98. [Google Scholar] [CrossRef]
- Pearce, M.; Fanidi, A.; Bishop, T.R.P.; Sharp, S.J.; Imamura, F.; Dietrich, S.; Akbaraly, T.; Bes-Rastrollo, M.; Beulens, J.W.J.; Byberg, L.; et al. Associations of Total Legume, Pulse, and Soy Consumption with Incident Type 2 Diabetes: Federated Meta-Analysis of 27 Studies from Diverse World Regions. J. Nutr. 2021, 151, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Hemler, E.C.; Tamez, M.; Orengo, J.F.R.; Mattei, J. Positive attitudes toward legumes are associated with legume intake among adults in Puerto Rico. Nutr. Res. 2022, 103, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Winham, D.M.; Tisue, M.E.; Palmer, S.M.; Cichy, K.A.; Shelley, M.C. Dry Bean Preferences and Attitudes among Midwest Hispanic and Non-Hispanic White Women. Nutrients 2019, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Díaz Martínez, J. Eating Healthy–The Cuban Way. Florida International University. Available online: https://casacuba.fiu.edu/programs/virtual-ventanita/encasa/eating-healthy-the-cuban-way/ (accessed on 28 December 2024).
- Fuster, M. Comparative analysis of dietary guidelines in the Spanish-Speaking Caribbean. Public. Health Nutr. 2016, 19, 607–615. [Google Scholar] [CrossRef]
- Ministry of Health of Brazil. Secretariat of Health Care. Primary Health Care Department. Dietary Guidelines for the Brazilian Population/Ministry of Health Brazil 150. 2015. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/dietary_guidelines_brazilian_population.pdf (accessed on 11 August 2025).
- Bonvecchio Arenas, A.; Fernandez-Gaxiola, A.C.; Plazas Belausteguigoitia, M.; Kaufer-Horwitz, M.; Pérez Lizaur, A.B.; Rivera Dommarco, J.Á. Guías Alimentarias y de Actividad Física en Contexto de Sobrepeso y Obesidad en la Población Mexicana. Academia Nacional de Medicina. 2015. Available online: https://www.anmm.org.mx/publicaciones/CAnivANM150/L29_ANM_Guias_alimentarias.pdf (accessed on 11 August 2025).
- République Française. Ministére Des Affaires Sociales et de la Santé. Manger Bounger. Programme National Nutrition Santé. French National Nutrition and Health Program 2011–2015. Available online: https://sante.gouv.fr/IMG/pdf/PNNS_UK_INDD_V2.pdf (accessed on 11 August 2025).
- Gobierno de España. Ministerio de Consumo. Agencia Española de Seguridad Alimentaria y Nutrición. Recommendaciones Dietéticas y de Actividad Física. 2022. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/nutricion/RECOMENDACIONES_DIETETICAS.pdf (accessed on 11 August 2025).
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The healthiness and sustainability of national and global food based dietary guidelines: Modelling study. Br. Med. J. 2020, 370, m2322. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, K.; Chiu, Y.H.; Wallace, T.C. Pulse Consumption and Health Outcomes: A Scoping Review. Nutrients 2024, 16, 1435. [Google Scholar] [CrossRef]
- Luo, H.; Dodd, K.W.; Arnold, C.D.; Engle-Stone, R. Advanced Dietary Analysis and Modeling: A Deep Dive into the National Cancer Institute Method. J. Nutr. 2022, 152, 2615–2625. [Google Scholar] [CrossRef] [PubMed]

| Characteristics | Total Sample (n = 6958) | Non-Consumer (n = 2374) | Low (<1/2 Cup) (n = 869) | Moderate (≥1/2 to 3/4 Cup) (n = 2361) | High (>3/4 Cup) (n = 1354) | p | |
|---|---|---|---|---|---|---|---|
| Age, years—mean (SD) | 59.6 (0.1) | 59.4 (0.2) | 58.3 (0.4) | 58.9 (0.3) | 61.4 (0.3) | <0.001 | |
| Sex n (%) | Female | 4364 (56.1) | 1555 (58.3) | 721 (79.8) | 1799 (69.3) | 289 (26.5) | <0.001 | 
| Male | 2594 (43.9) | 819 (41.7) | 148 (20.2) | 562 (30.7) | 1065 (73.5) | ||
| Educational attainment n (%) | No high school diploma or GED | 3253 (43.1) | 1009 (40.1) | 391 (39.7) | 1224 (48.2) | 629 (43.0) | 0.002 | 
| High school diploma or GED | 1360 (19.0) | 489 (18.6) | 187 (25.0) | 435 (18.8) | 249 (17.4) | ||
| Greater than high school or GED | 2317 (37.9) | 870 (41.2) | 290 (35.2) | 682 (33.1) | 475 (39.6) | ||
| Annual household income by federal poverty level n (%) | ≤100% | 2539 (39.9) | 810 (41.2) | 326 (38.7) | 889 (42.4) | 513 (42.9) | 0.01 | 
| 101 to 200% | 2275 (34.2) | 797 (33.8) | 255 (31.4) | 777 (33.1) | 446 (37.4) | ||
| 201 to 300% | 846 (14.1) | 318 (15.1) | 100 (16.4) | 274 (13.8) | 154 (12.0) | ||
| >300% | 614 (11.8) | 246 (14.9) | 94 (13.5) | 179 (10.7) | 95 (7.7) | ||
| Study site n (%) | Bronx | 1704 (26.9) | 595 (28.4) | 391 (48.2) | 584 (31.6) | 134 (10.0) | <0.001 | 
| Chicago | 1663 (12.2) | 489 (11.0) | 181 (10.1) | 619 (13.7) | 374 (13.2) | ||
| Miami | 1885 (38.1) | 650 (36.5) | 157 (24.8) | 356 (20.3) | 722 (67.6) | ||
| San Diego | 1706 (22.7) | 640 (24.1) | 140 (16.9) | 802 (34.5) | 124 (9.2) | ||
| Hispanic/Latino Heritage n (%) | Central American | 675 (6.4) | 203 (5.2) | 62 (5.5) | 237 (6.9) | 173 (7.9) | <0.001 | 
| Cuban | 1183 (28.8) | 394 (27.1) | 72 (14.9) | 128 (9.8) | 589 (59.7) | ||
| Dominican | 606 (8.9) | 154 (6.0) | 73 (9.4) | 240 (11.4) | 139 (9.8) | ||
| Mexican | 2521 (29.2) | 843 (29.9) | 188 (19.2) | 1140 (42.3) | 350 (17.1) | ||
| Puerto Rican | 1361 (19.2) | 526 (22.9) | 315 (34.2) | 428 (21.6) | 92 (4.4) | ||
| South American | 466 (5.4) | 198 (6.8) | 135 (11.7) | 133 (5.9) | 0 (0.0) | ||
| More than one/Other heritage | 126 (2.2) | 49 (2.2) | 22 (5.1) | 44 (2.1) | 11 (1.0) | ||
| Birthplace n (%) | Not born in 50 US States or DC | 6376 (92.6) | 2104 (90.3) | 758 (87.9) | 2195 (92.9) | 1319 (97.9) | <0.001 | 
| Born in 50 US States or DC 2 | 568 (7.4) | 266 (9.7) | 110 (12.1) | 157 (7.1) | 35 (2.1) | ||
| Acculturation 3—mean (SD) | 1.7 (0.03) | 1.9 (0.05) | 1.9 (0.05) | 1.7 (0.03) | 1.4 (0.03) | <0.001 | |
| Acculturation 3 n (%) | Less acculturated 4 | 5032 (72.2) | 1583 (65.5) | 558 (64.9) | 1763 (72.5) | 1128 (85.0) | <0.001 | 
| More acculturated 4 | 1904 (27.8) | 781 (34.5) | 307 (35.1) | 593 (27.5) | 223 (15.0) | ||
| Health insurance coverage n (%) | No | 2834 (38.3) | 921 (35.6) | 282 (31.8) | 993 (40.6) | 638 (42.5) | <0.001 | 
| Yes | 4029 (61.7) | 1417 (64.4) | 571 (68.2) | 1336 (59.4) | 705 (57.5) | ||
| Characteristics | Total Sample (n = 6958) | Non-Consumer (n = 2374) | Low (<1/2 Cup) (n = 869) | Moderate (≥1/2 to 3/4 Cup) (n = 2361) | High (>3/4 Cup) (n = 1354) | p | |
|---|---|---|---|---|---|---|---|
| Diet quality AHEI 2, mean (SD) | Overall score | 50.7 (0.2) | 49.4 (0.3) | 48.7 (0.5) | 52.6 (0.3) | 51.1 (0.4) | <0.001 | 
| Vegetables (without potatoes) | 4.1 (0.04) | 4.1 (0.1) | 3.2 (0.1) | 4.1 (0.1) | 4.6 (0.2) | <0.001 | |
| Whole grains | 3.2 (0.04) | 3.1 (0.1) | 2.8 (0.1) | 3.5 (0.1) | 3.0 (0.1) | <0.001 | |
| Whole fruit (without fruit juice) | 2.6 (0.1) | 2.5 (0.1) | 2.2 (0.1) | 3.2 (0.1) | 2.2 (0.1) | <0.001 | |
| Sugar-sweetened beverages and fruit juices | 1.7 (0.04) | 1.7 (0.1) | 1.9 (0.1) | 1.9 (0.1) | 1.2 (0.1) | <0.001 | |
| Nuts and legumes | 6.6 (0.1) | 5.2 (0.1) | 5.3 (0.1) | 7.0 (0.1) | 8.9 (0.1) | <0.001 | |
| Red and processed meats | 4.0 (0.1) | 4.1 (0.1) | 5.1 (0.1) | 4.7 (0.1) | 2.5 (0.1) | <0.001 | |
| Trans fat | 8.3 (0.02) | 8.2 (0.03) | 8.2 (0.03) | 8.2 (0.02) | 8.5 (0.02) | <0.001 | |
| EPA and DHA | 3.5 (0.03) | 3.5 (0.1) | 2.9 (0.1) | 3.5 (0.1) | 3.7 (0.1) | <0.001 | |
| PUFA | 5.5 (0.03) | 5.4 (0.04) | 5.2 (0.04) | 5.4 (0.03) | 5.7 (0.04) | <0.001 | |
| Sodium | 6.6 (0.1) | 7.0 (0.1) | 7.5 (0.1) | 6.8 (0.1) | 5.3 (0.1) | <0.001 | |
| Alcohol | 4.8 (0.1) | 4.8 (0.1) | 4.3 (0.1) | 4.5 (0.1) | 5.4 (0.1) | <0.001 | |
| Diet quality DASH 3, mean (SD) | Not healthy (≤60th percentile) | 3074 (47.3) | 1247 (56.5) | 554 (66.1) | 800 (37.5) | 473 (37.3) | <0.001 | 
| Healthy (>60th percentile) | 3880 (52.7) | 1127 (43.5) | 314 (33.9) | 1559 (62.5) | 880 (62.7) | <0.001 | |
| Energy intake, mean (SD), kcal/d | 1837.3 (10.8) | 1780.6 (15.1) | 1571.1 (18.6) | 1764.1 (15.3) | 2124.6 (15.5) | <0.001 | |
| Total physical activity 4, mean (SD), min/d | 95.7 (2.8) | 91.4 (5.2) | 107.1 (8.2) | 95.5 (4.8) | 97.2 (6.0) | 0.40 | |
| Cigarette use n (%) | Never | 3830 (53.7) | 1263 (52.8) | 500 (57.3) | 1481 (61.7) | 586 (43.9) | <0.001 | 
| Former | 1905 (27.6) | 683 (29.0) | 218 (24.9) | 561 (23.6) | 443 (31.7) | ||
| Current | 1207 (18.7) | 422 (18.2) | 150 (17.8) | 313 (14.7) | 322 (24.4) | ||
| BMI (kg/m2) 5 n (%) | Underweight | 30 (0.6) | 3 (0.2) | 5 (0.5) | 11 (0.7) | 11 (1.0) | <0.001 | 
| Normal | 1073 (15.6) | 363 (14.5) | 102 (11.0) | 349 (15.4) | 259 (19.4) | ||
| Overweight | 2728 (40.2) | 924 (40.3) | 309 (36.9) | 912 (39.1) | 583 (43.0) | ||
| Obesity | 3104 (43.6) | 1079 (45.0) | 448 (51.5) | 1080 (44.7) | 497 (36.6) | ||
| Abdominal obesity 6 n (%) | No | 2196 (33.4) | 731 (30.7) | 187 (22.1) | 619 (29.9) | 659 (46.3) | <0.001 | 
| Yes | 4738 (66.6) | 1634 (69.3) | 678 (77.9) | 1736 (70.1) | 690 (53.7) | ||
| Pulse Consumption | Model 1 Unadjusted (n = 6953) | Model 2 Adjusted for Energy Intake (n = 6805) | Model 3 Adjusted for Energy Intake and Diet Quality (AHEI) (n = 6801) | Model 4 Adjusted for Energy Intake and Diet Quality (DASH) (n = 6801) | ||||
|---|---|---|---|---|---|---|---|---|
| Predicted Marginal (95% CI) | SE | Predicted Marginal (95% CI) | SE | Predicted Marginal (95% CI) | SE | Predicted Marginal (95% CI) | SE | |
| None | 0.53 (0.49, 0.57) | 0.02 | 0.54 (0.50, 0.58) | 0.02 | 0.53 (0.50, 0.57) | 0.02 | 0.54 (0.50, 0.58) | 0.02 | 
| Low (<1/2 cup) | 0.62 (0.57, 0.66) | 0.02 | 0.63 (0.58, 0.68) | 0.03 | 0.63 (0.58, 0.68) | 0.02 | 0.63 (0.58, 0.68) | 0.03 | 
| Moderate (≥1/2 cup to 3/4 cup) | 0.51 (0.48, 0.54) | 0.02 | 0.52 (0.49, 0.55) | 0.02 | 0.52 (0.49, 0.56) | 0.02 | 0.52 (0.48, 0.55) | 0.02 | 
| High (>3/4 cup) | 0.51 (0.48, 0.55) | 0.02 | 0.49 (0.45, 0.54) | 0.02 | 0.50 (0.45, 0.54) | 0.02 | 0.49 (0.45, 0.53) | 0.02 | 
| Model p | 0.0007 | 0.0006 | 0.0009 | 0.0004 | ||||
| Covariates | Wald F | p | Wald F | p | Wald F | p | Wald F | p | 
| Study site | 0.47 | 0.71 | 0.42 | 0.74 | 0.46 | 0.71 | ||
| Hispanic/Latino heritage | 1.78 | 0.10 | 1.32 | 0.24 | 2.04 | 0.06 | ||
| Sex | 0.00 | 1.00 | 0.39 | 0.53 | 0.12 | 0.72 | ||
| Birthplace | 0.57 | 0.45 | 0.34 | 0.56 | 0.65 | 0.42 | ||
| Educational attainment | 5.17 | 0.006 | 4.65 | 0.01 | 5.34 | 0.005 | ||
| Cigarette use | 4.12 | 0.02 | 4.61 | 0.01 | 3.93 | 0.02 | ||
| Physical activity | 21.14 | <0.001 | 20.54 | <0.001 | 21.35 | <0.001 | ||
| Health insurance coverage | 0.18 | 0.67 | 0.16 | 0.69 | 0.17 | 0.68 | ||
| Age | 10.11 | 0.002 | 14.78 | <0.001 | 8.63 | 0.003 | ||
| Acculturation 2 | 1.25 | 0.26 | 1.15 | 0.29 | 1.27 | 0.26 | ||
| Energy intake | 6.89 | 0.009 | 9.64 | 0.002 | 9.26 | 0.002 | ||
| Diet quality—AHEI | 6.91 | 0.009 | ||||||
| Diet quality—DASH | 1.27 | 0.26 | ||||||
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teruel Camargo, J.; Recinos, G.; Hinerman, A.S.; Duong, C.; Rodriquez, E.J.; Juarez, J.J.; McClain, A.C.; Alver, S.K.; Daviglus, M.L.; Van Horn, L.; et al. Pulse Consumption and Metabolic Syndrome: Findings from the Hispanic Community Health Study/Study of Latinos. Nutrients 2025, 17, 3392. https://doi.org/10.3390/nu17213392
Teruel Camargo J, Recinos G, Hinerman AS, Duong C, Rodriquez EJ, Juarez JJ, McClain AC, Alver SK, Daviglus ML, Van Horn L, et al. Pulse Consumption and Metabolic Syndrome: Findings from the Hispanic Community Health Study/Study of Latinos. Nutrients. 2025; 17(21):3392. https://doi.org/10.3390/nu17213392
Chicago/Turabian StyleTeruel Camargo, Juliana, Gabriela Recinos, Amanda S. Hinerman, Chelsea Duong, Erik J. Rodriquez, Jordan J. Juarez, Amanda C. McClain, Sarah K. Alver, Martha L. Daviglus, Linda Van Horn, and et al. 2025. "Pulse Consumption and Metabolic Syndrome: Findings from the Hispanic Community Health Study/Study of Latinos" Nutrients 17, no. 21: 3392. https://doi.org/10.3390/nu17213392
APA StyleTeruel Camargo, J., Recinos, G., Hinerman, A. S., Duong, C., Rodriquez, E. J., Juarez, J. J., McClain, A. C., Alver, S. K., Daviglus, M. L., Van Horn, L., & Pérez-Stable, E. J. (2025). Pulse Consumption and Metabolic Syndrome: Findings from the Hispanic Community Health Study/Study of Latinos. Nutrients, 17(21), 3392. https://doi.org/10.3390/nu17213392
 
        




 
       